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Polish topologies on groups of non-singular transformations

FRANÇOIS LE MAÎTRE

Abstract: In this paper, we prove several results concerning Polish group topologies
on groups of non-singular transformations. We first prove that the group of measure-
preserving transformations of the real line whose support has finite measure carries
no Polish group topology. We then characterize the Borel σ–finite measures λ on
a standard Borel space for which the group of λ–preserving transformations has
the automatic continuity property. We finally show that the natural Polish topology
on the group of all non-singular transformations is actually its only Polish group
topology.
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1 Introduction

The study of measure-preserving (or more generally non-singular) transformations on a
standard measured space (Y, λ) is broadened once one realises that such transformations
form a Polish group. Indeed, the Baire Category Theorem is then available and so the
question of generic properties of such transformations arises naturally.

As a somewhat degenerate case, one may first look at the case where the measure
λ is completely atomic. Then Aut(Y, λ) only acts by permuting atoms of the same
measure and thus splits as a direct product of permutation groups. In the case where
all the atoms have the same measure and λ is infinite, we get the Polish group S∞
of permutations of the integers. In this group, the generic permutation has only finite
orbits and infinitely many orbits of size n for every n ∈ N. Such permutations thus
form a comeager conjugacy class.

Actually a much stronger property called ample generics holds for the Polish group
S∞ . This has several nice consequences as was shown by Kechris and Rosendal [9],
among which the automatic continuity property, which in turn implies that its Polish
group topology is unique.
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Definition 1.1 A Polish group G has the automatic continuity property if whenever
π : G → H is a group homomorphism taking values in a separable topological group
H , the homomorphism π has to be continuous.

It is well-known that as soon as λ has a non-atomic part, the group Aut(Y, λ) fails to
have ample generics. However, it was shown by Ben Yaacov, Berenstein and Melleray
that when λ is a non-atomic finite measure, Aut(X, λ) still has the automatic continuity
property [2] (see also [12, Section 2] for a more direct proof). Later on Sabok developed
a framework to show automatic continuity for automorphism groups of metric structures
[15]. In particular, he got another proof of automatic continuity for Aut(Y, λ), and then
Malicki simplified his approach [13] . We first observe that this framework can also be
applied when λ is infinite.

Theorem 1.2 Let (Y, λ) be a standard Borel space equipped with a non-atomic σ–finite
infinite measure λ. Then Aut(Y, λ) has the automatic continuity property.

Note that as a concrete example for the above result, one can take Y to be the reals
equipped with the Lebesgue measure. In general, we can actually characterize when
Aut(Y, η) has the automatic continuity as follows, where the η–atomic multiplicity of a
real r > 0 is the number of atoms whose measure is equal to r .

Theorem 1.3 Let (Y, η) be a standard Borel space equipped with a Borel σ–finite
measure η . Then the following are equivalent:

(i) Aut(Y, η) has the automatic continuity property.
(ii) There are only finitely many positive reals whose η–atomic multiplicity belongs

to [2,+∞[.

Let us now consider the group Aut∗(Y, η) of non-singular transformations of (Y, η),
ie the group of Borel bijections which preserve η–null sets. If ηat denotes the atomic
part of λ and ηcont denotes the atomless part, we see that Aut∗(Y, η) splits as a direct
product:

Aut∗(Y, η) = Aut∗(Y, ηat) × Aut∗(Y, ηcont)

The group Aut(Y, ηat) is a permutation group, so it has the automatic continuity and
thus we focus on Aut(Y, ηcont), assuming that ηcont is non-trivial. Observe that ηcont is
then equivalent to an atomless probability measure, so we may as well assume ηcont is a
probability measure. We are thus led to ask:

Question Let (X, µ) be a standard probability space. Does the group Aut∗(X, µ) of
all non-singular transformations of (X, µ) have the automatic continuity property ?
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The main difficulty with this question is that the framework of Sabok is not available for
Aut∗(X, µ) because it cannot be the automorphism group of a complete homogeneous
metric structure as was recently shown by Ben Yaacov [1]. While we cannot answer
this question, we still manage to obtain a basic consequence of automatic continuity,
namely having a unique Polish group topology.

Theorem 1.4 Let (X, µ) be a standard probability space. The group Aut∗(X, µ) has a
unique Polish group topology, namely the strong topology.

