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Multi-level nonstandard analysis and the axiom of choice
KAREL HRBACEK

Abstract: Model-theoretic frameworks for Nonstandard Analysis depend on the
existence of nonprincipal ultrafilters, a strong form of the Axiom of Choice (AC).
Hrbacek and Katz in Annals of Pure and Applied Logic 72 (2021) formulate ax-
iomatic nonstandard set theories SPOT and SCOT that are conservative extensions
of respectively ZF and ZF + ADC (the Axiom of Dependent Choice), and in
which a significant part of Nonstandard Analysis can be developed. The present
paper extends these theories to theories with many levels of standardness, called
respectively SPOTS and SCOTS . It shows that Jin’s recent nonstandard proof of
Szemerédi’s Theorem can be carried out in SPOTS , which is conservative over
ZF+ACC (the Axiom of Countable Choice). The theory SCOTS is a conservative
extension of ZF + ADC .
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1 Introduction

Nonstandard Analysis is sometimes criticized for its implicit dependence on the Axiom
of Choice (AC) (see eg Connes [5]1). Indeed, model-theoretic frameworks based on
hyperreals require the existence of nonprincipal ultrafilters over N, a strong form of
AC:

If ∗ is the mapping that assigns to each X ⊆ N its nonstandard extension
∗X , and if ν ∈ ∗N \ N is an unlimited integer, then the set U = {X ⊆ N |
ν ∈ ∗X} is a nonprincipal ultrafilter over N.

The common axiomatic/syntactic frameworks for nonstandard methods (see Kanovei
and Reeken [23]), such as IST or HST, include ZFC among their axioms. The
dependence on AC cannot be avoided by simply removing it from the list of axioms (see
Hrbacek [13]). These theories postulate some version of the Standardization Principle:

1Detailed examination of Connes’s views is carried out in Kanovei, Katz and Mormann [22],
Katz and Leichtnam [25] and Sanders [31].
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2 Karel Hrbacek

For every formula Φ(x) in the language of the theory ( possibly with
additional parameters) and every standard set A there exists a standard set
S such that for all standard x x ∈ S ↔ x ∈ A ∧ Φ(x).

This set is denoted st{x ∈ A | Φ(x)}. It follows that, for an unlimited ν ∈ N, the
standard set U = st{X ∈ P(N) | ν ∈ X} is a nonprincipal ultrafilter over N.

All work in Nonstandard Analysis based on these two familiar frameworks thus depends
essentially on the Axiom of Choice.2

While strong forms of AC (Zorn’s Lemma, Prime Ideal Theorem) are instrumental in
many abstract areas of mathematics, such as General Topology (the product of compact
spaces is compact), Measure Theory (there exist sets that are not Lebesgue measurable)
or Functional Analysis (Hahn–Banach theorem), it is undesirable to have to rely on
them for results in “ordinary” mathematics such as Calculus, finite Combinatorics and
Number Theory.3

Hrbacek and Katz [15] introduced nonstandard set theories SPOT and SCOT. In order
to avoid the reliance on AC, Standardization needs to be weakened. The theory SPOT
has three simple axioms: Standard Part, Nontriviality and Transfer. It is a subtheory
of the better known nonstandard set theories IST and HST, but unlike them, it is a
conservative extension of ZF. Arguments carried out in SPOT thus do not depend on
any form of AC. Infinitesimal analysis can be conducted in SPOT in the usual way. It
only needs to be verified that any use of Standardization can be justified by the special
cases of this principle that are available in SPOT.

Traditional proofs in “ordinary” mathematics either do not use AC at all, or refer only
to its weak forms, notably the Axiom of Countable Choice (ACC) or the stronger
Axiom of Dependent Choice (ADC). These axioms are generally accepted and often
used without comment. They are necessary to prove eg the equivalence of the ε-δ
definition and the sequential definition of continuity at a given point for functions
f : X ⊆ R → R, or the countable additivity of Lebesgue measure, but they do not

2Nonstandard Analysis that does not use AC , or uses only weak versions of it, can be found
in the work of Chuaqui, Sommer and Suppes (see eg [33]), in papers on Reverse Mathematics
of Nonstandard Analysis (eg Keisler [27], Sanders [30], van den Berg et al [3] and others), and
in the work of Hrbacek and Katz [15, 16, 17] and the present paper, based on SPOT/SCOT .

3The issue is not the validity of such results but the method of proof. It is a consequence
of Shoenfield’s Absoluteness Theorem (Jech [19, Theorem 98]) that all Π1

4 sentences of
second-order arithmetic that are provable in ZFC are also provable in ZF . Most theorems of
Number Theory and Real Analysis (eg Peano’s Theorem; see Hanson’s answer in [10]) can be
formalized as Π1

4 statements. But the ZF proofs obtained from ZFC proofs by this method are
far from “ordinary.”
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Multi-level nonstandard analysis and the axiom of choice 3

imply the strong consequences of AC such as the existence of nonprincipal ultrafilters
or the Banach–Tarski paradox. The theory SCOT is obtained by adding to SPOT the
external version of the Axiom of Dependent Choice; it is a conservative extension of
ZF + ADC.

Nonstandard Analysis with multiple levels of standardness has been used in combina-
torics and number theory by Renling Jin, Terence Tao, Mauro Di Nasso and others.
Jin [20] recently gave a groundbreaking nonstandard proof of Szemerédi’s Theorem in
a model-theoretic framework that has three levels of infinity.

Szemerédi’s Theorem If D ⊆ N has a positive upper density, then D contains a
k–term arithmetic progression for every k ∈ N.

The main objective of this paper is to extend the above two theories to theories SPOTS
and SCOTS with many levels of standardness and consider their relationship to AC.
An outline of SPOT and SCOT is given in Section 2. Section 3 reviews the familiar
properties of ultrapowers and iterated ultrapowers in a form suitable to motivate multi-
level versions of these theories, which are formulated in Section 4. The next three
sections illustrate various ways to use multiple levels of standardness. In Section 5 Jin’s
proof of Ramsey’s Theorem is formalized in SPOTS, and Section 6 explains how Jin’s
proof of Szemerédi’s Theorem can be developed in it. The multi-level nonstandard
approach to Calculus employed in Hrbacek, Lessmann and O’Donovan [14] can also
be formalized in SPOTS and thus does not require any more AC than the traditional
approach; this is shown in Section 7. Finally, in Section 8 it is proved that SCOTS is a
conservative extension of ZF+ADC and that SPOTS is conservative over ZF+ACC.
It is an open problem whether SPOTS is a conservative extension of ZF.

2 Theories SPOT and SCOT

By an ∈–language we mean the language that has a primitive binary membership
predicate ∈. The classical theories ZF and ZFC are formulated in the ∈–language.
It is enriched by defined symbols for constants, relations, functions and operations
customary in traditional mathematics. For example, it contains names N and R for the
sets of natural and real numbers; they are viewed as defined in the traditional way (N is
the least inductive set, R is defined in terms of Dedekind cuts or Cauchy sequences).

Nonstandard set theories, including SPOT and SCOT, are formulated in the st-∈–
language. They add to the ∈–language a unary predicate symbol st, where st(x) reads

Journal of Logic & Analysis 16:5 (2024)



4 Karel Hrbacek

“x is standard,” and possibly other symbols. They postulate that standard infinite
sets contain also nonstandard elements. For example, R contains infinitesimals and
unlimited reals, and N contains unlimited natural numbers.

We use ∀ and ∃ as quantifiers over sets and ∀st and ∃st as quantifiers over standard
sets. All free variables of a formula Φ(v1, . . . , vk) are assumed to be among v1, . . . , vk

unless explicitly specified otherwise. This is usually done informally by saying that the
formula has parameters (ie, additional free variables), possibly restricted to objects of a
certain kind).

The axioms of SPOT are:

ZF (Zermelo–Fraenkel Set Theory; Separation and Replacement schemata apply to
∈–formulas only.)

T (Transfer) Let ϕ(v) be an ∈–formula with standard parameters. Then:

∀stx ϕ(x) → ∀x ϕ(x)

O (Nontriviality) ∃ν ∈ N ∀stn ∈ N (n ̸= ν)

SP (Standard Part) ∀A ⊆ N ∃stB ⊆ N ∀stn ∈ N (n ∈ B ↔ n ∈ A)

We state some general results provable in SPOT (Hrbacek and Katz [15]).

