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1 Introduction

A compactum is a compact Hausdorff space and a continuum is a connected compactum
(not necessarily metrizable). Although model-theoretic methods cannot be directly
applied to compacta or continua, there has nevertheless been an extensive study of
model-theoretic properties of compacta in “dual" form; see Bankston [2] and subsequent
papers. When X is 0–dimensional one can replace the study of X by the study of the
Boolean algebra of clopen subsets of X , due to Stone duality. For more general compacta
one can use continuous model theory to study commutative unital C*–algebras, which
are dual to the category of compacta by Gel’fand duality. This is the approach taken in
this paper.

Bankston [3] introduced co-existentially continua as the dual of the model-theoretic
notion of existentially closed models of a theory (see Section 2 below for the definition).
While co-existentially closed continua exist in abundance, only one concrete example
is known. In Eagle, Goldbring and Vignati [16] it was shown that the pseudoarc is a
co-existentially closed continuum. The pseudoarc was first constructed by Knaster [28]
and later characterized by Bing [9] as the unique non-degenerate hereditarily indecom-
posable chainable continuum; Bing also showed that the pseudoarc is generic amongst
subcontinua of Rn for every n ≥ 2. In [16] it was shown that if the theory of continua,
Tconn , has a model companion then that model companion must be the theory of the
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2 C J Eagle and J Lau

pseudoarc, and moreover in that case the theory of the pseudoarc is exactly the common
theory of C(X) for co-existentially closed continua X . It remains an open question
whether or not Tconn has a model companion.

In this paper we study the K –theory of C(X) when X is a co-existentially closed
continuum. Our main results are encapsulated in the following description:

Theorem 1.1 Let X be a co-existentially closed continuum. Then K0(C(X)) = Z and
K1(C(X)) is a torsion-free divisible abelian group that may have arbitrarily large rank.

The remainder of the paper is organized as follows. In Section 2 we recall some
preliminary facts we will need from the model theory of continua. Section 3 contains
the results about K0(C(X)), which in fact only require that dim(X) = 1. Section 4
contains the results relating to K1(C(X)), as well as a proof that planar co-existentially
closed continua do not separate the plane. Finally, Section 5 shows that various
familiar continua are not co-existentially closed. In particular, we show that the
only homogeneous planar co-existentially closed continuum is the pseudoarc, and
we also show that all solenoids and pseudo-solenoids, except possibly the universal
pseudo-solenoid, fail to be co-existentially closed.
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2 Preliminaries

This paper concerns model-theoretic properties of continua. Model theory does not
directly apply to topological spaces, so given a compactum X we treat it model-
theoretically by instead studying the C*–algebra C(X) of continuous complex-valued
functions on X ; through Gel’fand duality the categories of compacta and of unital
commutative C*–algebras are equivalent. To treat C(X) model-theoretically we
use continuous model theory, as developed in Ben Yaacov, Berenstein, Henson,
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and Usvyatsov [8]; the reader looking for background of continuous model theory,
particularly in the context of C*–algebras, is referred to Farah, Hart, Lupini, Robert,
Tikuisis, Vignati and Winter [17]. We also assume that the reader is familiar with the
elements of continuum theory (for which we suggest Nadler [35]) and C*–algebra
K –theory (for which see Rørdam, Larsen and Laustsen [38]).

Fact 2.1 ([16, Fact 1.1 and Remark 1.2]) There is a universally axiomatizable theory
Tconn in the language of unital C*–algebras such that M |= Tconn if and only if M ∼= C(X)
for some continuum X .

The ultraproduct construction for commutative unital C*–algebras dualizes to the
ultracoproduct of compact Hausdorff spaces, which we denote

∑
U Xi . For our

purposes it will suffice for us to know that
∑

U Xi is the spectrum of the C*–algebra
ultraproduct

∏
U C(Xi), so we omit the (somewhat lengthy) hands-on definition of∑

U Xi ; see [2]. Banskton [3] introduces co-existentially closed continua in terms of
mapping properties involving ultracopowers, but for our purposes it is more convenient
to define a continuum X to be co-existentially closed if C(X) is an existentially closed
model of Tconn . We recall the precise definitions of existential closure in the setting of
continuous logic:

Definition 2.2 Let T be a theory in a signature L of continuous first-order logic. A
model M |= T is called an existentially closed model of T if given any N |= T such
that M ⊆ N , any quantifier-free L–formula φ(x, y), and any tuple b from M (of the
appropriate length), we have:(

inf
x
φ(x, b)

)M

=

(
inf

x
φ(x, b)

)N

A continuum X is co-existentially closed if C(X) is an existentially closed model of
Tconn .

The equivalence of Bankston’s topological definition of co-existentially closed continua
to the one we give here can be found in the appendix to [16].

The next result was first proved by Bankston [4] using lattice bases, but can also be
obtained by applying standard model-theoretic results about universally axiomatizable
theories to Tconn and then using Gel’fand duality.

Fact 2.3 Every continuum is the continuous image of a co-existentially closed contin-
uum of the same weight.
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It will be useful to know that if X is a co-existentially closed continuum then Th∀∃(C(X))
is the maximal consistent ∀∃–theory extending Tconn for non-degenerate continua. The
proof relies on the following fact, originally due to K. P. Hart in [22]; see [16] for the
details of how to translate the result from [22] into the version we state here.