The techniques we use to prove the above theorem are quite standard, except for the
fact that we use the automatic continuity for Aut(X, µ) so as to know that Aut(X, µ)
is a Borel subgroup of Aut∗(X, µ) for any Polish group topology on Aut∗(X, µ). This
trick may be of use for other Polish groups.

Finally, we prove a result in the line of research started by Rosendal [14] by showing
that the group of all measure-preserving transformations of the real line which have
finite support cannot carry any Polish group topology.

The paper is organized in two independent sections. Section 2 deals with groups of
measure-preserving transformations over a σ–finite space. After a preliminary section,
we start with the above-mentioned absence of Polish group topology on the group of
finite support transformations in Section 2.2. We then check that Aut(Y, ν) has the
automatic continuity property in Section 2.3, and we prove Theorem 1.3 in Section 2.4.
Section 3 is finally devoted to the proof of the uniqueness of the Polish group topology
of Aut∗(X, µ) (Theorem 1.4).

Remark Throughout the paper, we will often neglect what happens on null sets without
explicit mention.
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2 Groups of transformations preserving a σ–finite measure

2.1 Preliminaries

A standard σ–finite space is a standard Borel space equipped with a Borel nonatomic
σ–finite infinite measure. All such spaces are isomorphic to R equipped with the
Lebesgue measure, and we fix from now on such a standard σ–finite space (Y, λ).

The first group we are interested in is denoted by Aut(Y, λ) and consists of all Borel
bijections T : Y → Y which preserve the measure λ: for all Borel A ⊆ Y , we have
λ(A) = λ(T−1(A)). As usual, two such bijections are identified if they coincide on a
conull set.

Consider the space MAlgf (Y, λ) of finite measure Borel subsets of Y where we identify
A and B if λ(A △ B) = 0. It is equipped with the metric dλ(A,B) := λ(A △ B). (dλ
would only be a pseudo-metric if we had not identified sets up to measure zero.) We
have the following well-known lemma.

Lemma 2.1 The metric space (MAlgf (Y, λ), dλ) is complete and separable.

Proof We first prove completeness. Let (An) be a Cauchy sequence, up to taking a
subsequence we may assume that for all n ∈ N, λ(An △ An+1) < 2−n . It then follows
from the Borel–Cantelli Lemma that for almost every y ∈ Y , we have some N ∈ N
such that y ̸∈ An △ An+1 for all n ⩾ N .

Now denote by A the set of all y ∈ Y such that there is N ∈ N such that for all
n ⩾ N , y ∈ An . It follows from the second-to-last sentence that if y ̸∈ A then
there is N ∈ N such that for all n ⩾ N , y ̸∈ An . We thus have that for all N ∈ N,
A△AN ⊆

⋃
n⩾N(An △An+1). Since the latter has measure at most

∑
n⩾N 2−n = 2−N+1

which tends to zero, we conclude that An → A as wanted.

The separability is then obtained by noting that we may as well assume Y = R endowed
with the Lebesgue measure, and then finite unions of rational endpoints intervals are
dense in MAlg(Y, λ).

Now, if (X, µ) is a standard probability space then every Borel subset has finite measure,
and by definition the measure algebra (MAlg(X, µ), dµ) is defined as its set of Borel
subsets up to measure zero, equipped with the metric dµ(A,B) := µ(A △ B). If (Z, ν)
is another standard probability space, any isometry between (MAlg(X, µ), dµ) and
(MAlg(Z, ν), dν) sending ∅ to ∅ comes from a measure-preserving bijection which is
unique up to a null set (see Kechris [8, Section 1 (B)]). Using the σ–finiteness of (Y, ν)
and the above fact, we easily get the following proposition.

Journal of Logic & Analysis 14:4 (2022)



Polish topologies on groups of non-singular transformations 5

Proposition 2.2 Aut(Y, λ) is equal to the group of isometries of (MAlgf (Y, λ), dλ)
which fix ∅.

The above proposition implies that Aut(Y, λ) is a Polish group as it is a closed subgroup
of the isometry group of a separable complete metric space. The corresponding topology
is called the weak topology; it is thus defined by Tn → T if and only if for all A ⊆ Y of
finite measure, one has:

λ(Tn(A) △ T(A)) → 0

Note that since λ(Tn(A)) = λ(T(A)), this condition is in turn equivalent to λ(Tn(A) \
T(A)) → 0.