Proposition 2.1 Standard natural numbers precede all nonstandard natural numbers:

∀stn ∈ N ∀m ∈ N (m < n → st(m))

Proposition 2.2 (Countable Idealization) Let ϕ(u, v) be an ∈–formula with arbitrary
parameters. Then:

∀stn ∈ N ∃x ∀m ∈ N (m ≤ n → ϕ(m, x)) ↔ ∃x ∀stn ∈ N ϕ(n, x)

The dual form of Countable Idealization is:

∃stn ∈ N ∀x ∃m ∈ N (m ≤ n ∧ ϕ(m, x)) ↔ ∀x ∃stn ∈ N ϕ(n, x)

Countable Idealization easily implies the following more familiar form. We use ∀st fin

and ∃st fin as quantifiers over standard finite sets.

Let ϕ(u, v) be an ∈–formula with arbitrary parameters. For every standard countable
set A,

∀st fina ⊆ A ∃x ∀y ∈ a ϕ(x, y) ↔ ∃x ∀sty ∈ A ϕ(x, y).

Journal of Logic & Analysis 16:5 (2024)



Multi-level nonstandard analysis and the axiom of choice 5

The axiom SP is often used in the equivalent form:

(SP′) ∀x ∈ R (x limited → ∃str ∈ R (x ≃ r))

We recall that x is limited if and only if |x| ≤ n for some standard n ∈ N, and x ≃ r
if and only if |x − r| ≤ 1/n for all standard n ∈ N, n ̸= 0; x is infinitesimal if
x ≃ 0 ∧ x ̸= 0. The unique standard real number r is called the standard part of x or
the shadow of x; notation r = sh(x).

The axiom SP is also equivalent to Standardization over countable sets for ∈–formulas
(with arbitrary parameters):

Let ϕ(v) be an ∈–formula with arbitrary parameters. Then:

(SP′′) ∃stS ∀stn (n ∈ S ↔ n ∈ N ∧ ϕ(n))

Proof Let A = {n ∈ N | ϕ(n)} and apply SP.

The “nonstandard” axioms of SPOT extend to ZF the insights of Leibniz about
real numbers (see Bair et al [1, 2], Katz and Sherry [26] and Katz, Kuhlemann and
Sherry [24]):

• Assignable vs inassignable distinction [standard vs nonstandard]
• Law of continuity [Transfer]
• Existence of infinitesimals [Nontriviality]
• Equality up to infinitesimal terms that need to be discarded [Standard Part]

This can be taken as a justification of the axioms of SPOT independent of the proof of
its conservativity over ZF.

The scope of the axiom schema SP′′ can be extended.

Definition 2.3 An st-∈–formula Φ(v1, . . . , vr) is special if it is of the form

Qstu1 . . .Q
stus ψ(u1, . . . , us, v1, . . . , vr)

where ψ is an ∈–formula and each Q stands for ∃ or ∀.

We use ∀st
N u . . . and ∃st

N u . . . as shorthand for, respectively, ∀stu (u ∈ N → . . .) and
∃stu (u ∈ N ∧ . . .).

An N-special formula is a formula of the form

Qst
Nu1 . . .Q

st
Nus ψ(u1, . . . us, v1, . . . , vr)

where ψ is an ∈–formula.

Journal of Logic & Analysis 16:5 (2024)



6 Karel Hrbacek

Proposition 2.4 (SPOT) (Countable Standardization for N–Special Formulas) Let
Φ(v) be an N–special formula with arbitrary parameters. Then:

∃stS ∀stn (n ∈ S ↔ n ∈ N ∧ Φ(n))

Of course, N can be replaced by any standard countable set.

Proof We give the argument for a typical case:

∀st
Nu1 ∃st

Nu2 ∀st
Nu3 ψ(u1, u2, u3, v)

By SP′′ there is a standard set R such that for all standard n1, n2, n3, n :

⟨n1, n2, n3, n⟩ ∈ R ↔ ⟨n1, n2, n3, n⟩ ∈ N4 ∧ ψ(n1, n2, n3, n)

We let Rn1,n2,n3 = {n ∈ N | ⟨n1, n2, n3, n⟩ ∈ R} and let:

S =
⋂

n1∈N

⋃
n2∈N

⋂
n3∈N

Rn1,n2,n3

Then S is standard and for all standard n:

n ∈ S ↔ ∀n1 ∈ N ∃n2 ∈ N ∀n3 ∈ N (n ∈ Rn1,n2,n3)

↔ (by Transfer) ∀st
Nn1 ∃st

Nn2 ∀st
Nn3 (n ∈ Rn1,n2,n3)

↔ (by definition of R) ∀st
Nn1 ∃st

Nn2 ∀st
Nn3 ψ(n1, n2, n3, n)

↔ Φ(n).

Infinitesimal calculus can be developed in SPOT as far as the global version of Peano’s
Theorem; see Hrbacek and Katz [16, 17].

Peano’s Theorem Let F : [0,∞) × R → R be a continuous function. There is an
interval [0, a) with 0 < a ≤ ∞ and a function y : [0, a) → R such that

y(0) = 0, y′(x) = F(x, y(x))

holds for all x ∈ [0, a), and if a ∈ R then limx→a− y(x) = ±∞.

We note that traditional proofs of the global version of Peano’s Theorem use Zorn’s
Lemma or the Axiom of Dependent Choice.

It is useful to extend SPOT by two additional special cases of Standardization.

SN (Standardization for st-∈–formulas with no parameters or, equivalently, with only
standard parameters) Let Φ(v) be an st-∈–formula with standard parameters. Then:

∀stA∃stS ∀stx (x ∈ S ↔ x ∈ A ∧ Φ(x))

Journal of Logic & Analysis 16:5 (2024)



Multi-level nonstandard analysis and the axiom of choice 7

SF (Standardization over standard finite sets) Let Φ(v) be an st-∈–formula with
arbitrary parameters. Then:

∀st finA ∃stS ∀stx (x ∈ S ↔ x ∈ A ∧ Φ(x))

An important consequence of SF is the ability to carry out external induction.

Proposition 2.5 (External Induction) Let Φ(v) be an st-∈–formula with arbitrary
parameters. Then SPOT + SF proves the following:

[Φ(0) ∧ ∀stn ∈ N (Φ(n) → Φ(n + 1)) ] → ∀stmΦ(m)

Proof Let m ∈ N be standard. If m = 0, then Φ(m) holds. Otherwise SF yields a
standard set S ⊆ m such that ∀stn < m (n ∈ S ↔ Φ(n)); clearly 0 ∈ S . As S is finite,
it has a greatest element k , which is standard by Transfer. If k < m, then k + 1 ∈ S , a
contradiction. Hence k = m and Φ(m) holds.

SPOT+ is SPOT + SN + SF.

The theory SPOT+ is a conservative extension of ZF.

This is proved for SPOT + SN in Hrbacek and Katz [15, Theorem B] (Propositions
4.15 and 6.7 there). The argument that SF can be also added conservatively over ZF is
given at the end of Section 8 (Proposition 8.7).

The theory SCOT is SPOT++ DC, where:

DC (Dependent Choice for st-∈–formulas) Let Φ(u, v) be an st-∈–formula with
arbitrary parameters. If ∀x ∃y Φ(x, y), then for any b there is a sequence ⟨bn | n ∈ N⟩
such that b0 = b and ∀stn ∈ N Φ(bn, bn+1).

Some general consequences of SCOT are (see [15]):

CC (Countable st-∈–Choice) Let Φ(u, v) be an st-∈–formula with arbitrary parame-
ters. Then:

∀stn ∈ N ∃x Φ(n, x) → ∃f (f is a function ∧ ∀stn ∈ NΦ(n, f (n))

SC (Countable Standardization) Let Ψ(v) be an st-∈–formula with arbitrary parameters.
Then:

∃stS ∀stx (x ∈ S ↔ x ∈ N ∧ Ψ(x))

SCOT is a conservative extension of ZF + ADC [15, Theorem 5.10].4 It allows such
features as an infinitesimal construction of the Lebesgue measure. It implies the axioms
of Nelson’s Radically Elementary Probability Theory [28].