Fact 2.4 Suppose that X and Y are continua and that Y is non-degenerate. Then there
is a continuum Y ′ such that C(Y ′) ≡ C(Y) and C(X) embeds into C(Y ′).

Lemma 2.5 Let X be a co-existentially closed continuum. If σ is a ∀∃–sentence and
there is a non-degenerate continuum Y such that C(Y) |= σ then C(X) |= σ .

Proof Apply the fact above to find a continuum Y ′ with C(Y ′) ≡ C(Y) and such that
C(X) embeds in C(Y ′); by replacing C(X) by an isomorphic copy we may assume
that in fact C(X) is a substructure of C(Y ′). Write σ as sup∥x∥≤R φ(x), where φ is an
existential formula. Fix any tuple a from C(X) with ∥a∥ ≤ R. Since C(Y ′) ≡ C(Y)
and C(Y) |= σ we have C(Y ′) |= σ , and since C(X) is a substructure of C(Y ′) the tuple
a is also in C(Y ′), so φ(a)C(Y′) = 0. Now C(X) is existentially closed in C(Y ′), so
φ(a)C(X) = 0 as well. Since a was arbitrary, this shows that C(X) |= σ .

Throughout this paper when we refer to the dimension of a compactum we mean the
covering dimension.

Fact 2.6 (Bankston [5, Corollary 4.13]) Let X be a co-existentially closed continuum.
Then X is hereditarily indecomposable and dim(X) = 1.

We denote by T the circle, which we often view as T = {z ∈ C : |z| = 1}.

3 K0 for co-existentially closed continua

In this section we show that if X is a co-existentially closed continuum then K0(C(X)) =
Z. In fact, we show that if X is any 1–dimensional continuum then K0(C(X)) = Z; we
suspect that this result may already have been known, but as we were unable to locate a
reference in the literature, we provide a proof here.

Fact 3.1 ([38, Example 3.3.5]) Let X be any continuum. There is a surjective group
homomorphism D : K0(C(X)) → Z that satisfies D([p]) = Tr(p(x)) (independently
of the choice of x ∈ X ). Here we identify Mn(C(X)) with C(X,Mn(C)) and Tr is the
standard trace on Mn(C).
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The map D in the previous fact is also often called dim, but to avoid confusion we
reserve dim for the covering dimension of a compactum.

Note that K0(C(X)) = Z if and only if D is an isomorphism, in which case K0(C(X)) is
generated by the class [1X], where 1X : X → C is the function that is constantly 1.

For each n ∈ N, let Zn denote the wedge product of n circles at a common basepoint,
and let Z0 be a single point. We will need the following two facts:

Fact 3.2 ([23, Example 1.22 and Section 1.A]) Every 1–dimensional compact
connected CW-complex is homotopy equivalent to Zn for some n.

Fact 3.3 ([38, Exercise 12.3]) For every n ∈ N, K0(C(Zn)) = Z.

Proposition 3.4 Let X be a compact connected CW-complex with dim(X) ≤ 1. Then
K0(C(X)) = Z.

Proof If dim X = 0 then X consists of a single point, so K0(C(X)) = K0(C) = Z.

If dim X = 1, then by Fact 3.2 X is homotopy equivalent to Zn for some n ≥ 0. Since
K0 is invariant under homotopy equivalence, when n = 0 we are back in the previous
case, while if n ≥ 1 then by Fact 3.3 we have K0(C(X)) = K0(C(Zn)) = Z.

Proposition 3.5 Let X1 ← X2 ← · · · be an inverse sequence of connected compact
CW-complexes, each of dimension at most 1. Then K0

(
C
(
lim←−Xi

))
= Z.

Proof The inverse sequence of spaces induces a sequence of commutative unital
C*–algebras and unital ∗–homomorphisms

C(X1)
φ1−→ C(X2)

φ2−→ C(X3)
φ3−→ · · · .

By Gel’fand duality we have

lim−→C(Xn) = C
(
lim←−Xn

)
,

and by continuity of the K0 functor we have that

K0
(
C
(
lim←−Xn

))
= K0

(
lim−→C(Xn)

)
= lim−→K0(C(Xn)).

Now since φn : C(Xn) → C(Xn+1) is unital for every n, it follows that the induced
group homomorphism K0(φn) : K0(C(Xn))→ K0(C(Xn+1)) satisfies K0(φn)([1Xn]) =
[φn(1Xn)] = [1Xn+1]. By Proposition 3.4, K0(C(Xi)) = Z, generated by [1Xi]. It follows
that K0(φn) is an isomorphism for every n, and hence

K0(C(lim←−Xn)) = lim−→K0(C(Xn)) = K0(C(X1)) = Z.
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6 C J Eagle and J Lau

Theorem 3.6 If X is a continuum of dimension 1 then K0(C(X)) = Z.