For T ∈ Aut(Y, λ), we define its support to be the following Borel set, which is only
well-defined up to measure zero:

supp T := {y ∈ Y : T(y) ̸= y}
Note that we have the following relation: for all S,T ∈ Aut(Y, λ),

supp(STS−1) = S(supp T).

Definition 2.3 The group Autf (Y, λ) is the normal subgroup of Aut(Y, λ) consisting
of all T ∈ Aut(Y, λ) such that λ(supp(T)) < +∞.

2.2 Absence of Polish group topology on Autf (Y, λ)

2.2.1 Non-Polishability

Our first lemma is well-known, we provide a proof for the reader’s convenience.

Lemma 2.4 For all R > 0, the set of T ∈ Aut(Y, λ) such that λ(supp T) ⩽ R is
closed.

Proof Take T such that λ(supp T) > R, then there exists a partition of supp T
in countably many sets of positive measure (Ai)i∈N such that for all i ∈ N, we
have λ(T(Ai) ∩ Ai) = 0. By our hypothesis, we may then find n ∈ N such that
λ(A1 ⊔ · · · ⊔ An) > R, and up to shrinking each Ai we may furthermore assume
λ(A1 ⊔ · · · ⊔ An) < +∞.

Let ϵ = (λ(A1⊔· · ·⊔An)−R)/n. Now take T ′ ∈ Aut(Y, λ) such that λ(T(Ai)△T ′(Ai)) <
ϵ for i = 1, ..., n, and let Bi := Ai \ T ′(Ai). By construction we have λ(Bi) > λ(Ai) − ϵ.
Moreover T ′(Bi) is disjoint from Bi so each Bi is contained in the support of T ′ , and
since they are disjoint we conclude that the support of T ′ has measure greater than
λ(A1 ⊔ · · · ⊔ An) − nϵ > R.
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Definition 2.5 A subgroup H of a Polish group G is called Polishable if it admits a
Polish group topology which refines the topology of G.

Remark By a direct application of the Lusin–Suslin theorem (see, eg, Kechris [7,
Theorem 15.1]), every Polishable subgroup of a Polish group G is a Borel subset of G.
Here it follows from the above lemma that Autf (Y, λ) is Fσ in Aut(Y, λ) (in particular
Borel). Nevertheless, we have the following result.

Theorem 2.6 The subgroup Autf (Y, λ) ⩽ Aut(Y, λ) is not Polishable.

Proof Suppose that Autf (Y, λ) is Polishable. Then by definition its Polish group
topology τ refines the weak topology. For each n ∈ N, let:

Fn := {T ∈ Autf (Y, λ) : λ(supp T) ⩽ n}

By the previous lemma, each Fn is closed in Autf (Y, λ). Since Autf (Y, λ) =
⋃

n∈N Fn ,
the Baire Category Theorem yields that there is n ∈ N such that Fn has nonempty
interior. Since τ is second-countable, we deduce that Autf (Y, λ) is covered by countably
many Fn –translates. This means that Autf (Y, λ) contains a countable set which is
n–dense1 for the metric dλ given by:

dλ(T,T ′) := λ
(
{x ∈ Y : T(x) ̸= T ′(x)}

)
Let us explain why this cannot happen.

Fix a Borel set A ⊆ Y of measure 3n, and identify A with the circle S1 equipped with
the finite measure 3nλ, where λ is the Haar measure on S1 . Take z ∈ S1 and consider
Tz the translation by z in S1 , which we can see through our identification as a measure
preserving transformation of (Y, λ) supported on A. Observe that for z ̸= z′ , we have
dλ(Tz, Tz′) = 3n. So in Autf (Y, λ) there is an uncountable subgroup all whose distinct
elements are 3n–apart for the metric dλ , contradicting the fact that Autf (Y, λ) contains
a countable set which is n–dense for the metric dλ by the pigeonhole principle.

2.2.2 Non-existence of a Polish group topology

We now upgrade the previous theorem to see that G := Autf (Y, λ) cannot carry a Polish
group topology. Fortunately, the arguments we need were carried out by Kallman in [6]

1By definition, a subset A of a metric space (X, d) is n–dense if every element of X is at
distance at most n from some element of A .
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to prove the uniqueness of the Polish topology of Aut(Y, λ). We reproduce them here
for the convenience of the reader.

For a Borel subset A ⊆ Y we let:

GA := {T ∈ Autf (Y, λ) : supp T ⊆ A}

For a subset F ⊆ Autf (Y, λ) we let

C(F) := {U ∈ Autf (Y, λ) : TU = UT for all T ∈ F}

denote its centraliser.

