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Gordon’s Conjecture 3: Fourier transforms in the hyperfinite
setting

PAVOL ZLATOŠ

Abstract: Using methods of nonstandard analysis and building upon the results
of our previous paper in which we proved Gordon’s Conjectures 1 and 2 we
will show that for any locally compact abelian group G the Fourier transform
F : L1(G) → C0

(
Ĝ
)

, the Fourier–Stieltjes transform F : M(G) → Cbu
(
Ĝ
)

, as
well as all the generalized Fourier transforms F : Lp(G) → Lq(Ĝ

)
for any pair of

adjoint exponents p ∈ (1, 2], q ∈ [2,∞) can be approximated in a fairly natural
way by the discrete Fourier transform F : CG → CĜ on a (hyper)finite abelian
group G . In particular, we will prove Gordon’s Conjecture 3, originally stated for
the Fourier–Plancherel transform F : L2(G) → L2(Ĝ

)
, and generalize it to all the

above mentioned cases. Some standard consequences will be considered, as well.
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0 Introduction

This paper is a direct continuation of our previous work [19], dealing with approximation
of locally compact abelian groups (briefly LCA groups) by (hyper)finite abelian groups
and using the concepts and methods of nonstandard analysis (NSA). We will assume
that the reader is acquainted with the notions and results which were introduced or
proved there, and use them freely throughout the present article, frequently without any
reference. Some motivational accounts as well as a more detailed outline of the results
of the paper follow.

For a finite abelian group G its dual group Ĝ = Hom(G,T), where T denotes the
compact multiplicative group of complex units, is isomorphic (though not canonically)
to G, the |G|–dimensional vector space CG is endowed with the Hermitian inner
product

⟨ f , g⟩d = d
∑
x∈G

f (x) g(x)
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2 P Zlatoš

where d > 0 is some normalizing coefficient, the characters γ ∈ Ĝ form an orthogonal
basis in CG and the discrete Fourier transform (DFT) F : CG → CĜ is defined as the
inner (or scalar) product

F( f )(γ) = f̂ (γ) = ⟨ f , γ⟩d

for f ∈ CG , γ ∈ Ĝ . Once the inner product ⟨φ,ψ⟩d̂ on CĜ is defined using the adjoint
normalizing coefficient d̂ = (d |G|)−1 , we have the Fourier inversion formula

f = d̂
∑
γ∈Ĝ

f̂ (γ) γ

and the Plancherel identity
⟨ f , g⟩d = ⟨ f̂ , ĝ ⟩d̂

turning the DFT F : CG → CĜ into a linear isometry of unitary spaces.

For a general LCA group G the picture is not so simple. Its dual group Ĝ consists
of all continuous homomorphisms (characters) γγγ : G → T and the Fourier transform
is primarily defined on the Lebesgue space L1(G) = L1(G,mmm), where mmm is the Haar
measure on G, as the bounded linear operator F : L1(G) → C0

(
Ĝ
)

given by

F( fff )(γγγ) = f̂ff (γγγ) =
∫

fff γγγ dmmm

for fff ∈ L1(G), γγγ ∈ Ĝ. It can be extended to the so called Fourier–Stieltjes transform
F : M(G) → Cbu

(
Ĝ
)

from the Banach space M(G) ⊇ L1(G) of all complex-valued
regular Borel measures on G with finite total variation to the Banach space Cbu

(
Ĝ
)

of
all bounded uniformly continuous functions Ĝ → C, defined by

F(µµµ)(γγγ) = µ̂µµ(γγγ) =
∫
γγγ dµµµ

for µµµ ∈ M(G).

Using the density of the intersection L1(G) ∩ Lp(G) in the Lebesgue space Lp(G) with
respect to its norm ∥·∥

p
, the Fourier transform can be extended to a bounded linear

operator F : Lp(G) → Lq(Ĝ
)

for p ∈ (1, 2] and the adjoint exponent q = p/( p− 1) ∈
[ 2,∞). Under a proper normalization of the Haar measure nnn on the dual group Ĝ we
have the Fourier inversion formula

fff =

∫
f̂ff (γγγ)γγγ dnnn

(both with respect to the supremum norm ∥·∥
∞

and the Lp –norm ∥·∥
p
) just for functions

fff ∈ Lp(G) ∩ F
[
M
(
Ĝ
)]

⊆ Lp(G) ∩ Cbu(G), with F denoting the Fourier–Stieltjes
transform M

(
Ĝ
)
→ Cbu(G).
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Fourier transforms in the hyperfinite setting 3

For p = q = 2 we obtain the isometric linear isomorphism F : L2(G) → L2(Ĝ
)

of
Hilbert spaces, called the Fourier–Plancherel transform. Then we have the Plancherel
identity

⟨ fff , ggg⟩ =
∫

fff ggg dmmm =

∫
f̂ff ĝgg dnnn = ⟨ f̂ff , ĝgg ⟩

(just) for fff ,ggg ∈ L2(G). Unfortunately, unless G is compact, Ĝ ∩ L2(G) = ∅ and the
inner product ⟨γγγ, χχχ⟩ of characters γγγ,χχχ ∈ Ĝ is never defined, so that one can speak of
the orthogonal basis formed by the characters at most in a metaphorical sense.

Taking additionally into account that the Fourier transform on finite abelian groups
can be computed using the extremely fast and powerful algorithms of the Fast Fourier
Transform, there naturally arises the following question:

Given any LCA group G, is there some “universal extension”, encompass-
ing all the spaces Lp(G) and M(G), and a uniform scheme defining the
Fourier transform on this extension, covering all the particular Fourier
transforms mentioned above, as would be true if G were finite?

The main goal of this paper is to provide arguments that nonstandard analysis offers a
solution to this question which is not only reasonable and satisfactory but also fairly
elegant, as well as several additional insights. Our approach is based on some ideas,
introduced by Gordon in [6] and further advanced in Gordon [7] and Zlatoš [19].
Namely, in [19] we elaborated concepts and techniques enabling us to approximate
simultaneously, with infinitesimal precision on finite elements, any pair consisting of a
(Hausdorff) LCA group G and its dual group Ĝ by a pair of hyperfinite abelian groups
G, Ĝ and approximating maps η : G → ∗G, ϕ : Ĝ → ∗Ĝ in such a way that the
pairing function (xxx, γγγ) 7→ γγγ(xxx) on ∗G × ∗Ĝ is approximated by the pairing function
(x, γ) 7→ γ(x) on G × Ĝ , and we proved Gordon’s Conjectures 1 and 2. From this we
derived analogous standard results on arbitrarily precise simultaneous approximation of
the pair of LCA groups G, Ĝ by a finite abelian group G and its dual group Ĝ , as well
as of the pairing function on G × Ĝ by the pairing function on G × Ĝ .

In the present paper we are going to carry out the third and final of the three steps
announced in the introduction to [19], namely to approximate the Fourier transform
F : L1(G) → C0

(
Ĝ
)

, the Fourier–Stieltjes transform F : M(G) → Cbu
(
Ĝ
)

, as well
as the generalized Fourier transforms F : Lp(G) → Lq(Ĝ

)
, for any pair of adjoint

exponents p ∈ (1, 2], q ∈ [2,∞), by the hyperfinite dimensional DFT F : ∗CG → ∗CĜ .
In particular, we will prove Gordon’s Conjecture 3, originally stated for the Fourier–
Plancherel transform F : L2(G) → L2(Ĝ

)
in Gordon [6, 7], and generalize it to all the

cases mentioned above.
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4 P Zlatoš

Should we encapsulate the moral of these results in a single sentence, the best we can
do seems to be to phrase it as a response to the question formulated in the title of the
paper by Epstein [5]:

How well does the finite Fourier transform approximate the Fourier transform?

The response in the abstract of [5] is “very well indeed”; and, in the conclusion: “as
well as it possibly could”. We aim to convince the reader to agree finally with the
following:

Even better than one could ever hope.1

Intuitively, we can unfold the above slogan in the following rather imprecise way: any
of the Fourier transforms L1(G) → C0

(
Ĝ
)

, M(G) → Cbu
(
Ĝ
)

, Lp(G) → Lq(Ĝ
)

, for
adjoint exponents 1 < p ≤ 2 ≤ q <∞, can be “arbitrarily well” approximated by the
discrete Fourier transform CG → CĜ , based on some “sufficiently good” simultaneous
approximations of G, Ĝ by finite abelian groups G, Ĝ , respectively.

The plan of the paper is as follows. Section 1 consists mainly of some preliminary
material concerning hyperfinite dimensional representations of some Banach spaces,
namely various spaces of continuous functions, the Lebesgue spaces Lp and certain
space of complex measures. Thus it is sufficient to highlight some central points from
the particular sections of Section 2. All missing notions used here will be defined later
in the paper. In the rest of this introduction, (G,G0,Gf) denotes a condensing IMG
group triplet with a hyperfinite abelian ambient group G and a normalizing multiplier
d , and G = Gf/G0 is its observable trace.