Proof It is shown in [33, Corollary 1] that we can express X as

X = lim←−
b

(
lim←−
i∈N

Pb,i

)
for some compact polyhedra Pb,i each having dim Pb,i ≤ dim X = 1. (If X is non-
metrizable this limit may be over an uncountable indexing family.) Since X maps
continuously onto each term of the inverse system, and X is connected, each Pb,i is
also connected. Thus each Pb,i is, in particular, a connected compact CW–complex of
dimension at most 1. For each fixed b, let Xb = lim←−

i
Pb,i . By Proposition 3.5 we obtain,

for each b, that:

K0(C(Xb)) = K0

(
C

(
lim←−

i
Pb,i

))
= Z

For every b and b′ the ∗–homomorphism C(Xb) → C(Xb′) is unital, so it follows
that the induced group homomorphism K0(C(Xb))→ K0(C(Xb′)) is an isomorphism.
Therefore we have:

lim−→
b

K0(C(Xb)) = Z

Finally, by continuity of K0 we obtain:

K0(C(X)) = K0

(
C

(
lim←−

b
Xb

))
= K0

(
lim−→

b
C(Xb)

)
= lim−→

b
K0(C(Xb)) = Z

Finally, if X is a co-existentially closed continuum then Fact 2.6 says that X has
dimension 1, so we obtain:

Corollary 3.7 Every co-existentially closed continuum X has K0(C(X)) = Z.

4 K1 for co-existentially closed continua

Unlike the case for K0 , when X is a co-existentially closed continuum there are
many possible values of K1(C(X)). In this section we show that K1(C(X)) must be a
torsion-free divisible abelian group, but also show that the rank of K1(C(X)) can be
arbitrarily large when X is a co-existentially closed continuum.
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In fact, we will work primarily with the first integral Čech cohomology group of X ,
Ȟ1(X), in order to take advantage of existing results in the literature. Recall that Ȟ1(X)
can be identified with the collection of homotopy classes of continuous maps from X to
the circle T (see Hatcher [23, Exercise 4.3.2]). The connection to K –theory for C(X)
is the following:

Proposition 4.1 Let X be a continuum with dim(X) = 1. Then K1(C(X)) ∼= Ȟ1(X).

Proof By Blackadar [12, V.3.1.3], since dim(X) ≤ 1 the stable rank of C(X) is given
by:

sr(C(X)) =
⌊

dim(X)
2

⌋
+ 1 = 1

Therefore by [12, V.3.1.26] we have K1(C(X)) ∼= U(C(X))/(U◦(C(X)). That is:

K1(C(X)) ∼= U(C(X))/U◦(C(X))

= C(X,T)/homotopy equivalence

= Ȟ1(X)

In particular, applying Fact 2.6 we have:

Corollary 4.2 If X is a co-existentially closed continuum then K1(C(X)) ∼= Ȟ1(X).

We make some definitions, motivated by the analogy between existentially closed
structures and algebraically closed fields. Later in this section we will use these notions
to show that when X is co-existentially closed, K1(C(X)) is a divisible group.

Definition 4.3 A C*–algebra A is approximately algebraically closed if for ev-
ery n > 0, every a0, . . . , an−1 ∈ A, and every ε > 0, there is f ∈ A such that∥∥a0 + a1f + · · ·+ an−1f n−1 + f n

∥∥ < ε. We say A is algebraically closed if, in the
same situation, f can always be found such that a0 + a1f + · · ·+ an−1f n−1 + f n = 0.

We cannot axiomatize C(X) being algebraically closed in continuous logic (see Corol-
lary 4.9 below). We can, however, axiomatize being approximately algebraically closed,
which we now do.

For each n ∈ N>0 and each K ∈ R>0 , define:

σn,K : sup
∥a0∥≤K

· · · sup
∥an−1∥≤K

inf
∥f∥≤2+K

∥∥a0 + a1f + · · ·+ an−1f n−1 + f n
∥∥

Journal of Logic & Analysis 16:1 (2024)
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Proposition 4.4 For any compactum X , the following are equivalent:

(1) C(X) is approximately algebraically closed.
(2) C(X) |= σn,K for all n and K .

Proof Suppose that (1) holds. Fix n and K . Suppose that a0, . . . , an−1 ∈ C(X) are
such that ∥aj∥ ≤ K for all j. Consider any ε with 0 < ε < 1. Using (1), find f ∈ C(X)
such that

∥∥a0 + a1f + · · ·+ an−1f n−1 + f n
∥∥ < ε. It suffices to show that ∥f∥ ≤ 2+K .

Fix any x ∈ X , and write

a0(x) + a1(x)f (x) + · · ·+ an−1(x)f (x)n−1 + f (x)n = Reiθ.

Note that
∥∥a0 + a1f + · · ·+ an−1f n−1 + f n

∥∥ < ε precisely means 0 ≤ R < ε. Then

(a0(x)− Reiθ) + a1(x)f (x) + · · ·+ an−1f (x)n−1 + f (x)n = 0.

By Cauchy’s bound for roots of complex polynomials, we have:

|f (x)| ≤ 1 + max{
∣∣∣a0(x)− Reiθ

∣∣∣ , |a1(x)| , . . . , |an−1(x)|}

≤ 1 + max{|a0(x)|+ R, |a1(x)| , . . . , |an−1(x)|}
≤ 1 + R + max{|a0(x)| , . . . , |an−1(x)|}
< 1 + ε+ max{|a0(x)| , . . . , |an−1(x)|}
< 2 + max{|a0(x)| , . . . , |an−1(x)|}
≤ 2 + max{∥a0∥ , . . . , ∥an−1∥}
≤ 2 + K

As this holds for every x ∈ X , we have ∥f∥ ≤ 2 + K , as desired to show that
C(X) |= σn,K .