Lemma 2.7 We have C(GA) = GY\A .

Proof We clearly have GY\A ⩽ C(GA).

Take T ̸∈ GY\A . By definition the support of T intersects A, so there is B ⊆ A with
T(B) disjoint from B. But clearly T does not commute with non-trivial elements of
Autf (Y, λ) supported in B, in particular T ̸∈ C(GA).

By the previous lemma and the fact that centralizers are always closed in topological
groups, whenever τ is a Hausdorff group topology on Autf (Y, λ) we have that the set
GY\A is τ –closed. Also note that for all T ∈ Autf (Y, λ) and all A ⊆ Y , we have:

(1) GT(A) = TGAT−1

Denote by G(A,B) the set of T ∈ Autf (Y, λ) such that T(A) ⊆ B.

Lemma 2.8 Let τ be a Hausdorff group topology on G = Autf (Y, λ). For all A,B ⊆ Y ,
the set G(A,B) is τ –closed.

Proof Observe first that A ⊆ B if and only if GA ⩽ GB . The direct implication is
clear; conversely, if A is not a subset of B then we find a transformation supported
on A \ B, thus witnessing that GA ̸⩽ GB . By equality (1) we then have G(A,B) =
{T ∈ Autf (Y, λ) : TGAT−1 ⊆ GB}. So, by the previous lemma G(A,B) is the set of
all T ∈ Autf (Y, λ) such that for all U ∈ GA , TUT−1 commutes with every element of
GX\B . This is clearly a τ –closed condition.

Now take A ⊆ Y , let ϵ > 0, and pick B ⊆ Y containing A such that λ(B \ A) = ϵ.

Lemma 2.9 GY\A · G(A,B) = {T ∈ Autf (Y, λ) : λ(T(A) \ A) ⩽ ϵ}.
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Proof Note that GY\A is a group, and that the set F := {T ∈ Autf (Y, λ) : λ(T(A)\A) ⩽
ϵ} is left GY\A –invariant. Moreover, since λ(B \ A) = ϵ we clearly have G(A,B) ⊆ F ,
so GY\Am · G(An,B) ⊆ F .

For the reverse inclusion, take T ∈ F . Since λ(T(A) \ A) ⩽ ϵ and λ(B \ Am) = ϵ we
may find U ∈ GY\Am such that U(T(A) \ A) ⊆ B \ A. We conclude that UT ∈ G(A,B)
so T ∈ GY\A · G(A,B).

The above lemma implies that if τ is a Polish group topology on Autf (Y, λ), then for
all A ⊆ Y and ϵ > 0, the set {T ∈ Autf (Y, λ) : λ(T(A) \ A) ⩽ ϵ} is analytic (it is the
pointwise product of two closed sets) hence Baire-measurable.

Denote by w the weak topology on Aut(Y, λ), and denote by w′ the topology it induces on
Autf (Y, λ). Observe that for all T ∈ Autf (Y, λ), we have λ(A\T(A)) = λ(A△T(A))/2.
It follows that sets of the form

(2) {T ∈ Autf (Y, λ) : λ(T(A) \ A) ⩽ ϵ}

form a subbasis of neighborhoods of the identity in Autf (Y, λ) for the topology w′ . In
particular their left translates generate the Borel σ–algebra of Autf (Y, λ) associated
to the topology w′ . Since τ is a group topology and sets of the form (2) are τ –Baire
measurable, we conclude that the identity map (Autf (Y, λ), τ ) → (Aut(Y, λ),w) is
Baire-measurable. So the inclusion map is continuous by the Pettis Lemma (see, eg, [5,
Theorem 2.3.2]). But this is impossible by Theorem 2.6. This proves the following
result.

Theorem 2.10 The group Autf (Y, λ) cannot carry a Polish group topology.

2.3 Automatic continuity for Aut(Y, λ)

Let us now briefly indicate why Aut(Y, λ) has the automatic continuity property when
(Y, λ) is a standard σ–finite space (ie, λ is a non-atomic σ–finite infinite measure on
the standard Borel space Y ). To do so, we will simply check the criterions given by
Sabok [15] and then simplified by Malicki [13]. We won’t give full details since the
proofs adapt verbatim and we refer the reader to Malicki’s paper for definitions of the
terms used thereafter.