4It is an open question whether SPOT++ SC is a conservative extension of ZF .
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8 Karel Hrbacek

3 Ultrafilters, ultrapowers and iterated ultrapowers

In this section we review the construction of iterated ultrapowers in a form suitable for
motivation and establishing the conservativity of the theories formulated in Section 4.
We assume ZFC, use classes freely and give no proofs. Some references for this
material are Chang and Keisler [4], Enayat et al [9] and Hrbacek [11, 12].

Model theory deals with structures that are sets. For our purposes we need to construct
ultrapowers of the entire set-theoretic universe V. That means we have to deal with
structures that are proper classes, eg (V,∈). We sometimes use the model-theoretic
language and say that such structure satisfies a formula, or that a mapping is an
elementary embedding of one class structure into another. It is well-known that the
satisfaction relation ⊨ for such structures cannot be proved to exist in ZFC. But the
concept makes sense for any one particular formula. Thus, if U = (U;V1,V2, . . .)
is a (class) structure and Φ(v1, . . . , vr) is a formula in the language of U, we write
ΦU(v1, . . . , vr) for the formula obtained from Φ by restricting all quantifiers to U, ie,
by replacing each occurrence of ∀v by ∀v ∈ U and each occurrence of ∃v by ∃v ∈ U.
(We usually abuse notation by not distinguishing between classes and their names in
the language of U.) The statement that J is an elementary embedding of U1 to U2 , for
example, means that, given any formula Φ of the appropriate language,

∀x1, . . . , xr ∈ U1 (ΦU1
(x1, . . . , xr) ↔ ΦU2

(J(x1), . . . , J(xr))).

Let U be an ultrafilter over I . For f , g ∈ VI we define:

f =U g if and only if {i ∈ I | f (i) = g(i)} ∈ U

f ∈U g if and only if {i ∈ I | f (i) ∈ g(i)} ∈ U

The usual procedure at this point is to form equivalence classes [ f ]U of functions
f ∈ VI modulo =U , using “Scott’s trick” of taking only the functions of the minimal
von Neumann rank to guarantee that the equivalence classes are sets:

[ f ]U = {g ∈ VI | g =U f and ∀h ∈ VI (h =U f → rank h ≥ rank g)}

see Jech [19, (9.3) and (28.15)]. Then VI/U = {[ f ]U | f ∈ VI}, and [ f ]U ∈U [g]U if
and only if f ∈U g.

The ultrapower of V by U is the structure (VI/U,∈U).

Let π : I → J . Define the ultrafilter V = π[U] over J by:

π[U] = {Y ⊆ J | π−1[Y] ∈ U}

Journal of Logic & Analysis 16:5 (2024)
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The mapping π induces Π : VJ/V → VI/U by Π([g]V ) = [g ◦ π]U .

The following proposition is an easy consequence of Łoś’s Theorem.

Proposition 3.1 The mapping Π is well-defined and it is an elementary embedding of
(VJ/V,∈V ) into (VI/U,∈U).

In detail: for any ∈–formula ϕ and all [f1]V , . . . [fr]V ∈ VJ/V ,

ϕV
J/V ([f1]V , . . . , [fr]V ) ↔ ϕV

I/U(Π([f1]V ), . . . ,Π([fr])V ).

The tensor product of ultrafilters U and V , respectively over I and J , is the ultrafilter
over I × J defined by (note the order; Chang and Keisler [4] use the opposite order):

Z ∈ U ⊗ V if and only if {x ∈ I | {y ∈ J | ⟨x, y⟩ ∈ Z} ∈ V} ∈ U

The n-th tensor power of U is the ultrafilter over In defined by recursion:

⊗0U = {{∅}}; ⊗1U = U; ⊗n+1U = U ⊗ (⊗nU)

In the following, a, b range over finite subsets of N.

If |a| = n, let π be the mapping of In onto Ia induced by the order-preserving mapping
of n onto a. It follows that Ua = π[⊗nU] is an ultrafilter over Ia .

For a ⊆ b let πba be the restriction map of Ib onto Ia defined by πba (i) = i ↾ a for
i ∈ Ib .

It is easy to see that Ua = πba [Ub]. We let Va = VIa/Ua and write [ f ]a for [ f ]Ua and
∈a for ∈Ua . The mapping Πb

a induced by πba is an elementary embedding of (Va,∈a)
into (Vb,∈b).

Proposition 3.2 If f ∈ VIa , g ∈ VIb and Πa∪b
a ([ f ]a) = Πa∪b

b ([g]b), then there is
h ∈ VIa∩b

such that Πa∪b
a∩b([h]a∩b) = Πa∪b

a ([ f ]a) = Πa∪b
b ([g]b).

Let f , g ∈
⋃

aVIa ; say f ∈ VIa and g ∈ VIb. We define:

f =∞ g if and only if f ◦ πa∪ba =Ua∪b
g ◦ πa∪bb

f ∈∞ g if and only if f ◦ πa∪ba ∈Ua∪b
g ◦ πa∪bb

We let [ f ]∞ be the equivalence class of f modulo =∞ (again using Scott’s Trick), and
let V∞ = {[ f ]∞ | f ∈

⋃
aVIa} and [ f ]∞ ∈∞ [g]∞ if and only if f ∈∞ g.

The iterated ultrapower of V by U is the structure (V∞,∈∞). It is the direct limit of the
system of structures (Va, Π

b
a; a, b ∈ Pfin(N), a ⊆ b). The mappings Π∞

a : Va → V∞

Journal of Logic & Analysis 16:5 (2024)



10 Karel Hrbacek

defined by Π∞
a ([ f ]a) = [ f ]∞ are elementary embeddings; we identify Va with its

image by this embedding. In particular, Π∞
∅ embeds V ∼= V∅ elementarily into V∞ .

In addition to the canonical elementary embeddings Πb
a for a ⊆ b, the iterated

ultrapower allows other elementary embeddings, due to the fact that the same ultrafilter
U is used throughout the construction. If |a| = |b| and α is the order-preserving
mapping of a onto b, define πba : Ib → Ia by πba (i) = i ◦ α for i ∈ Ib . Then Πb

a is an
isomorphism of (Va,∈a) and (Vb,∈b).

We fix r ∈ N. For f ∈ VIr+n
define f |Ir : Ir → VIn

by f |Ir(i) = fi where fi(j) = f (i, j)
for all j ∈ In . For [ f ]∞ ∈ V∞ , say f ∈ VIr+n

, we let Ω([ f ]∞) = [F]Ur where
F(i) = [fi]∞ for all i ∈ Ir . It is routine to check that Ω : V∞ → (V∞)Ir

/Ur is
well-defined.

We use the notations r ⊕ a = {r + s | s ∈ a} and r ⊞ a = r ∪ (r ⊕ a). Note that if
a = n = {0, . . . , n − 1} ∈ N, then r ⊞ n = r + n.

Proposition 3.3 (Factoring Lemma) The mapping Ω is an isomorphism of the structures

(V∞, ∈∞, Vr⊞a, Π
r⊞b
r⊞a; a, b ∈ Pfin(N), |a| = |b|)

(V∞,∈∞,Va, Π
b
a; a, b ∈ Pfin(N), |a| = |b|)Ir

/Ur.and

4 SPOTS

Theories with many levels of standardness have been developed in Péraire, [29] (RIST)
and Hrbacek [11, 12] (GRIST). The characteristic feature of these theories is that the
unary standardness predicate st(v) is subsumed under a binary relative standardness
predicate sr(u, v).

The main advantage of theories with many levels of standardness is that nonstandard
methods can be applied to arbitrary objects, not just the standard ones. For example,
the nonstandard definition of the derivative

f ′(a) = sh
(

f (a + h) − f (a)
h

)
where h is infinitesimal

which in a single-level nonstandard analysis works for standard f and a only, in these
theories works for all f and a, provided “infinitesimal” is understood as “infinitesimal
relative to the level of f and a” and “sh” is “sh relative to the level of f and a.” In
the book Hrbacek, Lessmann and O’Donovan [14] this approach is used to develop
elementary calculus.
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Jin’s work using multi-level nonstandard analysis goes beyond the features postulated
by these theories in that it also employs nontrivial elementary embeddings (ie, other
than those provided by inclusion of one level in a higher level).