Now suppose that (2) holds. Given any a0, . . . , an−1 ∈ C(X), let K = max{∥a0∥ , . . . ,
∥an−1∥}. Then since C(X) |= σn,K , for any ε > 0 we can find f ∈ C(X) with ∥f∥ ≤
2 + K such that

∥∥a0 + a1f + · · ·+ an−1f n−1 + f n
∥∥ < ε, so C(X) is approximately

algebraically closed.

Fact 4.5 (Kawamura and Miura [27, Theorem 1.1]) A first-countable continuum is
algebraically closed if and only if it is locally connected, has dimension at most 1, and
has Ȟ1(X) = 0.

Theorem 4.6 If X is a co-existentially closed continuum then C(X) is approximately
algebraically closed.
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Proof The space interval [0, 1] is first-countable, locally connected, dimension 1,
and has Ȟ1([0, 1]) = 0. Therefore by Fact 4.5 C([0, 1]) is algebraically closed. It
is therefore also approximately algebraically closed, so C([0, 1]) |= σn,K for all n
and K by Proposition 4.4. Each σn,K is a ∀∃–sentence, so by Lemma 2.5 we have
C(X) |= σn,K for all n and K as well, and therefore (again by Proposition 4.4) C(X) is
approximately algebraically closed.

Proposition 4.7 If X is a metrizable co-existentially closed continuum then C(X) is
not algebraically closed.

Proof Since X is metrizable it is first-countable. By Fact 4.5, it suffices to show that X
is not locally connected. By Fact 2.6, X is hereditarily indecomposable; we will show
that an indecomposable continuum cannot be locally connected at any point.1

Suppose to the contrary that X is locally connected at a point x. Let U be an open
set with x ∈ U ⊊ X . Let C be a closed set with x ∈ C◦ ⊆ C ⊆ U . By local
connectedness at x, there is a connected open set V such that x ∈ V ⊆ C◦ ⊆ C ⊆ U .
Then V is a proper subcontinuum of X with non-empty interior; this contradicts the
indecomposability of X , by Macı́as [32, Corollary 1.7.21].

We do not know if “metrizable" can be eliminated from the hypotheses of Proposition
4.7.

Question 4.8 Is there a co-existentially closed continuum X such that C(X) is
algebraically closed?

Suppose that X is a metrizable co-existentially closed continuum. Proposition 4.4 and
Theorem 4.6 then imply that all models of Th(C(X)) are approximately algebraically
closed. In countably saturated models the sentences σn,K express algebraic closure, not
just approximate algebraic closure. Thus if Y is such that C(Y) ≡ C(X) and C(Y) is
countably saturated then C(Y) is algebraically closed, while by Proposition 4.7 C(X) is
not algebraically closed. Therefore:

Corollary 4.9 The property of being algebraically closed is not axiomatizable in the
language of unital C*–algebras.

1The result is also contained in a combination of Theorem 1.7.9, Theorem 1.7.12 and
Corollary 1.7.26 of [32].
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Continuing with the setup from the paragraph above, Y is also hereditarily indecom-
posable (because hereditary indecomposability is axiomatizable and X is hereditarily
indecomposable by Fact 2.6), and hence Y is not locally connected. Thus Fact 4.5
cannot be extended to non-metrizable continua in general, and the method of proof
of Proposition 4.7 cannot be used to answer Question 4.8. There is a notion of a
continuum being almost locally connected that does follow from algebraic closure even
in the non-metrizable setting (see Countryman [15, Theorem 2.4]). The same argument
as above shows that this almost local connectedness is compatible with hereditary
indecomposability, but we do not know if it is compatible with being co-existentially
closed.

Remark 4.10 Concerning the question of whether or not Tconn has a model companion,
we observe that a negative answer to Question 4.8 would strongly refute the existence
of such a model companion, since the existence of a model companion is equivalent to
co-existential closure being preserved by co-elementary equivalence.

We now return to gathering information about K1(C(X)) when X is co-existentially
closed. Recall that an abelian group (G,+) is called n–divisible (for some fixed n ∈ N)
if for every g ∈ G there is x ∈ G such that nx = g, where nx is the sum of n copies of
x . A group is divisible if it is n–divisible for all n ≥ 1.

Fact 4.11 ([27, Theorem 1.3]) Suppose that X is a compactum with dim(X) ≤ 1.
For each n ∈ N, the following are equivalent:

(1) Ȟ1(X) is n–divisible.
(2) for every f ∈ C(X) and every ε > 0 there is g ∈ C(X) such that ∥gn − f∥ < ε.

It follows immediately that if X is a continuum such that C(X) is approximately
algebraically closed and dim(X) ≤ 1 then Ȟ1(X) is a divisible group. In particular,
by Theorem 4.6 and Fact 2.6 those hypotheses are satisfied when X is co-existentially
closed. The group Ȟ1(X) is always torsion-free abelian, so we conclude:

Theorem 4.12 If X is a co-existentially closed continuum then Ȟ1(X) is a torsion-free
divisible abelian group.