The main result of Section 2.1 is the characterization of internal functions which
are liftings (ie, certain kinds of infinitesimally precise approximations) of functions
fff ∈ Lp(G) in terms of certain natural continuity condition for the shift f 7→ fa on
the linear space ∗CG (cf Theorem 2.1.4). Given an internal norm N on ∗CG , an
internal function f : G → ∗C is called SN–continuous if N( fa − f ) ≈ 0 for any
a ∈ G0 . Then Sp –continuous means SN–continuous where N is the p–norm given by
∥ f ∥

p
=

(
d
∑

x∈G | f (x)|p
)1/p .

A Characterization of Liftings Let p ∈ [1,∞) and f : G → ∗C be an internal
function such that ∥ f ∥

p
< ∞ and ∥ f · 1X∥p

≈ 0 for any internal set X ⊆ G ∖ Gf .
Then f is a lifting of a function fff ∈ Lp(G) if and only if f is Sp –continuous.

1In fact, in [5] that question is asked only for the Fourier transform of periodic functions
R → C . In our response we include the Fourier transforms on arbitrary LCA groups.
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Fourier transforms in the hyperfinite setting 5

Essentially the same characterization is valid for liftings of functions fff ∈ C0(G) and
the norm ∥ f ∥

∞
= maxx∈G | f (x)| (cf Proposition 1.1.1(c)). The sets of all liftings f of

functions fff from Lp(G) or C0(G) satisfying the above conditions will be denoted by
Lp(G,G0,Gf) or C0(G,G0,Gf), respectively. Additionally, Cbu(G,G0) denotes the set
of all internal functions f : G → ∗C satisfying ∥f∥

∞
< ∞ which are S–continuous

with respect to the equivalence relation corresponding to the monadic subgroup G0 ⊆ G
and M(G,G0,Gf) is the set of all internal functions f : G → ∗C such that ∥ f∥

1
<∞

and ∥ f · 1X∥1
≈ 0 for every internal set X ⊆ G ∖ Gf .

The view through the lens of the IMG group triplet (G,G0,Gf) and its dual triplet(
Ĝ ,G‹

f ,G
‹
0
)

offers an intuitively appealing explanation of the Smoothness-and-Decay
Principle for internal functions f : G → ∗C, based on the formulas for the discrete
Fourier transform and its inverse:

f̂ (γ) = d
∑
x∈G

f (x) γ(x) = d
∑
x∈G

f (−x) x(γ)

f (x) = d̂
∑
γ∈Ĝ

f̂ (γ) γ(x)

Intuitively, if f is smooth or continuous in some sense then the contribution of the
non-S–continuous characters to the expansion of f in the second formula must be
somehow negligible. This condition becomes manifest as a kind of quick decay of f̂ .
The other way around, viewing the elements x ∈ G as characters of the dual group Ĝ ,
the Fourier transform of f can be expressed as their linear combination given by the first
formula. If f decays quickly, ie if the values of f on the infinite elements x ∈ G∖Gf are
somehow negligible, then the values of its Fourier transform are essentially determined
by the values of f on the finite elements x ∈ Gf , which happen to coincide with the
S–continuous characters of Ĝ . If neither the coefficients f (x) for x ∈ Gf are too big
then we can reasonably expect f̂ to be smooth or continuous in some sense. This result
is proved as our Theorem 2.2.1.

The Smoothness-and-Decay Principle Let N, M be absolute internal norms on the
linear spaces ∗CG , ∗CĜ , respectively, such that N( f ) < ∞ implies M

(
f̂
)
< ∞ for

every function f ∈ ∗CG . Then for every f ∈ ∗CG the following implications hold:
(a) If f is SN–continuous then M

(
f̂ · 1Γ

)
≈ 0 for every internal set Γ ⊆ Ĝ ∖ G‹

0 .
(b) If N( f ) <∞, and N( f · 1X) ≈ 0 for every internal set X ⊆ G ∖ Gf then f̂ is

SM–continuous.

As a consequence of the Hausdorff–Young inequality ∥ f̂ ∥
q
≤ ∥ f ∥

p
and the fact that

all the p–norms are absolute, the Smoothness-and-Decay Principle applies to every pair
of norms ∥·∥

p
, ∥·∥

q
where 1 ≤ p ≤ 2 ≤ q ≤ ∞ are adjoint exponents.
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6 P Zlatoš

The main results of the paper are the following three theorems from Section 2.3,
dealing with approximations of the particular classical Fourier transforms by the
discrete Fourier transform on the hyperfinite dimensional (HFD) linear space ∗CG (cf
Theorems 2.3.1–2.3.3).

The HFD Fourier Transform Approximation Theorem Let the internal function
f ∈ L1(G,G0,Gf) be a lifting of a function fff ∈ L1(G

)
. Then the internal function

F( f ) = f̂ ∈ C0
(
Ĝ ,G‹

f ,G
‹
0
)

is a lifting of the function F( fff ) = f̂ff ∈ C0
(
Ĝ
)

.

The HFD Generalized Fourier Transform Approximation Theorem Let p ∈ (1, 2]
and let q ∈ [2,∞) be its dual exponent. Let the internal function f ∈ Lp(G,G0,Gf)
be a lifting of a function fff ∈ Lp(G

)
. Then the internal function F( f ) = f̂ ∈

Lq
(
Ĝ ,G‹

f ,G
‹
0
)

is a lifting of the function F( fff ) = f̂ff ∈ Lq(Ĝ
)

.

The special Hilbert space case p = q = 2 solves Gordon’s Conjecture 3.

The HFD Fourier–Stieltjes Transform Approximation Theorem Let the internal
function g ∈ M(G,G0,Gf) be a weak lifting of a complex regular Borel measure
µµµ ∈ M(G). Then the internal function F(g) = ĝ ∈ Cbu

(
Ĝ ,G‹

f
)

is a lifting of the
function F(µµµ) = µ̂µµ ∈ Cbu

(
Ĝ
)

.

The final section, Section 2.4, addresses some standard analogues of the results of
Section 2.3, ie with simultaneous approximations of certain functions or measures on
G and their Fourier transforms by functions f : G → C and their discrete Fourier
transforms f̂ : Ĝ → C, respectively, based on simultaneous approximation of the pair
of LCA groups G, Ĝ by a pair of finite abelian groups G, Ĝ .
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Fourier transforms in the hyperfinite setting 7

1 Nonstandard counterparts of some Banach spaces

In this section we briefly review some facts about certain specific nonstandard approaches
to Banach spaces, with particular emphasis on some spaces of continuous functions, the
Lebesgue spaces Lp(X) for 1 ≤ p <∞ and the space M(X) of complex-valued regular
Borel measures with finite variation on a Hausdorff locally compact topological space
X. Each of these Banach spaces will be associated with a nonstandard counterpart
closely related to some hyperfinite dimensional space ∗CX . The canonical reference for
nonstandard Banach space theory is the paper Henson and Moore [9]; additionally, the
reader can consult Albeverio, Fenstad, Høegh-Krohn and Lindstrøm [1] and Davis [3].

Throughout the section, X denotes a Hausdorff locally compact topological space, whose
topology is induced by a uniformity U , represented as the observable trace X ∼= X♭ of a
condensing IMG triplet (X,E,Xf) with a hyperfinite ambient set X by means of a (not
necessarily injective) HFI approximation η : X → ∗X. Then Xf = η−1

[
Ns(∗X)

]
, and

we can assume without loss of generality that the equivalence x ≈ y ⇔ η(x) ≈ η(y)
holds for all x, y ∈ X and not just for those in Xf . Identifying the observable trace
X♭ = Xf/E with X ∼= Ns(∗X)/≈ via the homeomorphism η♭ , we regard each point
η♭
(
x♭
)
= ◦η(x) ∈ X as the observable trace x♭ of x ∈ Xf (see Zlatoš [19, Section 1.2]).

The hyperfiniteness of X enables us to represent various Banach spaces of functions
X → R and X → C by means of the hyperfinite dimensional linear spaces ∗RX and ∗CX

of all internal functions X → ∗R and X → ∗C, respectively. We will systematically
exploit the advantage of such an approach. At the same time, we will focus entirely on
spaces of complex functions, leaving the formulation of the real-valued version to the
reader.

1.1 Spaces of continuous functions

The hyperfinite dimensional (HFD) linear space ∗CX admits several internal norms.
For any internal norm N on ∗CX we denote by

I
N

∗CX = { f ∈ ∗CX : N( f ) ≈ 0}
F
N

∗CX = { f ∈ ∗CX : N( f ) <∞}

the F ∗C–linear subspaces (more precisely, F ∗C–submodules) of ∗CX , consisting of
functions which are infinitesimal or finite, respectively, with respect to the norm N. For
any “reasonable” norm N, the associated IMG triplet

(∗CX, I
N

∗CX,F
N

∗CX), with I
N

∗C
standing in place of the indistinguishability equivalence relation

f ≈
N

g ⇔ f − g ∈ I
N

∗CX

Journal of Logic & Analysis 13:7 (2021)



8 P Zlatoš

is condensing if and only if X is finite. Its observable trace (nonstandard hull)(∗CX)♭
N
= F

N

∗CX/ I
N

∗CX

becomes a (standard) Banach space under the norm N♭ given by

N♭
(

f ♭
N

)
= ◦N( f ) = stN( f )

where f ♭
N
∈

(∗CX
)♭
N

denotes the observable trace of the function f ∈ F
N

∗CX with

respect to the norm N. Typically,
(∗CX

)♭
N

is nonseparable unless X is finite.