The language of SPOTS has a binary predicate symbol ∈, a binary predicate symbol
sr (sr(u, v) reads “v is u-standard”) and a ternary function symbol ir that captures the
relevant isomorphisms. The unary predicate st(v) stands for sr(∅, v), Variables a, b
(with decorations) range over standard finite subsets of N; we refer to them as labels.
We use the class notation Sa = {x | sr(a, x)} and Iba = {⟨x, y⟩ | ir(a, b, x) = y}. If a
is a standard natural number, we use n instead of a; analogously for b and m. We call
Sn the n–th level of standardness. In particular, S = S0 = {x | st(x)} is the universe
of standard sets.

As in Section 3, for standard r ∈ N we let r⊕a = {r+s | s ∈ a} and r⊞a = r ∪ (r⊕a).
Also a < b stands for ∀s ∈ a ∀t ∈ b (s < t).

A formula Φ is admissible if labels appear in it only as subscripts and superscripts of S
and I.

Definition 4.1 (Admissible formulas)

• u = v, u ∈ v, v ∈ Sa and Iba(u) = v are admissible formulas
• If Φ and Ψ are admissible, then ¬Φ, Φ ∧Ψ, Φ ∨Ψ, Φ → Ψ and Φ ↔ Ψ are

admissible
• If Φ is admissible, then ∀vΦ and ∃vΦ are admissible

Let Φ↑r be the formula obtained from the admissible formula Φ by replacing each
occurrence of every Sa with Sr⊞a and each occurrence of Iba with I r⊞b

r⊞a . In particular,
if Φ is a formula where only the symbols Sn and Imn for n,m ∈ N∩ S0 occur, then Φ↑r

is obtained from Φ by shifting all levels by r . This is the special case that is most often
used in practice.

The iterated ultrapower construction described in Section 3 suggests the axioms IS, GT
and HO.

IS (Structural axioms)

(1) sr(u, v) → ∃a (u = a), ir(u, v, x) = y → ∃a, b (u = a ∧ v = b),
Iba(u) = v → |a| = |b|

(2) ∀x ∃a (x ∈ Sa)
(3) For all a, b, Sa∩ b = Sa ∩ Sb (in particular, a ⊆ b → Sa ⊆ Sb )
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(4) If |a| = |a′| = |a′′|, then

Ia
′

a : Sa → Sa′ , Iaa = IdSa , Iaa′ = (Ia
′

a )−1, Ia
′

a ◦ Ia
′′

a′ = Ia
′′

a

∀x, z ∈ Sa (x ∈ z ↔ Ia
′

a (x) ∈ Ia
′

a (z))and

(5) If |a| = |a′| and b ⊂ a, then

x ∈ Sb → Ia
′

a (x) = Ib
′

b (x)

where b′ is the image of b by the order-preserving map of a onto a′

GT (Generalized Transfer)

Let ϕ(v, v1, . . . , vk) be an ∈–formula. Then for all a ∈ Pfin(N) ∩ S0

∀x1, . . . , xk ∈ Sa (∀x ∈ Sa ϕ(x, x1, . . . , xk) → ∀x ϕ(x, x1, . . . , xk)) .

HO (Homogeneous Shift)

Let Φ(v1, . . . , vk) be an admissible formula. For all standard r and all a ∈ Pfin(N)∩S0

∀x1, . . . , xk ∈ Sa [Φ(x1, . . . , xk) ↔ Φ↑r(Ir⊕a
a (x1), . . . , Ir⊕a

a (xk)) ].

The language of SPOTS has an obvious interpretation in the iterated ultrapower
described in Section 3: Sa is interpreted as VIa/Ua and Iba is interpreted as Πb

a .

Proposition 4.2 Under the above interpretation, the axioms IS, GT and HO hold in
the iterated ultrapower constructed in Section 3.

Proof The axiom (3) in IS follows from Proposition 3.2; the rest is obvious.

Proposition 3.1 implies that, given a ⊆ b,

∀x1, . . . , xk ∈ Sa
(
ϕSa(x1, . . . , xk) ↔ ϕSb(x1, . . . , xk)

)
.

By the Elementary Chain Theorem (Chang and Keisler [4], Theorem 3.1.13),

∀x1, . . . , xk ∈ Sa
(
ϕSa(x1, . . . , xk) ↔ ϕ(x1, . . . , xk)

)
.

The axiom GT is a special case.

HO is justified by the Factoring Lemma and Łoś’s Theorem (specifically, by the
fact that the canonical embedding of (V∞,∈∞,Va, Π

b
a) into its ultrapower by Ur is

elementary).
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SPOTS is the theory SPOT+ + IS + GT + HO, where Nontriviality is modified to
∃ν ∈ N ∩ S1 (∀stn ∈ N (n ̸= ν) and SN and SF admit all formulas in the language of
SPOTS.

A consequence of GT is the following proposition.

Proposition 4.3 The mapping Iba is an elementary embedding of Sa into I (where I is
the class of all sets) and into Sb′ for every b′ ⊇ b.

An important consequence of SPOTS asserts that every natural number k ∈ Sa is either
standard or greater than all natural numbers at levels less than min a.

Proposition 4.4 (End Extension) Let a ̸= ∅ and n = min a ∈ N. Then:

∀k ∈ Sa ∩ N (k ∈ S0 ∨ ∀m ∈ Sn (m < k))

Proof By Proposition 2.1, ∀m ∈ N ∩ S0 ∀k ∈ N (k ≤ m → k ∈ S0). By HO this
implies ∀m ∈ N ∩ Sn ∀k ∈ N (k ≤ m → k ∈ Sn). If k ∈ Sa ∩ N and ∃m ∈ Sn (m ≥ k)
then k ∈ Sn by the above. As a ∩ n = ∅, we get k ∈ S0 .

Let Φ(x1, . . . , xk; S) denote a formula obtained from some st-∈–formula by replacing
all occurences of st(v) with v ∈ S, and let n, m be variables that do not occur in Φ and
range over standard natural numbers.

Proposition 4.5 n ≤ m → ∀x1, . . . , xk ∈ Sn (Φ(x1, . . . , xk;Sn) ↔ Φ(x1, . . . , xk; Sm))

Proof Let r = m− n. By HO we have

∀x1, . . . , xk ∈ S0 (Φ(x1, . . . , xk;S0) ↔ Φ(x1, . . . , xk;Sr)).

(Note that r ⊕ 0 = 0, r ⊞ 0 = r and I0
0 = IdS0 .) Then apply HO shift by n to this

closed formula to obtain

∀x1, . . . , xk ∈ Sn (Φ(x1, . . . , xk;Sn) ↔ Φ(x1, . . . , xk;Sm)).

In particular, Φ(S0) implies Φ(Sn) for every n. Hence the axioms of SPOT, postulated
in SPOTS only about the level S0 , hold there about every level Sn .

SCOTS is the theory SCOT + IS + GT + HO = SPOTS + DC, where the axiom
schema DC is formulated as follows.
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14 Karel Hrbacek

DC (Dependent Choice) Let Φ(u, v) be a formula in the language of SPOTS, with
arbitrary parameters. For any a:

If ∀x ∈ Sa ∃y ∈ Sa Φ(x, y), then for every b ∈ Sa there is a sequence
b̄ = ⟨bn | n ∈ N⟩ ∈ Sa such that b0 = b and ∀n ∈ N ∩ S0 Φ(bn, bn+1).

DC implies Countable Standardization (and hence SF).

SC (Countable Standardization) Let Ψ(v) be a formula in the language of SPOTS,
with arbitrary parameters. Then:

∃S ∈ S0 ∀x ∈ S0 (x ∈ S ↔ x ∈ N ∧ Ψ(x))

Theorem 4.6 SCOTS is a conservative extension of ZF + ADC.

Theorem 4.7 SPOTS is conservative over ZF + ACC.

The proofs are given in Section 8.