Remark 4.13 In general, extracting K –theoretic information about a C*–algebra A
from Th(A) is a non-trivial matter (see [17, Sections 3.11 and 3.12]). By Proposition 4.1
and standard translations between topological properties and C*–algebraic ones, we can
view the proof of Theorem 4.12 as showing that if T is the theory of commutative unital
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projectionless C*–algebras of real rank at most 1, then if A |= T , for each n ≥ 1 the
property of having K1(A) be n–divisible is detected by Th(A). Because our argument
depends heavily on working with continua of dimension at most 1, we do not know if
this result can be extended to more general classes of C*–algebras.

For the pseudoarc P we have K1(C(P)) = Ȟ1(P) = 0; this follows from the continuity
of Čech cohomology, since P can be represented as an inverse limit of arcs, and arcs
have trivial first cohomology. In light of the fact that all co-existentially closed continua
have the same K0 as P (Corollary 3.7), and the fact that the proof of Theorem 4.12
does not appear to use the full power of having C(X) be approximately algebraically
closed, one might therefore conjecture that Ȟ1(X) = 0 for every co-existentially closed
continuum X . Our next goal is to show that this is not the case even if X is metrizable,
and moreover (allowing X to be non-metrizable) the rank of Ȟ1(X) can be arbitrarily
large.

Theorem 4.14 Let Y be a hereditarily indecomposable continuum. There exists a co-
existentially closed continuum X with w(X) = w(Y) and rank(Ȟ1(X)) ≥ rank(Ȟ1(Y)).

Proof Using Fact 2.3, let X be a co-existentially closed continuum with w(X) = w(Y)
and with a continuous surjection f : X → Y . Every continuous surjection onto a
hereditarily indecomposable continuum is confluent; this was originally proved in
the metric case by Cook [14], but see Bankston [6, Theorem 2] for a proof in the
non-metric setting. In particular, f is confluent. It then follows by Lelek [31, Corollary
2] that f induces an injective homomorphism f ∗ : Ȟ1(Y) → Ȟ1(X). As injective
homomorphisms preserve independence, this gives rank(Ȟ1(X)) ≥ rank(Ȟ1(Y)).

Corollary 4.15 There is a metrizable co-existentially closed continuum X with
Ȟ1(X) ̸= 0.

Proof Let Y be a hereditarily indecomposable continuum with Ȟ1(Y) = Q (one
example of such is the universal pseudo-solenoid described in Section 5 below).
Then Theorem 4.14 produces a metrizable co-existentially closed continuum X with
rank(Ȟ1(X)) ≥ rank(Ȟ1(Y)) = 1, and in particular Ȟ1(X) ̸= 0.

By Theorem 4.14, in order to show that Ȟ1(X) can have rank at least κ, for some infinite
κ, it suffices to find a hereditarily indecomposable continuum Y where the rank of Ȟ1(Y)
is at least κ. The Y we produce will be an ultracoproduct of a metrizable continuum
whose first Čech cohomology group is Q. We begin by proving the following, which
may be of independent interest.
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12 C J Eagle and J Lau

Proposition 4.16 Let (Xi)i∈I be a family of compacta and let U be an ultrafilter on an
index set I . Then

∏
U Ȟ1(Xi) is a quotient of the group Ȟ1

(∑
U Xi

)
.

Proof It is convenient to phrase this proof categorically.

The ultraproduct construction can be represented categorically as

∏
U

Ȟ1(Xi) = lim−→

(∏
i∈A

Ȟ1 (Xi)

)
A∈U

, ( pA,B)A⊆B


where pA,B is the canonical projection from

∏
i∈B Xi to

∏
i∈A Xi when A ⊆ B.

Recall that in the category of compact Hausdorff spaces the coproduct operation is
taking the Stone–Čech compactification of the disjoint union of spaces; that is, for any
A ⊆ I : ∐

i∈A

Xi = β

(⋃
i∈A

(
Xi × {i}

))
.

By Gel’fand duality applied to the categorical description of
∏

U C(Xi), the ultracoprod-
uct
∑

U Xi is ∑
U

Xi = lim←−

(∐
i∈A

Xi

)
A∈U

, (πA,B)A⊆B


where for A,B ∈ U with A ⊆ B, the map πA,B is the natural embedding of

∐
i∈A Xi into∐

i∈B Xi . By continuity and contravariance of Čech cohomology we therefore have that

Ȟ1

(∑
U

Xi

)
= lim−→

(Ȟ1

(∐
i∈A

Xi

))
A∈U

, (π∗
A,B)A⊆B


where π∗

A,B denotes the map induced on Čech cohomology by πA,B .