As explained in Section 2.1, we may view the group Aut(Y, λ) as the group of
automorphisms of the metric structure (MAlgf (Y, λ), dλ,△,∩) where

• MAlgf (Y, λ) is the set of finite measure Borel subsets of Y , up to measure zero;
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• dλ(A,B) = λ(A △ B); and
• △ and ∩ are the usual set-theoretic operations, thus making (MAlgf (Y, λ),△,∩)

a Boolean ring (without unit).

It is well-known that MAlgf (Y, λ) is homogeneous and complete as a metric structure.

Remark Note that Malicki and Sabok make a slightly different definition by naming
the empty set and keeping only the operation △, in line with Proposition 2.2. Here
we prefer to provide a definition of the structure on MAlgf (Y, λ) which makes finitely
generated substructures easier to understand.

Lemma 2.11 Finite tuples of disjoint finite measure subsets of (Y, λ) are ample and
relevant.

Proof The proof of [13, Lemma 6.2] adapts verbatim.

Lemma 2.12 MAlgf (Y, λ) locally has finite automorphisms and has the extension
property.

Proof Every finitely generated substructure of MAlgf (Y, λ) has a unit X so that we
may see it as a substructure of the measure algebra MAlg(X, λX), which up to rescaling
is the measure algebra over a standard probability space. The result then follows from
[15, Lemma 8.1 and Lemma 8.2].

As a consequence of Malicki’s theorem [13, Theorem 3.4], we thus have the following
result.

Theorem 2.13 The group Aut(Y, λ) of measure-preserving transformation of an
infinite σ–finite standard measured space has the automatic continuity property.

Corollary 2.14 (Kallman [6]) The group Aut(Y, λ) has a unique Polish group
topology.

Remark Let MAlg1(Y, λ) denote the closed set of all A ∈ MAlgf (Y, λ) whose
measure is at most 1. It is easy to check that the Aut(Y, λ)–action on MAlg1(Y, λ) is
approximately oligomorphic and that Aut(Y, λ) is a closed subgroup of the isometry
group of MAlg1(Y, λ). By Ben Yaacov and Tsankov [3, Theorem 2.4], we conclude
that Aut(Y, λ) is a Roelcke-precompact Polish group.
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2.4 A characterization of automatic continuity

We finally use the previous results to characterize automatic continuity for Aut(Y, η),
where (Y, η) be a standard Borel space equipped with a Borel σ–finite measure η ,
possibly with atoms. Recall that for such a measure there are only countably many
atoms and they have finite measure (by σ–finiteness), and that each atom is a singleton
(because Y is standard). Let us say that the η–atomic multiplicity of a positive real r
is the (possibly infinite) number of atoms in Y whose measure is equal to r .

Theorem 2.15 Let (Y, η) be a standard Borel space equipped with a Borel σ–finite
measure η . Then the following are equivalent:

(i) Aut(Y, η) has the automatic continuity property.
(ii) There are only finitely many positive reals whose η–atomic multiplicity belongs

to [2,+∞[.

Proof We first prove the contrapositive of (i)⇒(ii). Suppose there are infinitely many
positive reals whose η–atomic multiplicity belongs to [2,+∞[ and enumerate them
as (rn)n∈N . Then if An is the set of atoms of measure rn , we see that each An is
Aut(Y, η)–invariant and we thus get natural surjection:

Aut(Y, η) ↠
∏

n

S(An)

For each n, let σn be the signature map S(An) ↠ {±1}. By composing our previous
homomorphism with (σn)n∈N we get a continuous surjection Aut(Y, η) ↠ {±1}N .
Since the latter has 22ℵ0 distinct homomorphisms onto {±1} (indeed each ultrafilter on
N provides such a homomorphism) and there are at most 2ℵ0 continuous homomorphisms
Aut(Y, η) → {±1}, we conclude that Aut(Y, η) does not have the automatic continuity
property.

We now prove (ii)⇒(i). Let (ri)n
i=1 be the reals whose η–atomic multiplicity belongs

to [2,+∞[ and let Ai be the set of atoms of measure ri . Let (sj)j∈J denote the reals
whose η–atomic multiplicity is infinite and let Bj be the set of atoms of measure sj .
Finally, let ηn.a. be the non-atomic part of η . We then have a decomposition

(3) Aut(Y, η) = Aut(Y, ηn.a.) ×
n∏

i=1

S(Ai) ×
∏
j∈J

S(Bj),

where S(Bj) is equipped with the topology of pointwise convergence, viewing Bj as a
discrete set.