Conjecture SPOTS is a conservative extension of ZF.

5 Jin’s proof of Ramsey’s Theorem in SPOTS

Ramsey’s Theorem Given a coloring c : [N]n → r where n, r ∈ N, there exists an
infinite set H ⊆ N such that c ↾ [H]n is a constant function.

We formalize in SPOTS the proof presented by Renling Jin [21] in his invited talk at
the conference Logical methods in Ramsey Theory and related topics, Pisa, July 9 – 11,
2023. It is included here with his kind permission.

Proof It suffices to prove the theorem under the assumption that n, r, c are standard;
the general result then follows by Transfer.

Let I = I{1,2,...,n}
{0,1,...,n−1} . Fix ν ∈ N ∩ (S1 \ S0) and. define the n–tuple x̄ = ⟨x1, . . . , xn⟩

by x1 = ν , xi+1 = I(xi) for i = 1, 2, . . . , n − 1 (the existence of x̄ is justified by SF).
Let c0 = c(x̄).

Define a strictly increasing sequence {am}•

m=1 ⊆ N, where • ∈ N or • = ∞, recursively,
using the notation Am = {a1, . . . , am} (also a0 = 0 and A0 = ∅):

am+1 = the least a ∈ N such that a > am ∧ c ↾ [Am ∪ {a} ∪ x̄]n = c0 if such a exists;
otherwise am+1 is undefined and the recursion stops.
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Multi-level nonstandard analysis and the axiom of choice 15

Let A =
⋃

•

m=1 Am . Then A is a set and by SP there is a standard set H such that
∀stx (x ∈ H ↔ x ∈ A). Clearly c ↾ [H]n = c0 .

It remains to prove that H is infinite, ie, that am is defined and standard for all standard
m ∈ N \ {0}.

Fix a standard m ∈ N. The sentence

∃x ∈ N ∩ S1
(
x > am ∧ c ↾ [Am ∪ {x, I(x1), . . . , I(xn−1)}]n = c0

)
is true (just let x = x1 ).

By HO, ∃x ∈ N ∩ S0
(
x > am ∧ c ↾ [Am ∪ {x, x1, . . . , xn−1}]n = c0

)
. Let am+1 be

the least such x and note that it is standard.

We have c ↾ [Am+1 ∪ {x1, . . . , xn−1}]n = c0 . It remains to show that c ↾ [Am+1 ∪
{x1, . . . , xn−1, xn}]n = c0 .

Consider b̄ = {b1 < . . . < bn} ∈ [Am+1 ∪ {x1, . . . , xn−1, xn}]n .

If bn < xn then bn ≤ xn−1 and c(b̄) = c0 .

If b1 = x1 then b̄ = x̄ and c(b̄) = c(x̄)) = c0 .

Otherwise b1 ∈ N ∩ S0 and bn = xn . Let p be the largest value such that xp /∈ b̄
(clearly 1 ≤ p < n) and let J = I{0,...,p−1,p+1,...,xn}

{0,...,n−1} .

Note that J(bj) = bj for j ≤ p, bj = xj , and J(bj) = J(xj) = xj+1 for p < j ≤ n − 1
(because I{p+1,...,n}

{p,...,n−1} ⊆ I, J, ie, I and J agree on S{p,...,n−1} ). Let b̄′ = J−1(b̄). Then
b̄′ ∈ [Am+1 ∪ {x1, . . . , xn−1}]n , hence c(b̄′) = c0 . By HO shift via J, c(b̄) = c0 .

6 Jin’s proof of Szemerédi’s Theorem in SPOTS

Jin’s proof in [20] uses four universes (V0,V1,V2 and V3 ) and some additional
elementary embeddings. Let Nj = N ∩ Vj and Rj = R ∩ Vj for j = 0, 1, 2, 3. Jin
summarizes the required properties of these universes:

0. V0 ≺ V1 ≺ V2 ≺ V3 .
1. Nj+1 is an end extension of Nj ( j = 0, 1, 2).
2. For j′ > j, Countable Idealization holds from Vj to Vj′ : Let ϕ be an ∈–formula

with parameters from Vj′ . Then

∀n ∈ Nj ∃x ∀m ∈ N (m ≤ n → ϕ(m, x)) ↔ ∃x ∀n ∈ Nj ϕ(n, x).
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3. There is an elementary embedding i∗ of (V2;R0,R1) to (V3;R1,R2).
4. There is an elementary embedding i1 of (V1,R0) to (V2,R1) such that i1 ↾ N0

is an identity map and i1(a) ∈ N2 \ N1 for each a ∈ N1 \ N0 .
5. There is an elementary embedding i2 of V2 to V3 such that i2 ↾ N1 is an identity

map and i2(a) ∈ N3 \ N2 for each a ∈ N2 \ N1 .

These requirements are listed as Property 2.1 in arXiv versions v1, v2 of Jin’s paper,
and appear in a slightly different form in Section 2 of the Discrete Analysis version; see
especially Property 2,7 there. Our formulations differ from his in two significant ways.

• Jin works model-theoretically and his universes are superstructures, that is, sets
of ZFC. In contrast, our universes are proper classes. Nonstandard arguments
work similarly in both frameworks.

• In Property 2 Jin postulates Countable Saturation, while the weaker Countable
Idealization stated here is more suited for the axiomatic approach. In all instances
where 2 is used in Jin’s proof, Countable Idealization suffices.

Proposition 6.1 SPOTS interprets Jin’s Properties 0. – 5.

Proof We define: V0 = S0 , V1 = S{0} , V2 = S{0,1} , V3 = S{0,1,2} , i1 = I{1}
{0} ,

i2 = I{0,2}
{0,1} and i∗ = I{1,2}

{0,1} .

Property 0. This follows from GT, and Property 1. from Proposition 4.4.

Property 2. Countable Idealization is a consequence of SPOT, so it suffices to show
that each (Sj′ ,∈,Sj) satisfies the axioms of SPOT. The axiom SP is the only issue.

SP holds in (I,∈,S0), hence it holds in every (I,∈,Sj) by HO. Its validity in (Sj′ ,∈, Sj)
follows.

Property 3. If ψ(v1, . . . , vr) is a formula in the common language of the structures
(S2,∈, S0,S1) and (S3,∈,S1,S2), then, by HO,

∀ x1, . . . , xr ∈ S2 [ψS2(x1, . . . , xr) ↔ ψS3(I{1,2}
{0,1}(x1), . . . , I{1,2}

{0,1}(xr))].

Properties 4. and 5. These follow from Propositions 4.3 and 4.4 and the observation
that i1 = i∗ ↾ V1 .

It remains to show that SPOT proves the existence of densities used by Jin. This
requires a careful appeal to Standardization.
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Definition 6.2 In our notation:

(1) For finite A ⊆ N with |A| unlimited, the strong upper Banach density of A is
defined by:

SD(A) = sup st{sh(|A ∩ P|/|P|) | |P| is unlimited}

(2) If S ⊆ N has SD(S) = η ∈ R (note η is standard) and A ⊆ S , the strong upper
Banach density of A relative to S is defined by:

SDS(A) = sup st{sh(|A ∩ P|/|P|) | |P| is unlimited ∧ sh(|S ∩ P|/|P|) = η}

SPOT does not prove the existence of the standard sets of reals whose supremum needs
to be taken (it does not allow Standardization over the uncountable set R), but for the
purpose of obtaining the supremum, a set of reals can be replaced by a set of rationals.

Proposition 6.3 SPOT proves the existence of SDS(A).

Proof We note that SDS(A) = sup st{q ∈ Q | Φ(q)} where Φ(q) is the formula:

∃P [∀st
Ni (|P| > i) ∧ ∀st

Nj(| |S ∩ P|/|P| − η| < 1
j+1 ) ∧ q ≤ |A ∩ P|/|P| ]

The formula Φ is equivalent to

∃P ∀st
Ni [ (|P| > i) ∧ (| |S ∩ P|/|P| − η| < 1

i+1 ) ∧ q ≤ |A ∩ P|/|P| ]

which, upon the exchange of the order of ∃P and ∀st
Ni, enabled by Countable Idealization,

converts to a special st-∈–formula:

∀st
Ni∃P [ (|P| > i) ∧ (| |S ∩ P|/|P| − η| < 1

i+1 ) ∧ q ≤ |A ∩ P|/|P| ]

Proposition 2.4 concludes the proof.