For each A ∈ U , we define a map ηA : Ȟ1
(∐

i∈A Xi
)
→
∏

i∈A Ȟ1(Xi) by ηA([f ]) =
([f |Xi])i∈A . If f , g ∈ Ȟ1

(∐
i∈A Xi

)
are such that [f ] = [g], ie f and g are homotopic

maps, then the restriction of a homotopy from f to g to any Xi is a homotopy
from f |Xi to g|Xi , and hence ([f |Xi])i∈A = ([g|Xi])i∈A . That is, ηA is well-defined. It is
straightforward to verify that ηA is a group homomorphism. We show that ηA is surjective.
Suppose we are given ([fi])i∈A ∈

∏
i∈A Ȟ1(Xi). Define f :

⋃
i∈A

(
Xi × {i}

)
→ T by

f (x, i) = fi(x). Since each fi is continuous so is f , and therefore f extends to the
Stone-Čech compactification as a continuous map f β :

∐
i∈A Xi → T; we then have

ηA([f β]) = ([fi])i∈A .
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One readily checks that the maps (ηA)A∈U commute with the maps pA,B and π∗
A,B in the

sense that for all A ⊆ B, pA,BηB = ηAπ
∗
A,B ; that is, the following diagram commutes:

Ȟ1
(∐

i∈A Xi
) ∏

i∈A Ȟ1(Xi)

Ȟ1
(∐

i∈B Xi
) ∏

i∈B Ȟ1(Xi)

ηA

ηB

π∗
A,B ρA,B

Therefore the maps (ηA)A∈U induce a surjective group homomorphism

lim−→ Ȟ1

(∐
i∈A

Xi

)
→ lim−→

∏
i∈A

Ȟ1(Xi)

that is, we have a surjective homomorphism:

Ȟ1

(∑
U

Xi

)
→
∏
U

Ȟ1(Xi)

Theorem 4.17 Given any infinite cardinal κ there is a co-existentially closed continuum
X of weight 2κ such that rank(Ȟ1(X)) ≥ 2κ .

Proof Let Y be a metrizable hereditarily indecomposable continuum with Ȟ1(Y) = Q,
such as the universal pseudo-solenoid described in Section 5 below. Let U be a regular
ultrafilter on κ. Since U is regular and Y is separable, the version of Chang and
Keisler [13, Proposition 4.3.7] for metric structures gives that the density of C(Y)U is
(ℵ0)κ = 2κ , so the weight of

∑
U Y is also 2κ (this can also be proved topologically

using Bankston [2, Theorem 2.2.3]).

The hereditary indecomposability of Y is an axiomatizable property of C(Y), and
thus is preserved by taking an ultracopower. We may thus apply Theorem 4.14 to∑

U Y to get a co-existentially closed continuum X with w(X) = w
(∑

U Y
)
= 2κ and

rank(Ȟ1(X)) ≥ rank
(
Ȟ1
(∑

U Y
))

. In particular,
∣∣Ȟ1

(∑
U Y
)∣∣ ≤ ∣∣Ȟ1(X)

∣∣.
Since

∏
U Ȟ1(Y) is a quotient of Ȟ1

(∑
U Y
)

(Proposition 4.16), we have
∣∣∏

U Ȟ1(Y)
∣∣ ≤∣∣Ȟ1

(∑
U Y
)∣∣. We chose Y to have Ȟ1(Y) = Q, so since U is a regular ultrafilter on

κ we have
∣∣∏

U Ȟ1(Y)
∣∣ = |∏U Q| = 2κ (see [13, Proposition 4.3.7]). Putting all this

together, we have shown:

2κ =

∣∣∣∣∣∏
U

Ȟ1(Y)

∣∣∣∣∣ ≤
∣∣∣∣∣Ȟ1

(∑
U

Y

)∣∣∣∣∣ ≤ ∣∣Ȟ1(X)
∣∣
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This completes the proof since Ȟ1(X) is a torsion-free divisible abelian group (Theorem
4.12) and when such groups are uncountable their rank is equal to their cardinality.

Having just shown that there are co-existentially closed continua with Ȟ1(X) ̸= 0, it is
tempting to hope that models of Th(C(P)) must have Ȟ1(X) = 0, as this would give us
a way to show that Th(C(P)) is not the model companion of Tconn . Unfortunately, this
strategy does not work.

Proposition 4.18 If U is any countably incomplete ultrafilter and X is any continuum
with dim(X) = 1 then Ȟ1

(∑
U X
)
̸= 0.

Proof By Banakh, Bankston, Raines and Ruitenburg [1, Theorem 2.1] a compactum
is 3–chainable if and only if it is a one-dimensional continuum with trivial first Čech
cohomology group. Every ultracoproduct of compacta by a countably incomplete
ultrafilter fails to be 3–chainable [1, Lemma 5.3]. Since being a continuum and
being one-dimensional are elementary properties they are preserved by ultracoproducts.
Thus

∑
U X is a one-dimensional continuum that is not 3–chainable, and hence

Ȟ1
(∑

U X
)
̸= 0.

Corollary 4.19 There are models of Th(C(P)) with non-zero K1 .

Corollary 4.20 The connected component of the unitary group is not definable in
Th(C(P)).

Proof Since dim(P) = 1, the C*–algebra C(P) has stable rank 1 (see the proof of Propo-
sition 4.1 above). There is a natural group homomorphism φ : U(C(P))/U0(C(P))→
K1(C(P)); since we are working with a commutative C*–algebra this map is injective
[38, Proposition 8.3.1], and since C(P) has stable rank 1 the map is surjective by
Rieffel [36, Theorem 10.10]. Being abelian and having stable rank 1 are elementary
properties, so if M |= Th(C(P)) then K1(M) ∼= U(M)/U0(M).