Let us show that Aut(Y, ηn.a.),
∏n

i=1 S(Ai) and
∏

j∈J S(Bj) have automatic continuity.
Since η is σ–finite, ηn.a. also is. We then have three cases to check.
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• If ηn.a. is trivial, Aut(Y, ηn.a.) also is and hence has automatic continuity.
• If ηn.a. is finite, Aut(Y, ηn.a.) has automatic continuity by Ben Yaacov, Berenstein

and Melleray [2, Theorem 6.2].
• If ηn.a. is infinite, Aut(Y, ηn.a.) has automatic continuity by Theorem 2.13.

The group
∏n

i=1 S(Ai) is finite and thus has automatic continuity. Finally the group∏
j∈J S(Bj) is a countable product of groups with ample generics and hence has ample

generics. By Kechris and Christian Rosendal [9, Theorem 1.10] it has automatic
continuity.

Since any finite product of groups with automatic continuity has automatic continuity,
we conclude from (3) that Aut(Y, η) has the automatic continuity property.

3 The group of non-singular transformations

3.1 Preliminaries

A standard probability space is a standard Borel space equipped with a Borel
nonatomic probability measure. All such spaces are isomorphic, and we fix from now
on such a standard probability space (X, µ).

A Borel bijection T of (X, µ) is called non-singular if the pushforward measure T∗µ

is equivalent to µ, that is, if for all Borel A ⊆ X , we have µ(A) = 0 if and only if
µ(T−1(A)) = 0. Denote by Aut∗(X, µ) the group of non-singular Borel bijections of
(X, µ), two such bijections being identified if they coincide up to measure zero.

The strong topology on Aut∗(X, µ) is a metrizable group topology defined by declaring
that a sequence (Tn) of elements of Aut∗(X, µ) strongly converges to T ∈ Aut∗(X, µ)
if for all Borel A ⊆ X , one has µ(Tn(A) △ T(A)) → 0 and

(4)
∥∥∥∥d(Tn∗µ)

dµ
− d(T∗µ)

dµ

∥∥∥∥
1
→ 0.

We refer the reader to Danilenko and Silva [4] for more on this topology, which is
actually a Polish group topology. Our purpose here will be to show that it is the unique
Polish group topology one can put on Aut∗(X, µ).

For T ∈ Aut∗(X, µ), we define as before its support to be the Borel set:

supp T := {x ∈ X : T(x) ̸= x}

Note that we have again the following relation: for all S, T ∈ Aut∗(X, µ), supp(STS−1)
= S(supp T).

Journal of Logic & Analysis 14:4 (2022)
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We denote by Aut(X, µ) the group of measure-preserving transformations of (X, µ),
which is a closed subgroup of Aut∗(X, µ). Similarly to Proposition 2.2, Aut(X, µ) is
the group of isometries of the measure algebra MAlg(X, µ), defined as the set of Borel
subsets of (X, µ) up to measure zero and equipped with the metric dµ(A,B) = µ(A△B).

Finally, we will need the following easy fact: given two subsets A,B ⊆ X of the same
measure, there exists T ∈ Aut(X, µ) supported on A ∪ B such that T(A) = B up to
measure 0.

3.2 Uniqueness of the Polish group topology of Aut∗(X, µ)

Theorem 3.1 The strong topology is the unique Polish group topology on the group
Aut∗(X, µ).

Proof Let us fix a countable dense subalgebra of MAlg(X, µ) and enumerate it as
(An)n∈N . For m, n, k ∈ N, we let:

Bn,m,k :=
{

T ∈ Aut∗(X, µ) : µ(T(An) \ Am) ⩽
1
2k

}
Let us first show that the Borel group structure of Aut∗(X, µ) is generated by the subsets
Bn,m,k .

By definition of the strong topology, we have that Aut∗(X, µ) acts continuously on
MAlg(X, µ), so each Bn,m,k is closed, hence Borel. By density of (An) in MAlg(X, µ)
and faithfulness of the Aut∗(X, µ)–action on MAlg(X, µ), we have that (Bn,m,k)n,m,k∈N
is a countable separating family of Borel subsets of the standard Borel space Aut∗(X, µ).
We conclude by Mackey [11, Theorem 3.3] that (Bn,m,k)n,m,k∈N generates the Borel
σ–algebra of Aut∗(X, µ).