The definitions of these densities relativize to every level j > 0. Their existence at
higher levels in SPOTS follows from Proposition 4.5.

7 Analysis with ultrasmall numbers

The presentation of analysis in Hrbacek, Lessmann and O’Donovan [14] is based on the
notion of relative observability, which we denote by ⊑. In this section, Sx is the class
{y | y ⊑ x} and, more generally, y ∈ Sx1,...,xk means that y ⊑ xi for some 1 ≤ i ≤ k .
The elements of S∅ are always observable (= standard). We write formulas using
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this class notation. Let Φ(v1, . . . .vk) be a st-∈–formula; then Φ(v1, . . . .vk; S) is the
formula obtained from Φ by replacing each occurrence of st(v) with v ∈ S. We use x
as shorthand for the list x1, . . . , xk .

The following principles are postulated in [14] (see the Appendix, especially pages
277–281).

Relative Observability Principle: For all x , y, z

(1) x ⊑ x
(2) If x ⊑ y and y ⊑ z, then x ⊑ z
(3) If not x ⊑ y, then y ⊑ x
(4) 0 ⊑ x
(5) ∀x ∃y (x ⊑ y ∧ y ̸⊑ x)

Existence Principle: There exist h ∈ R such that h ≃ 0, h ̸= 0.

Observable Neighbor Principle: ∀x ∈ R (x limited → ∃r ∈ R ∩ S∅ (x ≃ r)).

Stability Principle: Assume the variables p, q do not appear in Φ.

p ⊑ q → ∀ x ∈ Sp (Φ(x; Sp) ↔ Φ(x; Sq)).

Definition 7.1 Formulas of the form Φ(x; Sx) are internal formulas. (We assume that
x1, . . . .xk do not appear as bound variables in Φ.)

Stability for internal formulas can be restated as follows (let p = ⟨x⟩, q = ⟨x, y⟩):

∀x, y (Φ(x; Sx) ↔ Φ(x; Sx,y))

Closure Principle: Let Φ(x, x; Sx,x) be an internal formula.

∃x Φ(x, x; Sx,x) → ∃x ∈ Sx Φ(x, x; Sx).

Definition Principle Let Φ(x, x; Sx,x) be an internal formula. For every set A and all
x1, . . . , xk there is a set B ∈ SA,x such that

∀x (x ∈ B ↔ x ∈ A ∧ Φ(x, x; Sx,x)).

Let HLOD be the theory in the ⊑-∈–language whose axioms are ZF plus the above
principles. In the rest of this section we show that HLOD can be interpreted in SPOTS.
In combination with Theorem 4.7 this shows that the presentation of analysis in [14]
relies at the most on the Axiom of Countable Choice, as is customary in traditional
analysis.
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In the rest of this section we work in SPOTS. We recall that n, m range over standard
finite natural numbers and define:

x ⊑ y ↔ ∀n (y ∈ Sn → x ∈ Sn)

By the axiom SF, for every x there is a least standard n ∈ N such that x ∈ Sn ; we
denote it n(x) (the level of x). In this notation, x ⊑ y ↔ n(x) ≤ n(y) and Sx = Sn(x) .

Validity of the Relative Observability Principle in this interpretation is trivial, and
Existence and Observable Neighbor follow immediately from the analogous principles of
SPOTS. Stability Principle is Proposition 4.5. We also note that Sx1,...,xk = S⟨x1,...,xk⟩ =

Sn(⟨x1,...,xk⟩) .

To prove Closure, assume ∃x Φ(x, x; Sx,x). Fix some x such that Φ(x, x; Sx,x) holds, and
let p = ⟨x⟩, q = ⟨x, x⟩. From the formula ∃x ∈ Sq Φ(x, x; Sq) we get ∃x ∈ Sp Φ(x, x; Sp)
by the Stability Principle.

It remains to prove the Definition Principle. Let Φ(x, x; Sx,x) be an internal formula. By
SN we get

∀x ∈ S0 ∀A ∈ S0 ∃B ∈ S0 ∀x ∈ S0 (x ∈ B ↔ x ∈ A ∧ Φ(x, x;S0)).

By applying Proposition 4.5 to this statement we get, for any n,

∀x ∈ Sn ∀A ∈ Sn ∃B ∈ Sn ∀x ∈ Sn (x ∈ B ↔ x ∈ A ∧ Φ(x, x;Sn)).

We now fix x and A, let n = n(⟨A, x⟩), and let B ∈ Sn be such that

∀x ∈ Sn (x ∈ B ↔ x ∈ A ∧ Φ(x, x;Sn)).

Applying Proposition 4.5 to this formula (with parameters A,B, x ∈ Sn ) we obtain that
for any m ≥ n,

∀x ∈ Sm (x ∈ B ↔ x ∈ A ∧ Φ(x, x;Sm)).

For arbitrary x take m = n(⟨A, x, x⟩) to get

x ∈ B ↔ x ∈ A ∧ Φ(x, x;Sm) ↔ x ∈ A ∧ Φ(x, x; SA,x,x).

It remains to notice that Φ(x, x; SA,x,x) ↔ Φ(x, x; Sx,x), by Stability.

Remark 1 In [14] the basic concepts of calculus, such as continuity, limit, derivative and
integral, are defined by internal formulas involving ultrasmall numbers (infinitesimals).
It is then necessary to be able to include such previously defined internal concepts in
subsequent internal formulas. This move can be justified in several different ways.

• One can prove the equivalence of the nonstandard definitions of these concepts
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with the traditional ε-δ–definitions. This requires only straightforward, familiar
arguments, but it is somewhat against the spirit of nonstandard approach.

• The presentation in [14] relies on a general result: Every internal formula Φ(x; Sx)
is equivalent to an ∈–formula ϕ(x). This is a consequence of the Reduction
Theorem (Kanovei and Reeken [23, Theorem 3.2.3]). However, the proof of
Reduction Theorem uses a strong form of AC (Boolean Prime Ideal Theorem).
It is not clear whether some version of it could be proved in HLOD when AC is
not available.

• We can avoid AC by relying instead on the Definition Principle. Let R(z) be a
predicate defined by an internal formula Ψ(z, Sz) and let A be a standard set such
that ∀z (Ψ(z,Sz) → z ∈ A). The Definition Principle (with z in place of x and
empty list x) provides a standard set B such that

∀z (⟨z⟩ ∈ B ↔ ⟨z⟩ ∈ A ∧ Ψ(z,Sz) ↔ Ψ(z,Sz) ↔ R(z)).

If Φ(x, Sx) is a formula where the predicate R(z) also occurs, perhaps with some
of the variables z quantified (a generalized internal formula), we can replace each
such occurence by its equivalent ⟨z⟩ ∈ B and convert Φ to an internal formula as
in Definition 7.1.

Here is one example. The derivative of a real-valued function f at a ∈ R is
defined in terms of infinitesimals by an internal formula at the beginning of
Section 4. Let F = {f ⊆ R×R | f is a function} and let A = F×R×R. The
Definition Principle guarantees the existence of a standard set B = {⟨f , a, b⟩ ∈
A | f ′(a) = b}. Any generalized internal formula involving the notion of
derivative can in principle be converted to an internal formula by replacing each
occurence of f ′(a) = b with ⟨f , a, b⟩ ∈ B. In practice there is hardly ever any
need to carry out such conversions; it suffices to keep in mind that Stability,
Closure and Definition Principles apply to generalized internal formulas.

Remark 2 The proof of the local Peano Theorem in [14, Theorems 125 and 161]
uses Standardization over R, which implies the existence of nonprincipal ultrafilters
over N. The density of Q in R can be used to replace the argument by one that uses
only Countable Standardization, which is available in SCOTS. Actually, Countable
Standardization for N–special formulas, available in SPOTS, suffices. See Hrbacek
and Katz [17] for details; a similar idea is also used in the proof of the existence of
Banach densities in Proposition 6.3 of this paper.
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8 Conservativity

Conservativity of SPOT over ZF was established in Hrbacek and Katz [15] by a
construction that extends and combines the methods of forcing developed by Ali
Enayat [8] and Mitchell Spector [34]. Conservativity of SCOT over ZF + ADC is
obtained there as a corollary. Here we give a simple, more direct proof of the latter
result that generalizes straightforwardly to the proof of conservativity of SCOTS over
ZF + ADC.