An internal function f : D → ∗C such that Xf ⊆ D ⊆ X is a triplet morphism
(X,E,Xf) → (∗C, I∗C,F ∗C) if and only if f is S–continuous on Xf and f [Xf] ⊆ F ∗C
(see [19, Section 1.2]). Its observable trace is the function f ♭ : X♭ ∼= X → C given by

f ♭
(
x♭
)
= ◦f (x) = st f (x)

for x ∈ Xf . However, unless Xf = X , the monadic equivalence relation on ∗CX of
infinitesimal nearness on finite elements

f ≈
Xf

g ⇔ (∀ x ∈ Xf)( f (x) ≈ g(x))

corresponding to the compact–open topology on the space C(X) of all continuous
functions X → C, is not of the form ≈

N
for any internal norm N on ∗CX .

When dealing with S–continuous functions, the maximum norm (or max-norm)

∥ f ∥
∞

= max
x∈X

| f (x)|

where f ∈ ∗CX , becomes important. Denoting by

I∞∗CX = { f ∈ ∗CX : ∥ f ∥
∞

≈ 0}
F∞

∗CX = { f ∈ ∗CX : ∥ f ∥
∞
<∞}

the F ∗C–linear subspaces of ∗CX , consisting of internal functions which are infinites-
imal or finite, respectively, with respect to the max-norm we get the IMG triplet(∗CX, I∞∗CX,F∞

∗CX).

We are particularly interested in the Banach spaces Cb(X), Cbu(X), and C0(X) of
all bounded continuous, bounded uniformly continuous, and continuous vanishing at
infinity functions X → C, respectively, and also in the (non-Banach) normed linear
space Cc(X) of all continuous functions X → C with compact support, all with the
supremum norm denoted by ∥·∥

∞
, as well. Let us denote by

Cb(X,E,Xf) = { f ∈ F∞
∗CX : (∀ x, y ∈ Xf)(x ≈ y ⇒ f (x) ≈ f (y))}

Cbu(X,E) = { f ∈ F∞
∗CX : (∀ x, y ∈ X)(x ≈ y ⇒ f (x) ≈ f (y))}

C0(X,E,Xf) = { f ∈ Cb(X,E,Xf) : (∀ x ∈ X ∖ Xf)( f (x) ≈ 0)}
Cc(X,E,Xf) = { f ∈ Cb(X,E,Xf) : (∀ x ∈ X ∖ Xf)( f (x) = 0)}

Journal of Logic & Analysis 13:7 (2021)



Fourier transforms in the hyperfinite setting 9

their intended nonstandard counterparts. Each f ∈ Cb(X,E,Xf) is an everywhere defined
triplet morphism (X,E,Xf) → (∗C, I∗C,F ∗C) (however there can be also such triplet
morphisms not belonging to Cb(X,E,Xf)). Moreover, we have the obvious inclusions
of F ∗C–linear subspaces of ∗CX :

Cc(X,E,Xf) + I∞∗CX ⊆ C0(X,E,Xf) ⊆ Cbu(X,E) ⊆ Cb(X,E,Xf)

Let us recall from Zlatoš [19] that an internal function f : X → ∗C is called a lifting of
a continuous function fff : X → C if

fff
(
xxx♭
)
= ◦f (x)

for each x ∈ Xf . It is clear that every lifting f : X → ∗C of a continuous function
fff : X → C is S–continuous on Xf and satisfies f [Xf] ⊆ F ∗C, hence, it is a triplet
morphism f : (X,≈,Xf) → (∗C, I∗C,F ∗C).

Proposition 1.1.1 Let fff : X → C be any continuous function. Then we have:
(a) fff ∈ Cb(X) if and only if fff has a lifting f ∈ Cb(X,E,Xf)
(b) fff ∈ Cbu(X) if and only if fff has a lifting f ∈ Cbu(X,E)
(c) fff ∈ C0(X) if and only if fff has a lifting f ∈ C0(X,E,Xf)
(d) fff ∈ Cc(X) if and only if fff has a lifting f ∈ Cc(X,E,Xf)

Conversely, every internal function f ∈ Cb(X,E,Xf) is lifting of a function fff ∈ Cb(X),
every internal function f ∈ Cbu(X,E) is lifting of a function fff ∈ Cbu(X), every internal
function f ∈ C0(X,E,Xf) is lifting of a function fff ∈ C0(X), and every internal function
f ∈ Cc(X,E,Xf) is lifting of a function fff ∈ Cc(X).

Proof Let us start with the observation that, under the identification x♭ = ◦η(x) for
x ∈ Xf , we have (∗fff ◦ η)♭ = fff for any continuous function fff : X → C. Next, we leave
the reader to verify the following easy facts:

fff ∈ Cb(X) ⇒ ∗fff ◦ η ∈ Cb(X,E,Xf)

fff ∈ Cbu(X) ⇒ ∗fff ◦ η ∈ Cbu(X,E)

fff ∈ C0(X) ⇒ ∗fff ◦ η ∈ C0(X,E,Xf)

fff ∈ Cc(X) ⇒ ∗fff ◦ η ∈ Cc(X,E,Xf)

f ∈ Cb(X,E,Xf) ⇒ f ♭ ∈ Cb(X)

f ∈ Cbu(X,E) ⇒ f ♭ ∈ Cbu(X)

f ∈ C0(X,E,Xf) ⇒ f ♭ ∈ C0(X)

f ∈ Cc(X,E,Xf) ⇒ f ♭ ∈ Cc(X)

Journal of Logic & Analysis 13:7 (2021)



10 P Zlatoš

for fff ∈ CX , f ∈ ∗CX . Now, (a), (b), (c) and (d) follow from the first quadruple of
implications. (The additional property E = {(x, y) ∈ X × X : η(x) ≈ η(y)} is needed
for the second implication.) The “conversely part” follows from the second quadruple
of implications.

We emphasize that in general the observable traces f ♭ and f ♭∞ of S–continuous functions
should not be confused. For f , g ∈ C0(X,E,Xf) (and therefore f , g ∈ Cc(X,E,Xf)) we
do have the equivalence:

f ♭ = g♭ ⇔ ∥ f − g∥
∞

≈ 0

However, for f , g ∈ Cbu(X,E) (and therefore f , g ∈ Cb(X,E,Xf)) we only have the
implication:

∥ f − g∥
∞

≈ 0 ⇒ f ♭ = g♭

Unless Xf is dense in X , there are functions f , g ∈ Cbu(X,E) such that f ♭ = g♭ but
∥ f − g∥

∞
̸≈ 0. Summing up we have the following.

Corollary 1.1.2 The observable trace map f 7→ f ♭ induces:
(a) a bounded surjective linear mapping of the subspace Cb(X,E,Xf)/ I∞∗CX of the

nonstandard hull F∞
∗CX/ I∞∗CX onto the Banach space Cb(X)

(b) a bounded surjective linear mapping of the subspace Cbu(X,E)/ I∞∗CX of the
nonstandard hull F∞

∗CX/ I∞∗CX onto the Banach space Cbu(X)
(c) a Banach space isomorphism of the subspace C0(X,E,Xf)/ I∞∗CX of the non-

standard hull F∞
∗CX/ I∞∗CX onto the Banach space C0(X)

(d) a normed space isomorphism of the subspace Cc(X,E,Xf)/ I∞∗CX of the non-
standard hull F∞

∗CX/ I∞∗CX onto the normed space Cc(X)

1.2 Lebesgue spaces and spaces of measures

The natural way of getting functions fff : X → C as observable traces fff = f ♭ of internal
functions f : X → ∗C works only under the assumption that f is finite and S–continuous
on Xf . In this way, however, only continuous functions fff : X → C can be obtained.
Therefore, many internal functions f : X → ∗C do not represent classical functions
X → C. On the other hand, they can be used to represent various objects of a different
nature: measures, distributions, etc. The class of functions fff on X = X♭ representable
that way can be extended to include the Lebesgue spaces Lp(X) by relaxing the equality
fff
(
x♭
)
= ◦f (x) on Xf to the equality almost everywhere on Xf with respect to some

measure. Strictly speaking, the elements of Lp(X) themselves are not genuine functions
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but certain equivalence classes of functions. We are going to make this point more
precise. However, instead of functions, we will start with representation of certain
complex valued measures

Similarly, as in Zlatoš [19, Section 1.2] every internal function g : X → ∗C such that∑
x∈X |g(x)| is finite gives rise to the finite complex Loeb measure λg : P̃(X) → C,

where P̃(X) is a σ–algebra extending the algebra of internal subsets of X , such that

λg(A) =
◦
(∑

x∈A

g(x)
)

for each internal set A ⊆ X , and to a complex regular Borel measure θθθg on X given by

θθθg(Y) = λg
(
Y♯

)
for Borel Y ⊆ X. Moreover, θθθg has finite variation:

∥θθθg∥ ≤
◦
(∑

x∈X

|g(x)|
)

= λ|g|(X)

Proposition 1.2.1 Every complex regular Borel measure µµµ on X with finite variation
has the form µµµ = θθθg for some internal function g : X → ∗C, such that

∥µµµ∥ =
◦
(∑

x∈X

|g(x)|
)

and
∑
x∈Z

|g(x)| ≈ 0

for each internal set Z ⊆ X ∖ Xf .