Let now τ be a Polish group topology on G := Aut∗(X, µ). To conclude that τ is the
strong topology, our main task is to show that each Bn,m,k is τ –Baire-measurable.

We need a few easy facts from the previous section, adapted to our setup. The reader
who already went through the previous section can safely skip them and go directly to
Lemma 3.4.

For a Borel subset A ⊆ X , we let GA denote the group of T ∈ Aut∗(X, µ) such that
supp T ⊆ A. For a subset F ⊆ Aut∗(X, µ), let C(F) denote its centraliser. We now
repeat the short proofs of Lemma 2.7 and 2.8.
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Lemma 3.2 For all A ⊆ X we have C(GA) = GX\A . In particular GA is τ –closed.

Proof We clearly have GX\A ⩽ C(GA).

Take T ̸∈ GX\A . Then there exists B ⊆ A with T(B) disjoint from B. But clearly
T does not commute with any nontrivial element of Aut∗(X, µ) supported in B, in
particular T ̸∈ C(GA).

Note that for all T ∈ Aut∗(X, λ) and all A ⊆ X , we have again GT(A) = TGAT−1.

Denote by G(A,B) the set of T ∈ Aut∗(X, µ) such that T(A) ⊆ B.

Lemma 3.3 For all A,B ⊆ X , the set G(A,B) is τ –closed.

Proof By the equality (1), we have G(A,B) = {T ∈ Aut∗(X, µ) : T−1GAT ⊆ GB}.
So by the previous lemma G(A,B) is the set of all T ∈ Aut∗(X, µ) such that for all
U ∈ GA , TUT−1 commutes with every element of GX\B . This is clearly a τ –closed
condition.

We now make a crucial remark which relies on the automatic continuity property for
Aut(X, µ).

Lemma 3.4 For A ⊆ X , let HA = {T ∈ Aut(X, µ) : supp T ⊆ A}. Then HA is a
τ –Borel subset of Aut∗(X, µ).

Proof By the automatic continuity property for Aut(X, µ) [2, Theorem 6.3], we know
that Aut(X, µ) has to be a τ –Borel subset of Aut∗(X, µ). But HA = GA ∩ Aut(X, µ)
and by Lemma 3.2 we have that GA is closed, so HA is Borel.

Let n,m, k ∈ N; we finally prove that the set Bn,m,k is τ –Baire-measurable. We may
assume that µ(Am) < 1 − 1/2k because otherwise Bn,m,k = Aut∗(X, µ). Let B a Borel
set containing Am such that µ(B) = µ(Am) + 1/2k .

Claim We have Bn,m,k = HX\Am · G(An,B).

Proof of claim Note that HX\Am is a group, and that Bn,m,k is left HX\Am –invariant.
Moreover since µ(B \ Am) = 1/2k we clearly have G(An,B) ⊆ Bn,m,k so HX\Am·
G(An,B) ⊆ Bn,m,k .

For the reverse inclusion, take T ∈ Bn,m,k . Since µ(T(An)\Am) ⩽ 1/2k and µ(B\Am) =
1/2k we may find U ∈ HX\Am such that U(T(An) \ Am) ⊆ B \ Am . We conclude that
UT ∈ G(An,B) so T ∈ HX\Am· G(An,B).

Journal of Logic & Analysis 14:4 (2022)
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By Lemma 3.3 the set G(An,B) is τ –closed, while by Lemma 3.4 the set HX\Am is
τ –Borel. Being the pointwise product of two Borel sets, the set Bn,m,k is analytic, hence
Baire-measurable.

We can then conclude the proof in a standard manner: since the sets Bn,m,k generate the
σ–algebra of the strong topology s on Aut∗(X, µ), the identity map (Aut∗(X, µ), τ ) →
(Aut∗(X, µ), s) is continuous by the Pettis Lemma [5, Theorem 2.3.2]. Being injective,
its inverse is Borel by the Lusin–Suslin Theorem (Kechris [7, Theorem 15.1]), and thus
continuous as well by one last application of the Pettis Lemma.

Remark In the statement of Lemma 3.4, one can replace Aut(X, µ) by the full group
of any measure-preserving ergodic equivalence relation on (X, µ) and then run the
exact same proof to obtain Theorem 1.4. Indeed such a group also has the automatic
continuity property by a result of Kittrell and Tsankov [10].
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