As a consequence of the above, if the connected component of the unitary group is
definable then K1(M) is in Meq . It then follows from [17, Proposition 3.12.1(iii)] that if
B is any C*–algebra with C(P) ⪯ B, then K1(C(P)) ⪯ K1(B). However, K1(C(P)) = 0,
while Proposition 4.18 (along with Proposition 4.1) shows that ultrapowers of C(P)
often have non-zero K1 , giving the desired contradiction.

For planar continua we can improve Theorem 4.12.

Journal of Logic & Analysis 16:1 (2024)



K –theory of co-existentially closed continua 15

Theorem 4.21 If X is a planar co-existentially closed continuum then Ȟ1(X) = 0, and
hence X does not separate the plane.

Proof By Krasinkiewicz [29, Theorem 3.3], Ȟ1(X) is a finitely divisible group,
meaning that if g ∈ Ȟ1(X) and g ̸= 0 then {n ∈ N : g is divisible by n} is finite.
(Note, in particular, that on the definition given in [29] the trivial group is finitely
divisible.) On the other hand, Theorem 4.12 shows that Ȟ1(X) is a divisible group,
meaning every element is divisible by every n ∈ N. This combination of properties is
possible only when Ȟ1(X) = 0. The claim about not separating the plane then follows
directly from Lau [30, Theorem 1].

There are 22ℵ0 distinct hereditarily indecomposable one-dimensional plane continua
that do not separate the plane (see Ingram [26, Theorem 2]), and moreover many of
these are not continuous images of the pseudoarc. We do not know if any of these are
co-existentially closed.

Problem 4.22 Is there a planar co-existentially closed continuum other than the
pseudoarc?

5 Continua that are not co-existentially closed

As an application of our results on K1(C(X)) for co-existentially closed continua X ,
we show that various continua cannot be co-existentially closed. The main result of
this section is that the only pseudo-solenoid that could be co-existentially closed is the
universal one. The continua considered in this section will all be metrizable, but since
that was not the case in earlier sections we will include the metrizability hypothesis in
our theorem statements.

Recall that if C is a continuum then a continuum X is C–like if it can be written as
an inverse limit of copies of C . In particular, arc-like continua (also known as the
metrizable chainable continua) are inverse limits of copies of [0, 1], while circle-like
continua (also known as the metrizable circularly chainable continua) are inverse limits
of copies of the circle T.

Solenoids

Consider the circle as T = {z ∈ C : |z| = 1}. For each n ∈ N, let µn : T→ T be the
map µn(z) = zn .

Journal of Logic & Analysis 16:1 (2024)
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Definition 5.1 A solenoid is a metrizable continuum that is not arc-like and that is
circle-like, where each map in the inverse system is a map of the form µn (with possibly
different values of n for different maps).

Definition 5.2 Let N = (n1, n2, . . .) be a sequence of positive natural numbers. The
N –adic solenoid SN is the inverse limit of the system:

T
µn1←−− T

µn2←−− · · ·

It is immediate from the definition that every solenoid is the N –adic solenoid for some
N .

Definition 5.3 Let (n1, n2, . . .) be a sequence of positive integers. The corresponding
supernatural number is the formal product

∏∞
i=1 ni . We say that two supernatural

numbers N and M are equivalent, and write N ∼ M , if there are finite values
1 ≤ n0,m0 <∞ such that m0 · N = n0 ·M .

Note that any supernatural number can be expressed as a product of the form
∏

i∈N pki
i ,

where pi is the ith prime and ki ∈ {0, 1, 2, . . . ,∞}. The equivalence of two supernatural
numbers means that these formal products differ on at most finitely many primes, each
of which appears to a finite power (see the discussion before and after Hurder and
Lukina [25, Definition 1.1] for more details). We denote by [∞] the supernatural
number [∞] =

∏
i∈N p∞i .

Bing [10] showed that if N = (n1, n2, . . .) and M = (m1,m2, . . .) are two sequences
that produce equivalent supernatural numbers, then SN ∼= SM . McCord [34] showed
the converse. Thus solenoids are classified up to homeomorphism by equivalence of
supernatural numbers:

Fact 5.4 ([10, 34]) Let N and M be supernatural numbers. Then SN ∼= SM if and
only if N ∼ M .

Consequently, we often index solenoids by supernatural numbers instead of by sequences
of natural numbers.

Every solenoid contains an arc (in fact, every proper subcontinuum of a solenoid is an arc)
and therefore solenoids are not hereditarily indecomposable. Since every co-existentially
closed continuum is hereditarily indecomposable (Fact 2.6) it follows that no solenoid
can be co-existentially closed. Nevertheless, solenoids provide useful information about
the class of pseudo-solenoids (described below), which are hereditarily indecomposable
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(but, as we will show, still not co-existentially closed). The fact we will need is the
following, which follows easily from the continuity of Čech cohomology, or can be
extracted from the proof of Fearnley [18, Theorem 5.2].

Fact 5.5 Let N be a supernatural number and X = SN . For each k ∈ N, the
cohomology group Ȟ1(X) is k–divisible if and only if k∞ divides N .