We prove the following proposition.

Proposition 8.1 Every countable model M = (M,∈M) of ZF + ADC has an
extension to a model of SCOTS in which elements of M are exactly the standard sets.

The difficulty is that M may contain no nonprincipal ultrafilters. We add such an
ultrafilter to M by forcing, and then carry out the construction of the iterated ultrapower
as in Section 3 inside this generic extension of M.

Jech [19] is the standard reference for forcing and generic extensions of well-founded
models of ZF. For details on the extension of this material to non-well-founded models
see Corazza [6, 7].

8.1 Forcing

In this subsection we work in ZF + ADC.

Definition 8.2 Let P = {p ⊆ ω | p is infinite}. For p, p′ ∈ P we say that p′ extends p
(notation: p′ ≤ p) if p′ ⊆ p.

The poset P is not separative (Jech [19, Section 17]); forcing with P is equivalent to
forcing with P̃ = P∞(ω)/fin .

The poset P̃ is ω–closed: if ⟨ pn | n ∈ ω⟩ is a sequence of conditions from P such
that, for each n ∈ ω , pn+1 \ pn is finite, then there is p ∈ P such that p \ pn is finite for
all n ∈ ω . It follows that the forcing with P does not add any new countable sets (note
that the proof of this fact uses ADC).

The forcing notion P is homogeneous in the sense that for x1, . . . , xs ∈ V and p, p′ ∈ P
we have p ⊩ ϕ(x̌1, . . . , x̌s) if and only if p′ ⊩ ϕ(x̌1, . . . , x̌s). (Jech [19, Lemma 19.10
and related material].)
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This is a consequence of the following fact (we let pc = N \ p). For all p1, p2 ∈ P such
that pc

1, p
c
2 are infinite, there is an automorphism π of P such that π( p1) = p2 . It can

be obtained as follows: fix a one-one mapping α of ω onto ω such that α maps p1

onto p2 in an order-preserving way, and maps pc
1 onto pc

2 in an order-preserving way,
and then define π( p) = α[ p].

8.2 Generic Extensions

Let M = (M,∈M) be a countable model of ZF + ADC and let G be an M–generic
filter over PM . The generic extension M[G] is a model of ZF + ADC extending
M and the forcing does not add any new reals or countable subsets of M , ie, every
countable subset of M in M[G] belongs to M .

We need the following observation. The structure (M[G],∈M[G],M) is a model of
(ZF + ADC)M , a theory obtained by adding a unary predicate symbol M to the
∈–language of ZF and postulating that the axioms of Separation, Replacement and
Dependent Choice hold for formulas in this extended language. This is a piece of
folklore; a proof can be given by adding the predicate M to the forcing language and
defining

p ⊩ M(x) ⇐⇒ ∀p′ ≤ p ∃p′′ ≤ p′ ∃z ( p′′ ⊩ x = ž).

One can then prove the appropriate versions of Forcing Theorem and the Generic Model
Theorem as in Jech [19, Section 18].

8.3 Conservativity of SCOTS over ZF + ADC.

We work in the structure (M[G],∈M[G],M), a model of (ZF + ADC)M , and use ω to
denote its set of natural numbers. The generic filter G is a nonprincipal ultrafilter over
ω and one can construct the expanded iterated ultrapower

M∞ = (M∞,∈∞,Ma,Π
b
a; a, b ∈ Pfin(ω), |a| = |b|)

of M by G as in Section 3 (let I = ω , U = G , and replace V by M).

Łoś’s Theorem holds because ACC is available, and Π∞
0 canonically embeds M into

(M∞,∈∞). The structure M∞ interprets the language of SPOTS (with Sa interpreted
as Ma and Iba interpreted as Πb

a ). As in Proposition 4.2, the structure M∞ satisfies IS,
GT and HO. It remains to show that SN and DC hold there.

Proposition 8.3 DC holds in M∞ .
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Proof Let Φ(u, v,w) be a formula in the language of SPOTS. Let b ∈ Ma and
c ∈ M∞ be such that

Ψ(B, b, c) : [b ∈ Sa ∧ ∀x ∈ Sa ∃y ∈ Sa Φ(x, y, c)]M∞

holds. (The superscript M∞ indicates that the quantifiers range over M∞ and all
symbols are interpreted in M∞ .) Ψ is (equivalent to) a formula of the forcing language
(we identify b, c and a with their names in the forcing language), hence there is
p ∈ P ∩ G such that p ⊩ Ψ. Let p0 ≤ p.

We let the variable a (with decorations) range over the names in the forcing language
and define the class:

A = {⟨ p′, a′⟩ | p′ ≤ p0 ∧ p′ ⊩ [a′ ∈ Sa]M∞}

Note that ⟨ p0, b⟩ ∈ A, and define R on A by:

⟨ p′, a′⟩R⟨ p′′, a′′⟩ if and only if p′′ ≤ p′ ∧ p′′ ⊩ ΦM∞(a′, a′′, c)

It is clear from the properties of forcing that for every ⟨ p′, a′⟩ ∈ A there is ⟨ p′′, a′′⟩ ∈
A such that ⟨ p′, a′⟩R⟨ p′′, a′′⟩. Using Reflection and ADC we obtain a sequence
⟨⟨ pn, an⟩ | n ∈ ω⟩ such that a0 = b, and, for all n ∈ ω , ⟨ pn, an⟩ ∈ A, pn+1 ≤ pn and
pn+1 ⊩ ΦM∞(an, an+1, c).

As the forcing is ω–closed, one obtains p∞ ∈ P and ⟨an | n ∈ ω⟩ such that p∞ ≤ p0

and p∞ ⊩ [an ∈ Sa ∧ Φ(an, an+1, c)]M∞ for all n ∈ ω .

By the genericity of G there is some p∞ ∈ G and the associated sequence ⟨an |
n ∈ ω⟩ with this property. Hence (M[G],∈M[G],M) satisfies [an ∈ Sa ∧ a0 =

b ∧ Φ(an, an+1, c)]M∞ for all n ∈ ω .

The class Sa is interpreted in M∞ by the ultrapower Ma = MIa/Ua (for U = G ) .
Since this ultrapower is ω1 –saturated, there is b̄ ∈ Ma such that

[b̄ is a function ∧ dom b̄ = N ∧ bn = an]Ma

holds for every n ∈ ω . This translates to the desired

[b̄ ∈ Sa ∧ dom b̄ = N ∧ b0 = b ∧ ∀n ∈ N ∩ S0 Φ(bn, bn+1, c)]M∞ .

Proposition 8.4 SN holds in M∞ .

Proof Let Φ(u) be a formula in the language of SPOTS (with no parameters) and
A ∈ M. Let Ψ(u) be the formula Φ(u)M∞ of the forcing language. By homogeneity of
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the forcing, p ⊩ Ψ(ǎ) if and only if p′ ⊩ Ψ(ǎ) holds for all a ∈ A and p, p′ ∈ P. Fix
some p ∈ G and let S = {a ∈ A | p ⊩ Ψ(ǎ)}. For a ∈ S then a ∈ S if and only if
a ∈ A ∧ Φ(a)M∞ holds.

The structure M∞ is a class model of SCOTS constructed inside the countable model
(M[G],∈M[G],M). It converts into a countable model M̃∞ in the meta-theory so that
ΦM∞ ↔ M̃∞ ⊨ Φ for all formulas in the language of SCOTS.

8.4 Finitistic proofs

The model-theoretic proof of Proposition 8.1 in Subsections 8.1–8.3 is carried out in
ZF. Using techniques from Simpson [32, Chapter II, especially II.3 and II.8], it can
be verified that the proof goes through in RCA0 (without loss of generality one can
assume that M ⊆ ω ).