Sketch of proof Essentially the same construction as used to obtain the function d
from the nonnegative measure mmm in [19, Proposition 1.2.6] works for every complex
regular Borel measure µµµ with finite variation to give the function g. One just has
to take care that the hyperfinite ∗Borel partition of K formed by all the sets of the
form {xxx ∈ K : (η ◦ σ)(xxx) = η(x)}, where x runs over some maximal internal set
X0 ⊆ η−1

[
U
[
K
]]

such that the restriction η ↾X0 is injective, satisfies additionally:∑
x∈X0

∣∣∗µµµ({xxx ∈ K : (η ◦ σ)(xxx) = η(x)}
)∣∣ ≤ ∥µµµ∥

Since this is true for any (standard) X–raster (K,U) and a finite (K,U) approximation
η : X → X, the existence of such a ∗X–raster (K,U) follows from the saturation
assumption. A complete proof of Proposition 1.2.1, following a slightly different chain
of arguments, can be found in Ziman and Zlatoš [18, Section 4] (cf also the construction
of the functions gπππµµµ in Section 2.4).
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12 P Zlatoš

In the rest of this section d : X → ∗R denotes a fixed internal function such that
d(x) > 0 for each x ∈ X and νd(A) ∈ F ∗R for each internal set A ⊆ Xf , with νd(A) ̸≈ 0
for at least one such A. The strict positivity of d entails that the formula

∥ f ∥
p,d

= ∥ f ∥
p
=

(∑
x∈X

| f (x)|p d(x)
)1/p

defines an internal norm on the linear space ∗CX for each real number p ≥ 1. In
particular, for each internal set A ⊆ X we have

νd(A) =
∑
a∈A

d(a) = ∥1A∥1
= ∥1A∥ p

p

where 1A : X → {0, 1} is the indicator or characteristic function of the subset A in X .

Suppressing d in our notation, we denote by

Ip
∗CX = { f ∈ ∗CX : ∥ f ∥

p
≈ 0}

Fp
∗CX = { f ∈ ∗CX : ∥ f ∥

p
<∞}

the F ∗C–linear subspaces of ∗CX consisting of all internal functions which are
infinitesimal or finite, respectively, with respect to the p–norm ∥·∥

p
. Thus we get the

IMG triplet
(∗CX, Ip

∗CX,Fp
∗CX).

We also fix the notation mmm = mmmd for the nonnegative (and not identically 0) regular
Borel measure on X = X♭ induced by d , and Lp(X) = Lp(X,mmm) for the corresponding
Lebesgue spaces with the norms:

∥ fff∥
p
=

(∫
| fff |p dmmm

)1/p

We will relate them to some subspaces of Fp
∗CX and of the observable trace (nonstandard

hull)
(∗CX

)♭
p = Fp

∗CX/ Ip
∗CX .

Let M(X) denote the Banach space of all complex regular Borel measures µµµ on X with
finite total variation ∥µµµ∥. According to the Riesz representation theorem, M(X) is
isomorphic to the dual C0(X)⋆ of the Banach space C0(X). By the Radon–Nikodym
Theorem, L1(X) can be identified with the closed subspace of all measures µµµ ∈ M(X)
absolutely continuous with respect to mmm.

This, together with the representation of functions fff ∈ C0(X) by their liftings which are
internal functions f ∈ C0(X,E,Xf) (see Proposition 1.1.1), justifies the following notion.
An internal function g ∈ ∗CX is called a weak lifting of the measure µµµ ∈ M(X), if∫

f ♭ dµµµ =
◦
(∑

x∈X

f (x) g(x) d(x)
)
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for every function f ∈ C0(X,E,Xf). This is obviously equivalent to the condition:

µµµ = θθθgd

If µµµ is absolutely continuous with respect to mmm and dµµµ = ggg dmmm, where ggg ∈ L1(X), then
g ∈ ∗CX is called a weak lifting of ggg if g is a weak lifting of the measure µµµ, ie, if and
only if ∫

f ♭ggg dmmm =
◦
(∑

x∈X

f (x) g(x) d(x)
)

for every function f ∈ C0(X,E,Xf).

Before formulating what we have just proved, let us introduce some notation and
terminology. Showing explicitly the weight function d we denote by M(X,Xf, d) the
F ∗C–linear subspace of ∗CX consisting of all internal functions g : X → ∗C satisfying

∥g∥
1
<∞ and ∥g · 1Z∥1

≈ 0

for each internal set Z ⊆ X ∖ Xf . The last condition simply says that the Loeb
measure λ|g|d is concentrated on the galaxy of accessible elements Xf . Therefore, if
g ∈ M(X,Xf, d) then ∫

f ♭ggg dmmm =
◦
(∑

x∈X

f (x) g(x) d(x)
)

holds even for all f ∈ Cb(X,E,Xf). Now, the F ∗C–linear subspace S(X,Xf, d) of ∗CX

consists of all functions g ∈ M(X,Xf, d) satisfying the absolute S–continuity condition

νd(A) ≈ 0 ⇒ ∥g · 1A∥1
≈ 0

for each internal set A ⊆ X ; functions g ∈ S(X,Xf, d) are called S–integrable.
Obviously, the last condition is equivalent to absolute continuity of the Loeb measure
λ|g|d with respect to the Loeb measure λd , as well as to absolute continuity of θθθ|g|d
with respect to mmm. Summing up, we have:

Proposition 1.2.2 (a) Every measure µµµ ∈ M(X) has a weak lifting g ∈ M(X,Xf, d)
such that ∥µµµ∥ = ◦ ∥g∥

1
. Conversely, every function g ∈ F1

∗CX , in particular, every
g ∈ M(X,Xf, d), is a weak lifting of the measure θθθgd ∈ M(X,Xf, d).

(b) A measure µµµ ∈ M(X) has a weak lifting g ∈ S(X,Xf, d) if and only if µµµ is
absolutely continuous with respect to the measure mmm. Conversely, every function
g ∈ S(X,Xf, d) is a weak lifting of the measure θθθgd ∈ M(X,Xf, d) (which is
absolutely continuous with respect to mmm).
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14 P Zlatoš

Now, there arises a natural question, namely what is the relation between the weak
lifting g ∈ S(X,Xf, d) of an absolutely continuous measure µµµ ∈ M(X) and the (unique)
function ggg ∈ L1(X) such that dµµµ = ggg dmmm, ie, between ggg and its weak lifting g. Unless ggg
is continuous, we cannot have ggg = g♭ , and, unless g is S–continuous on Xf , the formula
for g♭ doesn’t make sense. Nevertheless, we can still generalize the original notion of
lifting of continuous functions in the following sense. An internal function g : X → ∗C
is called a lifting of a function ggg : X → C (with respect to the weight function d ) if the
equality

ggg
(
x♭
)
= ◦g(x)

holds for almost all x ∈ Xf with respect to the Loeb measure λd . As the function
ggg ∈ L1(X) is only determined up to the equality almost everywhere with respect to the
measure mmm = mmmd , this is the best one can expect.

Proposition 1.2.3 (a) Let ggg ∈ L1(X) and g ∈ F1
∗CX . Then g is a weak lifting of ggg

if and only if g is a lifting of ggg.

(b) Let ggg : X → C. Then the following conditions are equivalent:
(i) ggg ∈ L1(X)

(ii) ggg has a weak lifting g ∈ S(X,Xf, d)
(iii) ggg has a lifting g ∈ S(X,Xf, d)

Sketch of proof (a) If g ∈ F1
∗CX is a lifting of ggg then it is obviously a weak lifting of

ggg. The reverse implication follows from Proposition 1.1.1(c) and the uniqueness part of
the Radon–Nikodym Theorem.

(b) As the implications (iii) ⇒ (ii) ⇒ (i) are obvious, it suffices to prove (i) ⇒ (iii). To
this end denote by µµµ ∈ M(X) the measure satisfying dµµµ = ggg dmmm and by g̃ ∈ ∗CX the
internal function guaranteed to µµµ in Proposition 1.2.1. Then the function g = g̃/d has
all the required properties and ◦g(x) = ggg

(
x♭
)

for λd –almost all x ∈ Xf , again due to
the uniqueness part of the Radon–Nikodym Theorem.