Remark 5.6 Variations of the sentences σn,K (used in Proposition 4.4) can be used
to express that C(X) is approximately closed under nth roots. Thus, by Fact 4.11,
when dim(X) ≤ 1 the property of having Ȟ1(X) be n–divisible is ∀∃–axiomatizable.
Moreover, by Fact 5.5 this means that if X = SN then Th(C(X)) can detect for which n
we have n∞ | N . Thus if C(SN) ≡ C(SM) then N and M are infinitely divisible by the
same natural numbers. In particular, this implies that C(S[∞]) is the only model of its
theory whose spectrum is a solenoid.

Pseudo-solenoids

Definition 5.7 A pseudo-solenoid is a circle-like, non-arc-like, hereditarily indecom-
posable metrizable continuum.

The construction of pseudo-solenoids is similar to both the constructions of solenoids
(in that maps winding the circle around itself are used) and the construction of the
pseudoarc (in that the maps become increasingly “crooked"). In fact, the precise
quantitative details of how the maps are made to be crooked does not affect the resulting
homeomorphism type of the pseudo-solenoid, and pseudo-solenoids are classified in
the same manner as solenoids.

Fact 5.8 (Fearnley [19]; see also Bartoš and Kubiś [7, Section 5.1]) To each pseudo-
solenoid there is an associated supernatural number, and two pseudo-solenoids are
homeomorphic if and only if they have equivalent supernatural numbers.

Theorem 5.9 Let X be a pseudo-solenoid, and suppose that there is a prime p such
that p appears with a finite power in the supernatural number associated to X . Then X
is not co-existentially closed.

Proof Let N be the supernatural number associated to X . As shown in the proof of
[19, Theorem 3.3], X has the same first Čech cohomology as the solenoid SN associated
to N . That is, Ȟ1(X) ∼= Ȟ1(SN). Let p be a prime that appears only finitely often in N .
Then Fact 5.5 tells us that Ȟ1(X) is not p–divisible, and hence X is not co-existentially
closed by Theorem 4.12.
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Theorem 5.9 implies that the only pseudo-solenoid that could be co-existentially closed
is the so-called universal pseudo-solenoid, which is the pseudo-solenoid X associated to
the supernatural number [∞]; the universal pseudo-solenoid has Ȟ1(X) ∼= Q. We ask
in Problem 5.15 below whether the universal pseudo-solenoid is co-existentially closed.

Remark 5.10 In the proof of Theorem 5.9 we noted that divisibility of Ȟ1(X), for X a
pseudo-solenoid, depends on the supernatural number of X in the same way as is the
case for solenoids. As a consequence, the observations in Remark 5.6 apply to pseudo-
solenoids as well. We also note that if X is a solenoid and Y is a pseudo-solenoid with
the same supernatural number as X then we still have C(X) ̸≡ C(Y), since hereditary
indecomposability is axiomatizable.

Homogeneous continua

In this section we apply classification results about homogeneous continua to show that
several types of homogeneous metrizable continua cannot be co-existentially closed.
We need to recall one more class of continua.

Definition 5.11 A solenoid of pseudoarcs is a circle-like continuum that admits a
continuous decomposition into pseudoarcs with decomposition space homeomorphic to
T.

The original example of a solenoid of pseudoarcs is the circle of pseudoarcs introduced
by Bing and Jones [11], while the general class of solenoids of pseudoarcs was
introduced by Rogers [37]. Any solenoid of pseudoarcs is decomposable, and hence
not co-existentially closed. This class is of interest to us because it arises in several
classification theorems regarding homogeneous continua, which we now apply to show
that many homogeneous continua are not co-existentially closed.

Theorem 5.12 The only co-existentially closed, circle-like, homogeneous, metrizable
continuum is the pseudoarc.

Proof Hagopian and Rogers [21] have shown that the only non-degenerate, circle-like,
homogeneous, metrizable continua are the pseudoarc, the solenoids, and the solenoids
of pseudoarcs. We have already observed that the latter two types of continua are not
co-existentially closed.

Using a classification result of Hoehn and Oversteegen we can give the following partial
result towards Problem 4.22.
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Theorem 5.13 The only homogeneous planar continuum that is co-existentially closed
is the pseudoarc.

Proof The main result of [24] is that the only non-degenerate homogeneous subcontinua
of the plane are the circle, the circle of pseudoarcs, and the pseudoarc. The circle and
the circle of pseudoarcs are decomposable, hence not co-existentially closed.

Despite the variety of known constructions of continua, and the fact that many metrizable
co-existentially closed continua exist, we nevertheless still have the following question:

Problem 5.14 Give a concrete example of a metrizable co-existentially closed contin-
uum other than the pseudoarc.

Aside from the properties of co-existentially closed continua already mentioned in this
paper, we also observe that any co-existentially closed continuum must be unicoherent
(ie, have the property that if A and B are subcontinua of X and A∪B = X then A∩B is
connected). This follows from Lemma 2.5 because unicoherence is a ∀∃–axiomatizable
property (see Bankston [5, Remark 5.7(iii)]).

As a specific example of Problem 5.14, we believe that the answer to the following
question is likely negative:

Problem 5.15 Is the universal pseudo-solenoid co-existentially closed?

We note that the results concerning homogeneous continua do not address this question
because pseudo-solenoids are not homogeneous Sturm [39], and the observation about
unicoherence also does not apply because indecomposable circle-like continua are
unicoherent (see, eg, Hagopian [20]).
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