The proof of Theorem 4.6 from Proposition 8.1 requires the Gödel’s Completeness
Theorem and therefore WKL0 ; see [32, Theorem IV.3.3]. We conclude that Theorem 4.6
can be proved in WKL0 .

Theorem 4.6, when viewed as an arithmetical statement resulting from identifying
formulas with their Gödel numbers, is Π0

2 . It is well-known that WKL0 is conservative
over PRA (Primitive Recursive Arithmetic) for Π0

2 sentences ([32, Theorem IX.3.16)];
therefore Theorem 4.6 is provable in PRA. The theory PRA is generally considered
to correctly capture finitistic reasoning (see eg Simpson [32, Remark IX.3.18]). We
conclude that Theorem 4.6 has a finitistic proof.

These remarks apply equally to Theorem 4.7 and Proposition 8.7.

8.5 Conservativity of SPOTS over ZF + ACC.

The proof of conservativity of SCOTS over ZF+ADC presented in Subsections 8.1–8.3
relies on ADC in three places.

(1) To prove that forcing with P does not add new countable sets
(2) To prove that Łoś’s Theorem (Proposition 3.1) holds in M∞
(3) To prove that DC holds in M∞ (Proposition 8.3)

Łoś’s Theorem (2) requires only ACC. We establish weaker versions of (1) and (3)
assuming only ZF.
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Let M = (M,∈M) be a countable model of ZF and let G be a generic filter over PM .
We work in the structure (M[G],∈M[G],M), a model of ZFM , and use ω to denote its
set of natural numbers.

Proposition 8.5 (1) The generic filter G is an M-ultrafilter:

If n ∈ ω, ⟨Ai⟩i∈n ∈ M and
⋃
i∈n

Ai ∈ G, then Ai ∈ G for some i ∈ n.

(2) The generic filter G is M-iterable:

If S ∈ M and S ⊆ ω × ω, then {i ∈ ω | {j ∈ ω | ⟨i, j⟩ ∈ S} ∈ G} ∈ M.

Proof (See Enayat [8].)

(1) For every p ∈ P, p ⊆
⋃

i∈n Ai ∈ G , there is p′ ≤ p such that p′ ⊆ Ai for some
i ∈ n.

(2) Let S0
i = {j ∈ ω | ⟨i, j⟩ ∈ S} and S1

i = ω \ S0
i .

We say that p ∈ P decides S0
i if either p \ S0

i or p \ S1
i is bounded. We prove that for

every p there is p∗ ∈ P such that p∗ ≤ p and p∗ decides S0
i for all i ∈ ω . It then follows

that some such p∗ is in G , and {i ∈ ω | S0
i ∈ G} = {i ∈ ω | p∗ \ S0

i is bounded} ∈ M .

For t ∈ 2n we let |t| = n and St =
⋂

i∈|t| Sti
i (S∅ = ω ). We define a tree T ⊆ 2<ω by

t ∈ T if and only if p ∩ St is unbounded. Since
⋃

|t|=n St = ω , the tree T is infinite. By
König’s Lemma T has an infinite branch t∗ . We let pi = p ∩ St∗↾i ∈ P; clearly p0 = p
and pi+1 ⊆ pi for all i ∈ ω . We let n0 = the least element of p0 and ni+1 = the least
element of pi+1 greater than ni . Then p∗ = {ni | i ∈ ω} is as required.

This proposition enables the recursive definition of tensor powers ⊗nG and an inductive
proof that, for S ∈ M, S ⊆ ω×ωn , we have {i ∈ ω | {j ∈ ωn | ⟨i, j⟩ ∈ S} ∈ ⊗nG} ∈
M. The expanded iterated ultrapower M∞ for I = ω and U = G is defined as in
Section 3, with the understanding that V is replaced by M and only functions in M are
employed; ie., VI is replaced by MI ∩M everywhere. In particular, Va = VIa/Ua is
replaced by Ma = (MIa ∩M)/Ua (the definition of [ f ]Ua is also restricted to g, h ∈ M).

If we assume that M satisfies ACC, Łoś’s Theorem holds and the structure M∞
satisfies IS, GT, HO and SN. It remains to show that the Standard Part axiom holds
there.

Proposition 8.6 SP holds in M∞ .
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Proof Let F ∈ M , F : ω → P(ω) (so [F]G is a subset of [cω]G in (Mω ∩ M)/G ).
Define S ∈ M by ⟨i, j⟩ ∈ S if and only if i ∈ F(j). M–iterability of G implies that
B = {i ∈ ω | {j ∈ ω | ⟨i, j⟩ ∈ S} ∈ G} ∈ M . Now:

[ci]G ∈G [cB]G ↔ i ∈ B ↔ {j ∈ N | i ∈ F(j)} ∈ G ↔ [cj]G ∈G [F]G

We conclude that M∞ is a model of SPOTS.

8.6 Conservativity of SPOT+ over ZF.

The forcing construction used to establish conservativity of SPOT+ over ZF is much
more complicated because one needs to force both a generic filter G and the validity of
Łoś’s Theorem in the corresponding “extended ultrapower.” We describe the appropriate
forcing conditions (see [15]).

Let Q = {q ∈ Vω | ∃k ∈ ω ∀i ∈ ω (q(i) ⊆ Vk ∧ q(i) ̸= ∅)}.

The number k is the rank of q. We note that q(i) for each i ∈ ω , and q itself, are sets,
but Q is a proper class.

The forcing notion H is defined as follows: H = P × Q and ⟨ p′, q′⟩ ∈ H extends
⟨ p, q⟩ ∈ H if and only if p′ extends p, rank q′ = k′ ≥ k = rank q, and for almost all
i ∈ p′ and all ⟨x0, . . . , xk′−1⟩ ∈ q′(i), ⟨x0, . . . , xk−1⟩ ∈ q(i).

The forcing with H adds many new reals; in fact, it makes all ordinals countable.

Proposition 8.7 SPOT+ is a conservative extension of ZF.

Proof Conservativity of SPOT + SN over ZF is established in [15, Theorem B] via
forcing with H. It remains only to show that SF also holds in the model constructed
there.

In [15, Definition 4.4] forcing is defined for ∈–formulas only, but the definition can be
extended to st-∈–formulas by adding the clause

⟨ p, q⟩ ⊩ st(Ġn) if and only if rank q = k > n and(11)

∃x ∀aai ∈ p ∀⟨x0, . . . , xk−1⟩ ∈ q(i) (xn = x).

[15, Proposition 4.6 (“Łoś’s Theorem”)] does not hold for st-∈–formulas, but the
equivalence of clauses (1) and (2) in [15, Proposition 4.12 (The Fundamental Theorem
of Extended Ultrapowers)] remains valid (N is the extended ultrapower of M):
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Let Φ(v1, . . . , vs) be an st-∈–formula with parameters from M. If Gn1 , . . . ,Gns ∈ N,
then the following statements are equivalent:

(1) N ⊨ Φ(Gn1 , . . . ,Gns)
(2) There is some ⟨ p, q⟩ ∈ G such that ⟨ p, q⟩ ⊩ Φ(Ġn1 , . . . , Ġns) holds in M.

We now prove that SF holds in N.

Without loss of generality we can assume A = N ∈ ω . For every ⟨ p, q⟩ ∈ H and
every n ∈ N there is ⟨ p′g′⟩ ≤ ⟨ p, q⟩ such that ⟨ p′g′⟩ decides Φ(ň). By induction on
N , for every ⟨ p, q⟩ ∈ H there is ⟨ pN , qN⟩ ≤ ⟨ p, q⟩ that decides Φ(ň) for all n ∈ N
simultaneously. Hence there is ⟨ p̃, q̃⟩ ∈ G with this property. Let S = {n ∈ N |
⟨ p̃, q̃⟩ ⊩ Φ(ň)}. By the Fundamental Theorem, S = {n ∈ N | N ⊨ Φ(n)}.

Final Remark. Labels a, b in SPOTS range over standard finite sets. This implies
that the levels of standardness are enumerated by standard natural numbers. It is an
open question whether one could allow labels to range over all finite sets, ie, to have
levels of standardness indexed by all natural numbers. Theories of this kind have been
developed in Hrbacek [12] on the basis of ZFC. It seems likely that the present work
could be generalized analogously.
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