Remark It is worthwhile to notice that, in the notation from the proof of Zlatoš [19,
Proposition 1.2.6], for a “typical” x ∈ Xf we have

g(x) ≈
∗µµµ

(
{xxx ∈ K : (η ◦ σ)(xxx) = η(x)}

)
∗mmm

(
{xxx ∈ K : (η ◦ σ)(xxx) = η(x)}

)
where the right hand term is the mean value of the function ∗ggg = ∗(dµµµ/dmmm) on the set
{xxx ∈ K : (η ◦ σ)(xxx) = η(x)} ⊆ U[η(x)]. This is in accord with the intuition that the
Radon–Nikodym derivative ggg(xxx) = (dµµµ/dmmm)(xxx) is the ratio µµµ(V)/mmm(V) of measures of
some “infinitesimal neighborhood” V of the point xxx ∈ X.
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Unfortunately, not every S–integrable function is a lifting of some function ggg ∈ L1(X).
For instance, every function g ∈ F∞

∗CX with internal support

supp g = {x ∈ X : g(x) ̸= 0}

contained in Xf is S–integrable; however, unless E is internal, such a function need not
be lifting of any function ggg ∈ L1(X). One can naturally expect that, in order to lift a
function ggg ∈ L1(X), the function g ∈ ∗CX has to display some “reasonable amount”
of continuity, which is not clear for the moment. This leads us to define the external
subspace L1(X,E,Xf) ⊆ ∗CX as the space of all internal functions g ∈ M(X,Xf, d)
which are liftings of functions ggg ∈ L1(X). Further we put

Mp(X,Xf, d) = { f ∈ ∗CX : | f |p ∈ M(X,Xf, d)}
Sp(X,Xf, d) = { f ∈ ∗CX : | f |p ∈ S(X,Xf, d)}
Lp(X,E,Xf) = { f ∈ ∗CX : | f |p ∈ L1(X,E,Xf)}

for 1 ≤ p <∞. Obviously, all the functions in L1(X,E,Xf) are S–integrable, hence
Lp(X,E,Xf) ⊆ Sp(X,Xf, d), and the subspaces Lp(X,E,Xf) are formed by the liftings
of functions ggg ∈ Lp(X).

Here we do not present a more explicit description of the spaces Lp(X,E,Xf). However,
in case that (G,G0,Gf) is a condensing IMG group triplet with a hyperfinite abelian
ambient group G and mmmd is the Haar measure on its observable trace G = Gf/G0 ,
we will give a characterization of functions in Lp(G,G0,Gf) as those belonging to
Mp(G,Gf, d) and satisfying a certain natural continuity condition (see Theorem 2.1.4).

From the definition of Lp(X,E,Xf) and the last Proposition we readily obtain the
following result, justifying our notation.

Proposition 1.2.4 Let 1 ≤ p <∞. Then the Lebesgue space Lp(X) is isomorphic to
the closed subspace Lp(X,E,Xf)/ Ip

∗CX of the nonstandard hull Fp
∗CX/ Ip

∗CX .

Remark Though, in general, Lp(X,E,Xf) is a proper subspace of Sp(X,Xf, d), from
1.2.2 and 1.2.3 it follows that Lp(X,E,Xf) is dense in Sp(X,Xf, d) with respect to a
natural weak topology which we need not describe precisely here.

2 The Fourier Transform on hyperfinite abelian groups

This section addresses our main topics, namely (i) the analysis of the discrete Fourier
transform on some subspaces of the hyperfinite dimensional linear space ∗CG , arising
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16 P Zlatoš

from a condensing IMG group triplet (G,G0,Gf) with hyperfinite abelian ambient group
G, and (ii) its application to Fourier transforms on various spaces of functions fff : G → C
defined on its observable trace, the Hausdorff LCA group G = Gf/G0 . In particular,
we will formulate and prove a generalization of the third of Gordon’s Conjectures
to approximations of Fourier transforms L1(G) → C0

(
Ĝ
)

, M(G) → Cbu
(
Ĝ
)

and
Lp(G) → Lq(Ĝ

)
, for adjoint exponents 1 < p ≤ 2 ≤ q <∞, by the discrete Fourier

transform ∗CG → ∗CĜ .

Throughout the first three parts of Section 2, (G,G0,Gf) denotes a condensing IMG
group triplet with hyperfinite abelian ambient group G in a sufficiently saturated
nonstandard universe. Its observable trace is denoted by G = G♭ = Gf/G0 , and it is
a Hausdorff LCA group. Further, d denotes a normalizing coefficient for this triplet
and all the norms ∥·∥

p
, for 1 ≤ p <∞, on the linear space ∗CG are defined using d .

Similarly, mmm = mmmd denotes the Haar measure on G obtained by pushing down the Loeb
measure λd on G and the norms ∥·∥

p
on the Lebesgue spaces Lp(G) are defined via

mmm. An analogous convention is adopted for the dual group Ĝ and its Haar measure
nnn = mmmd̂ obtained from the normalizing multiplier d̂ =

(
d |G|

)−1 for the dual triplet(
Ĝ ,G‹

f ,G
‹
0
)

(cf Zlatoš [19, Sections 2.2, 2.3]).

2.1 A characterization of liftings

In Section 1.2 we noted that for a locally compact Hausdorff space X, represented
as the observable trace X ∼= X♭ = Xf/E of an IMG triplet (X,E,Xf) with hyperfinite
X , not every S–integrable function f ∈ ∗CX is lifting of some function fff ∈ L1(X),
but were not able to describe these liftings more closely. For Hausdorff LCA groups,
however, we can give an intuitively appealing characterization of such liftings in terms
of a certain continuity condition.

Let N be an arbitrary internal norm on the vector space ∗CG . An internal function
f : G → ∗C is called S–continuous with respect to the norm N (or, briefly, SN–
continuous) if

N( fa − f ) ≈ 0

for each a ∈ G0 . (Here fa(x) = f (x − a) for a, x ∈ G.) In case of the p–norms we
speak about Sp –continuous functions. In particular, S∞–continuity coincides with the
usual notion of S–continuity.

Let us recall from [19, Section 2.1] that a norm N on ∗CG is called translation invariant
if N( fa) = N( f ) for any f ∈ ∗CG , a ∈ G. The following lemma is obvious, once we
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realize that

( f ∗ g)a − f ∗ g = ( fa − f ) ∗ g and N( f ∗ g) ≤ N( f ) ∥g∥
1

for any functions f , g ∈ ∗CG , a ∈ G and internal translation invariant norm N.

Lemma 2.1.1 Let N be an internal translation invariant norm on ∗CG and f , g ∈ ∗CG .
If f is SN–continuous and ∥g∥1 <∞ then f ∗ g is SN–continuous as well.

In analyzing the structure of SN–continuous functions we will make use of a family of
internal functions akin to the family hϱr defined in the proof of [19, Proposition 2.3.3].
For any gauge ϱ ∈ V (see the text preceding [19, Proposition 1.3.1]) and r > 0 we put:

ϑϱr = ∥hϱr∥−1
1

hϱr

Then each of the functions ϑϱr is S–continuous, even, nonnegative and satisfies both
∥ϑϱr∥1

= 1 and ∥ϑϱr∥∞
<∞. Moreover, G0 ⊆ suppϑϱr ⊆ Bϱ(r), thus, in particular,

ϑϱr ∈ Cc(G,G0,Gf).

The family of internal functions ϑϱr behaves like an approximate unit for the operation
of convolution on the set of all SN–continuous functions in the sense of Hewitt and
Ross [10, 11]. The precise formulation follows.

Lemma 2.1.2 Let N be any internal norm on ∗CG . Then for every SN–continuous
function f ∈ ∗CG the system of functions ϑϱr ∗ f , where ϱ ∈ V , 0 < r ∈ R, converges
to the function f with respect to the norm N in the following sense: for each (standard)
ε > 0 there is an internal set Q such that G0 ⊆ Q ⊆ G and for any ϱ, r the inclusion
Bϱ(r) ⊆ Q implies N( f − ϑϱr ∗ f ) ≤ ε. Consequently, if ϱ ∈ ∗V , 0 < r ∈ ∗R are such
that Bϱ(r) ⊆ G0 , then N( f − ϑϱr ∗ f ) ≈ 0.

Let us remark that, for each internal set Q ⊇ G0 , there are indeed ϱ ∈ V and r > 0 such
that Bϱ(r) ⊆ Q, hence the situation described in the lemma is not merely hypothetical.

Proof The SN–continuity of f means, in standard terms, that for each ε > 0 there is
an internal set Q ⊇ G0 such that N( fa − f ) ≤ ε, for a ∈ Q. Assume that Bϱ(r) ⊆ Q.
Since ϑϱr is nonnegative, ∥ϑϱr∥1

= 1 and suppϑϱr ⊆ Bϱ(r), we have

f − ϑϱr ∗ f = ∥ϑϱr∥1
f − d

∑
a∈G

ϑϱr(a) fa = d
∑

a∈Bϱ(r)

ϑϱr(a)( f − fa)

hence

N( f − ϑϱr ∗ f ) ≤ d
∑

a∈Bϱ(r)

|ϑϱr(a)|N( f − fa) ≤ ∥ϑϱr∥1
max

a∈Bϱ(r)
N( f − fa) ≤ ε
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18 P Zlatoš

since N( f − fa) ≤ ε for a ∈ Bϱ(r) ⊆ Q.

The last sentence of Lemma 2.1.2 is an immediate consequence of the standard statement
just proved.

The last of our lemmas deals with a density condition for certain SN–continuous
functions. To this end denote by CN,1c (G,G0,Gf) the F ∗C–linear subspace of the
internal space ∗CG consisting of all SN–continuous functions f ∈ ∗CG satisfying
N( f ) < ∞, ∥ f ∥

1
< ∞ and supp f ⊆ Gf . If N is the p–norm ∥·∥

p
we write

Cp,1
c (G,G0,Gf).

Lemma 2.1.3 Let N be any internal norm on ∗CG . If the subspace Cc(G,G0,Gf) is
contained in the subspace CN,1c (G,G0,Gf) then Cc(G,G0,Gf) is dense in CN,1c (G,G0,Gf)
with respect to the norm N.

Proof Taking any function f ∈ CN,1c (G,G0,Gf), we know that the system of functions
ϑϱr ∗ f , where ϱ ∈ V , r > 0, converges to f with respect to N in the sense of
Lemma 2.1.2. It remains to show that ϑ ∗ f ∈ Cc(G,G0,Gf) for each such a function
ϑ = ϑϱr .

Clearly,
supp(ϑ ∗ f ) ⊆ suppϑ+ supp f ⊆ Gf

and, according to the fact that the max-norm ∥·∥
∞

is translation invariant:

∥ϑ ∗ f ∥
∞

≤ ∥ϑ∥
∞
∥ f ∥

1
<∞

For the same reason, as the function ϑ is S–continuous and ∥ f ∥1 <∞, the S–continuity
of the function ϑ ∗ f follows from Lemma 2.1.1 applied to the norm ∥·∥

∞
.

As all the internal norms ∥·∥
p
, 1 ≤ p ≤ ∞, on ∗CG are translation invariant and satisfy

the inclusion Cc(G,G0,Gf) ⊆ Cp,1
c (G,G0,Gf), Lemmas 2.1.1–2.1.3 apply to them in

particular.

Further, let us denote by

M(G,G0,Gf) =
{

f ∈ ∗CG : ∥ f ∥
1
<∞ &

(
∀ intZ ⊆ G ∖ Gf

)(
∥ f · 1Z∥1

≈ 0
)}

the F ∗C–linear subspace of ∗CG , formerly denoted as M(G,Gf, d). Displaying
G0 and hiding d is unambiguous since M(G,Gf, d) = M(G,Gf, d′) for any pair of
normalizing multipliers d , d′ of the triplet (G,G0,Gf). The relation of the subspace
M(G,G0,Gf) = M(G,Gf, d) to the Banach space M(G) of all complex regular Borel

Journal of Logic & Analysis 13:7 (2021)



Fourier transforms in the hyperfinite setting 19

measures with finite variation on G via weak liftings is described in Proposition 1.2.2.
As in Section 1.2 we put

Mp(G,G0,Gf) =
{

f ∈ ∗CG : | f |p ∈ M(G,G0,Gf)
}

for 1 ≤ p <∞.

We are going to characterize the subspaces Lp(G,G0,Gf) of the internal linear space
∗CG formed by liftings f ∈ Mp(G,G0,Gf) of functions fff ∈ Lp(G) for 1 ≤ p < ∞.
The following theorem resembles an early theorem by Rudin [15], characterizing
measures µµµ ∈ M(G) arising from functions fff ∈ Lp(G) (ie, dµµµ = fff dmmm) as those for
which the shift aaa 7→ µµµaaa(B) = µµµ(B − aaa) is a continuous function G → C for any Borel
set B ⊆ G.

Theorem 2.1.4 (A Characterization of Liftings) Let 1 ≤ p <∞ and f be an internal
function belonging to Mp(G,G0,Gf). Then f ∈ Lp(G,G0,Gf) if and only if f is
Sp –continuous.

Proof For brevity let us denote:

CMp(G,G0,Gf) = { f ∈ Mp(G,G0,Gf) : f is Sp –continuous}

Then we are to prove that Lp(G,G0,Gf) = CMp(G,G0,Gf). Clearly, they both are
subspaces of the internal vector space ∗CG and contain the subspace Cc(G,G0,Gf). We
divide the proof into three simpler Claims. Putting them together, the Theorem easily
follows.

Claim 1 Lp(G,G0,Gf) is closed in ∗CG with respect to the norm ∥·∥p .

This is almost obvious. If ( fn)n∈N is a sequence in Lp(G,G0,Gf) converging to a
function f ∈ ∗CG and each fn is a lifting of some fff n ∈ Lp(G) then the sequence ( fff n)n∈N
satisfies the Bolzano–Cauchy condition, hence it converges to a function fff ∈ Lp(G). It
is routine to check that f is a lifting of fff , ie f ∈ Lp(G,G0,Gf).

Claim 2 Lp(G,G0,Gf) ⊆ CMp(G,G0,Gf)

It suffices to show that each lifting f of a function fff ∈ Lp(G) is Sp –continuous.
It is known that the shift aaa 7→ fff aaa is a uniformly continuous mapping G → Lp(G)
(see Pedersen [13] or Rudin [16]). Translating this condition into the language of
infinitesimals one readily obtains the Sp –continuity of f .

Claim 3 Cc(G,G0,Gf) is dense in CMp(G,G0,Gf) with respect to the norm ∥·∥
p
.

According to Lemma 2.1.3 it is enough to show that the subspace Cp,1
c (G,G0,Gf)

is dense in CMp(G,G0,Gf) with respect to ∥·∥
p
. Let f ∈ CMp(G,G0,Gf). Then
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∥ f · 1G∖Z∥p
≈ 0 for any internal set Z ⊆ G ∖ Gf . Due to saturation, there exists a

sequence of internal sets (An)n∈N such that G0 ⊆ An ⊆ Gf ,

∥ f · 1G∖An∥p
→ 0 for n → ∞

and we can additionally assume that An + An ⊆ An+1 . Then, for each n, there is
an S–continuous function gn ∈ ∗CG such that gn(x) = 1 for x ∈ An , gn(x) = 0 for
x ∈ G ∖ An+1 and 0 ≤ gn(x) ≤ 1 for x ∈ An+1 ∖ An . We put fn = f · gn . From

∥ f − fn∥p
≤ ∥ f · 1G∖An∥p

it follows that ∥ f − fn∥p
→ 0.

Let us show that fn ∈ Cp,1
c (G,G0,Gf) for each n. Clearly, supp fn ⊆ An+1 ⊆ Gf and

∥ fn∥p
≤ ∥ f ∥

p
<∞. According to Hölder’s inequality,

∥ fn∥1
= ∥ f gn∥1

≤ ∥ f ∥
p
∥gn∥q

<∞

where 1
p + 1

q = 1. Taking any a ∈ G0 we have

∥( fn)a − fn∥p
≤ ∥ fa((gn)a − gn)∥

p
+ ∥( fa − f )gn∥p

≤ ∥ fa∥p
∥(gn)a − g∥

∞
+ ∥ fa − f ∥

p
∥gn∥∞

≈ 0

showing that fn is Sp –continuous. Hence fn ∈ Cp,1
c (G,G0,Gf).

Theorem 2.1.4 and Proposition 1.2.3 yield the following:

Theorem 2.1.5 Let 1 ≤ p < ∞. Then for any measurable function fff : G → C the
following conditions are equivalent:

(i) fff ∈ Lp(G)
(ii) fff has an Sp –integrable lifting

(iii) fff has an Sp –continuous lifting f ∈ Mp(G,G0,Gf)

Remark 1 Let 1 ≤ p < ∞. We adopt a similar and equally justified conven-
tion Sp(G,G0,Gf) = Sp(G,Gf, d) like that for Mp(G,G0,Gf). Then, according to
Theorem 2.1.4, we have

Lp(G,G0,Gf) = { f ∈ Mp(G,G0,Gf) : (∀ a ∈ G)
(
a ≈ 0 ⇒ ∥ fa − f ∥

p
≈ 0

)
}

Sp(G,G0,Gf) = { f ∈ Mp(G,G0,Gf) :
(
∀ intA ⊆ G

)(
d |A| ≈ 0 ⇒ ∥ f · 1A∥p

≈ 0
)
}

so that the characterization of Lp(G,G0,Gf) differs from the definition of Sp(G,G0,Gf)
just in replacing the condition of absolute S–continuity by that of Sp –continuity. As
it follows from 2.1.4 and 2.1.5, Lp(G,G0,Gf) ⊆ Sp(G,G0,Gf), ie, for a function
f ∈ Mp(G,G0,Gf), Sp –continuity implies absolute S–continuity (but not vice versa).
However, one would like to have a more direct proof of this inclusion.
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Remark 2 Given any condensing IMG triplet (X,E,Xf) with hyperfinite ambient set
X and a nonnegative internal function d : X → ∗R, the observable trace X = Xf/E is
a Hausdorff locally compact space, so that it still makes sense to ask which internal
functions f : X → ∗C are liftings of functions fff ∈ Lp(X,mmm), where mmm = mmmd is the
Lebesgue measure on X obtained by pushing down the Loeb measure λd . However, as
long as no group structure on X is involved, Lp(X,E,Xf) cannot be characterized in terms
of Sp –continuity. It would be nice to have some reasonable intrinsic characterization of
Lp(X,E,Xf) within such a more general setting, at least for constant d(x) = d such that
d |A| ̸≈ 0 for some and d |A| <∞ for each internal set A ⊆ Xf .

Remark 3 The characterizing conditions of Lp(G,G0,Gf) make sense also for p = ∞.
More precisely, the conjunction of the conditions ∥ f∥

∞
< ∞, ∥ f · 1Z∥∞

≈ 0 for
each internal set Z ⊆ G ∖ Gf and S∞–continuity defines the subspace C0(G,G0,Gf)
of S–continuous internal functions f : G → ∗C which are finite on the whole G
and infinitesimal outside of Gf . Thus we could formally write L∞(G,G0,Gf) =

C0(G,G0,Gf). This, however, would interfere with the adopted standard notation, as
such an L∞(G,G0,Gf) would be formed just by the liftings of functions in C0(G)
which is a proper closed subspace of the Banach space L∞(G) (cf Proposition 1.1.1).

2.2 The Smoothness-and-Decay Principle

The more smooth is a function f : Rn → C, the more rapidly its Fourier transform
f̂ : Rn → C decays; conversely, the more rapidly a function f : Rn → C decays, the
smoother is its Fourier transform f̂ : Rn → C. This vague informal statement is known
as the Smoothness-and-Decay Principle and—jointly with the Uncertainty Principle
to which it is closely related—it belongs to fundamental heuristic principles of the
Fourier or time-frequency analysis. It can take the form of various precise mathematical
statements, some of which generalize from R or Rn to arbitrary LCA groups (see, eg,
Gröchenig [8] and Tao [17] for discussion).

The view through the lens of an IMG group triplet (G,G0,Gf) with hyperfinite abelian
ambient group G and its dual triplet

(
Ĝ ,G‹

f ,G
‹
0
)

offers an intuitively appealing
explanation of this principle for internal functions f : G → ∗C, based on the Fourier
inversion formula

f (x) = d̂
∑
γ∈Ĝ

f̂ (γ) γ(x)

in which both S–continuous characters γ ∈ G‹
0 as well as non-S–continuous characters

γ ∈ Ĝ ∖ G‹
0 occur. If f is smooth or continuous (in some intuitive meaning of these
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words) then the contribution of the non-S–continuous characters to the above expansion
of f must be negligible in some sense. This condition causes a kind of quick decay of f̂ .
The other way around, viewing the elements x ∈ G as characters of the dual group Ĝ ,
the Fourier transform of f can be expressed as their linear combination:

f̂ (γ) = d
∑
x∈G

f (x) γ(x) = d
∑
x∈G

f (−x) x(γ)

If f decays quickly, ie if the values of f on the infinite elements x ∈ G ∖ Gf are
somehow negligible, then the values of its Fourier transform are essentially determined
by the values of f on the finite elements x ∈ Gf which happen to coincide with
the S–continuous characters of Ĝ by the Triplet Duality Theorem—see Zlatoš [19,
Theorem 2.2.5]. If additionally none of the coefficients f (x) for x ∈ Gf are too big then
we can reasonably expect f̂ to be smooth or continuous in some sense.

The next theorem is a fairly general precise statement of this form of the Smoothness-
and-Decay Principle. Both its formulation as well as its proof borrow some ideas from
a paper by Pego [14].

A pair of internal norms N on ∗CG and M on ∗CĜ is called Fourier compatible if the
Fourier transform F : ∗CG → ∗CĜ is a bounded linear operator with respect to the
norms N, M, ie,

N( f ) <∞ ⇒ M
(

f̂
)
<∞

for each f ∈ ∗CG . This is equivalent to the S–continuity of F , ie:

N( f ) ≈ 0 ⇒ M
(

f̂
)
≈ 0

Recall from [19, Section 2.1] that a norm N on ∗CG is called absolute if N( f ) ≤ N(g)
for any f , g ∈ ∗CG such that | f (x)| ≤ |g(x)| for all x ∈ G.

Theorem 2.2.1 (The Smoothness-and-Decay Principle) Let N, M be Fourier com-
patible internal norms on the linear spaces ∗CG , ∗CĜ , respectively. Then for every
function f ∈ ∗CG the following implications hold:

(i) If M is absolute and f is SN–continuous then M
(

f̂ · 1Γ
)
≈ 0 for every internal

set Γ ⊆ Ĝ ∖ G‹
0 .

(ii) If N is absolute, N( f ) <∞ and N( f ·1X) ≈ 0 for every internal set X ⊆ G∖Gf

then f̂ is SM–continuous.

Proof (a) In this part of proof we will once more make use of the families of internal
functions hϱr and ϑϱr (see Lemma 2.1.2 and the text immediately preceding it).
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Assume that N( fa − f ) ≈ 0 for any a ∈ G0 . We will show that M
(

f̂ ·1Γ
)
≈ 0 for every

internal set Γ ⊆ Ĝ ∖G‹
0 . Let us fix any (standard) t ∈ (0, 1). By [19, Corollary 2.3.2],

Γ ∩ Spect(hϱr) = ∅ for every ϱ ∈ V and standard r > 0. As V is upward directed, by
saturation there are τ ∈ ∗V , satisfying ϱ ≤ τ for all ϱ ∈ V , and a positive s ≈ 0, such
that Γ ∩ Spect(hτs) = ∅ still holds. Let us denote ∆ = Ĝ ∖ Spect(hτs) and recall that
ϑτs = ∥hτs∥−1

1
hτs . As hτs is even and nonnegative, so is ϑτs , hence

ϑ̂τs(1G) = d
∑
a∈G

ϑτs(a) = ∥ϑτs∥1
= 1

and for γ ∈ ∆ we have

|ϑ̂τs(γ)| = ∥hτs∥−1
1

|ĥτs(γ)| < t

1 − t < 1 − |ϑ̂τs(γ)| ≤ |1 − ϑ̂τs(γ)|.hence

Since Γ ⊆ ∆ and the norm M is absolute:

(1 − t)M
(

f̂ · 1Γ
)
≤ (1 − t)M

(
f̂ · 1∆

)
≤ M

((
1Ĝ − ϑ̂τs

)
f̂
)
= M

(
( f − ϑτs ∗ f )̂)

Due to our choice of τ and s we have Bτ (s) ⊆ G0 ; consequently, N( f − ϑτs ∗ f ) ≈ 0
by Lemma 2.1.2. As the norms N, M are Fourier compatible, this implies that
M
(
( f − ϑτs ∗ f )̂) ≈ 0, as well. Since t ̸≈ 1, we can conclude that M( f̂ · 1Γ ) ≈ 0.

(b) Assume that N( f ) is finite and N( f · 1X) ≈ 0 for each internal set X ⊆ G ∖ Gf . We
are to show that M

(
f̂ γ − f̂

)
≈ 0 for any γ ∈ G‹

f . First notice that:

f̂ γ − f̂ =
(
(γ − 1G) f

)̂
As γ ∈ G‹

f , γ(x) ≈ 1 for each x ∈ Gf . Due to saturation, there is an internal set Y
such that Gf ⊆ Y ⊆ G and γ(y) ≈ 1 for each y ∈ Y ; then X = G ∖ Y ⊆ G ∖ Gf . Let
us denote:

ε = ∥(γ − 1G) · 1Y∥∞
= max

y∈Y
|γ(y) − 1|

Obviously, ε ≈ 0. As N is absolute:

N
(
(γ − 1G) f ) ≤ N

(
(γ − 1G) f · 1Y

)
+ N

(
(γ − 1G) f · 1X

)
≤ εN( f ) + 2N( f · 1X) ≈ 0

Therefore, M
(

f̂ γ − f̂
)
≈ 0 as well.

The last theorem applies to any pair of norms ∥·∥
p

on ∗CG and ∥·∥
q

on ∗CĜ for
1 ≤ p ≤ 2 and q = p/(p − 1), including p = 1, q = ∞, in which case we have:
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Corollary 2.2.2 For every function f ∈ ∗CG the following conditions hold:

(a) If f is S1 –continuous then f̂ (γ) ≈ 0 for all γ ∈ Ĝ ∖ G‹
0

(b) If ∥ f ∥
1
< ∞ and ∥ f · 1X∥1

≈ 0 for every internal set X ⊆ G ∖ Gf then f̂ is
S-continuous, ie, f̂ (γ) ≈ f̂ (χ) for all γ, χ ∈ Ĝ such that γ(x) ≈ χ(x) for each
x ∈ Gf

(c) F
[
L1(G,G0,Gf)

]
⊆ C0

(
Ĝ ,G‹

f ,G
‹
0
)

Notice that (c) is a hyperfinite dimensional version of the Riemann–Lebesgue lemma
and (b) can be written as a similar inclusion:

F
[
M(G,G0,Gf)

]
⊆ Cbu

(
Ĝ ,G‹

f
)

Corollary 2.2.3 Let 1 < p ≤ 2 and q = p/(p − 1) be its dual exponent. Then for
every function f ∈ ∗CG the following conditions hold:

(a) If f is Sp –continuous then
∥∥∥ f̂ · 1Γ

∥∥∥
q
≈ 0 for every internal set Γ ⊆ Ĝ ∖ G‹

0

(b) If ∥ f ∥
p
< ∞ and ∥ f · 1X∥p

≈ 0 for every internal set X ⊆ G ∖ Gf then f̂ is

Sq –continuous, ie
∥∥∥ f̂ γ − f̂

∥∥∥
q
≈ 0 for all γ ∈ G‹

f

(c) F
[
Lp(G,G0,Gf)

]
⊆ Lq

(
Ĝ ,G‹

f ,G
‹
0
)

In the Hilbert space case p = q = 2 the last corollary can be slightly strength-
ened. Applying 2.2.3 both to the Fourier transform F : ∗CG → ∗CĜ and its inverse
F−1 : ∗CĜ → ∗CG for functions satisfying ∥ f ∥

2
<∞, we get equivalences in (a), (b)

and equality in (c).

Corollary 2.2.4 For every function f ∈ ∗CG such that ∥ f ∥
2
< ∞ the following

conditions hold:

(a) f is S2 –continuous if and only if
∥∥∥ f̂ · 1Γ

∥∥∥
2
≈ 0 for every internal set

Γ ⊆ Ĝ ∖ G‹
0

(b) ∥ f · 1X∥2
≈ 0 for every internal set X ⊆ G∖Gf if and only if f̂ is S2 –continuous

(c) F
[
L2(G,G0,Gf)

]
= L2

(
Ĝ ,G‹

f ,G
‹
0
)

Note that the smoothness and decay conditions in the last three corollaries can be viewed
as nonstandard (infinitesimal) analogues of the Kolmogoroff–Riesz–Tamarkin criteria
for relative compactness in the Lebesgue spaces Lp(G) (see Dinculeanu [4], Pego [14]).

The following result follows directly from Corollary 2.2.4.
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Corollary 2.2.5 For every function f ∈ ∗CG such that ∥ f ∥
2
< ∞ the following

conditions are equivalent:

(i) f ∈ L2(G,G0,Gf)
(ii) f̂ ∈ L2

(
Ĝ ,G‹

f ,G
‹
0
)

(iii) Both f and f̂ are S2 –continuous
(iv) ∥ f · 1X∥2

≈ 0 for every internal set X ⊆ G ∖ Gf and
∥∥∥ f̂ · 1Γ

∥∥∥
2
≈ 0 for every

internal set Γ ⊆ Ĝ ∖ G‹
0

Corollary 2.2.5 generalizes a result by Albeverio, Gordon and Khrennikov [2], where
the equivalence of conditions (i), (ii) and (iv) in case there is an internal subgroup K of
G such that G0 ⊆ K ⊆ Gf was proved. This assumption is equivalent to the existence
of a compact open subgroup of G♭ . It is also mentioned there without proof that the
group of reals R can be represented as well as R ∼= G♭ = Gf/G0 for some triplet
(G,G0,Gf) satisfying their restricted version of Corollary 2.2.5.

2.3 Generalized Gordon’s Conjecture 3: hyperfinite dimensional approxi-
mation of Fourier transforms

Various versions of the Smoothness-and-Decay Principle proved in the previous section
make it possible to approximate the classical Fourier transforms on various function
spaces related to the LCA group G = Gf/G0 by the discrete Fourier transform on the
hyperfinite dimensional linear space ∗CG . We denote by F( fff ) = f̂ff the classical Fourier
transform of a function fff : G → C and by F ( f ) = f̂ the discrete Fourier transform of
an internal function f : G → ∗C.

The discrete hyperfinite dimensional Fourier transform F : ∗CG → ∗CĜ approximates
the classical Fourier transform F : L1(G) → C0

(
Ĝ) in the following sense:

Theorem 2.3.1 (The HFD Fourier Transform Approximation Theorem) Let the
internal function f ∈ L1(G,G0,Gf) be a lifting of a function fff ∈ L1(G

)
. Then the

internal function F( f ) = f̂ ∈ C0
(
Ĝ ,G‹

f ,G
‹
0
)

is a lifting of the function F( fff ) = f̂ff ∈
C0

(
Ĝ
)

.

Proof Let f ∈ L1(G,G0,Gf) be a lifting of fff ∈ L1(G
)

. Then f̂ ∈ C0
(
Ĝ ,G‹

f ,G
‹
0
)

by Corollary 2.2.2(c). Thus it suffices to prove that

f̂ff
(
γ♭
)
= ◦ f̂ (γ)
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for each γ ∈ G‹
0 . However, as γ is bounded and S–continuous, ie, γ ∈ Cbu(G,G0),

it is routine to check that the internal function f γ ∈ L1(G,G0,Gf) is a lifting of the
function fff γ ♭ ∈ L1(Ĝ

)
. Then by Ziman and Zlatoš [18, Proposition 3.5]:

f̂ff
(
γ♭
)
=

∫
fff γ ♭ dmmm =

◦(
d
∑
x∈G

f (x) γ(x)
)

=
◦

f̂ (γ)

See also the text preceding Proposition 1.2.3.)

For 1 < p ≤ 2 and 1/p + 1/q = 1 the Fourier transform F : Lp(G) → Lq(Ĝ
)

is
defined as the continuous extension (with respect to the norms ∥·∥

p
on Lp(G) and ∥·∥q

on Lq(Ĝ
)

) of the restriction of the Fourier transform F : L1(G) → C0
(
Ĝ) to the dense

subspace Lp(G) ∩ L1(G) of Lp(G) (see Hewitt and Ross [11], Loomis [12] or Rudin
[16]). For functions in this subspace everything works as in the proof above. Thus, by a
continuity argument Theorem 2.3.1 together with Corollary 2.2.3(c) give rise to HFD
approximations of the classical Fourier transforms F : Lp(G) → Lq(Ĝ) in a similar
way. The case p = q = 2 of the Fourier–Plancherel transform F : L2(G) → L2(Ĝ

)
settles Gordon’s Conjecture 3.

Theorem 2.3.2 (The Generalized Gordon Conjecture 3) Let p ∈ (1, 2] and q ∈ [2,∞)
be its dual exponent. Let the internal function f ∈ Lp(G,G0,Gf) be a lifting of a
function fff ∈ Lp(G

)
. Then the internal function F( f ) = f̂ ∈ Lq

(
Ĝ ,G‹

f ,G
‹
0
)

is a
lifting of the function F( fff ) = f̂ff ∈ Lq(Ĝ

)
.

The HFD Fourier Transform Approximation Theorem 2.3.1 extends to the Fourier–
Stieltjes transform F : M(G) → Cbu

(
Ĝ), as well.

Theorem 2.3.3 (The HFD Fourier–Stieltjes Transform Approximation Theorem) Let
the internal function g ∈ M(G,G0,Gf) be a weak lifting of a complex regular Borel
measure µµµ ∈ M(G). Then the internal function F (g) = ĝ ∈ Cbu

(
Ĝ ,G‹

f
)

is a lifting of
the function F(µµµ) = µ̂µµ ∈ Cbu

(
Ĝ
)

.

Proof Let g ∈ M(G,G0,Gf) be a weak lifting of µµµ ∈ M
(
G
)

. Then ĝ ∈ Cbu
(
Ĝ ,G‹

f
)

by Corollary 2.2.2(b). Thus it suffices to prove that

µ̂µµ
(
γ♭
)
= ◦ ĝ(γ)

for each γ ∈ G‹
0 . For the same reason as in the proof of Theorem 2.3.1 we have∫

f ♭ dµµµ =
◦(

d
∑
x∈G

f (x) g(x)
)
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for every internal function f ∈ Cb(G,G0,Gf). For f = γ ∈ G‹
0 ⊆ Cbu(G,G0) this gives

µ̂µµ
(
γ♭
)
=

∫
γ ♭ dµµµ =

◦(
d
∑
x∈G

γ(x) g(x)
)

= ◦ ĝ(γ)

In particular, if ggg ∈ L1(G), dµµµ = ggg dmmm and g ∈ L1(G,G0,Gf) is a lifting of ggg then

ĝgg
(
γ♭
)
= µ̂µµ

(
γ♭
)
=

∫
γ ♭ ggg dmmm =

◦(
d
∑
x∈G

γ(x) g(x)
)

= ◦ ĝ(γ)

for each γ ∈ G‹
0 , reproving Theorem 2.3.1. This account indicates that it is Theo-

rem 2.3.3 which is crucial for hyperfinite dimensional approximations of the Fourier
transform on LCA groups. Therefore we address the issue raised in the remark closing
the introductory part of Zlatoš [19, Section 2.5] primarily for the Fourier–Stieltjes
transform.

Assume, for the rest of this section, that (G,G0,Gf) is an IMG group triplet with
hyperfinite abelian ambient group G, arising from an HFI approximation η : G → ∗G
of the Hausdorff LCA group G. Let us denote Fη : ∗CG → ∗C∗Ĝ the internal linear
operator given by

Fη( f )(χχχ) = ⟨ f ,χχχ ◦ η⟩ = d
∑
x∈G

f (x)χχχ(η x)

for f ∈ ∗CG , χχχ ∈ ∗Ĝ. The modified discrete Fourier transform Fη , defined by
means of the internal inner product on ∗CG , can be employed for the approximation
of the classical Fourier transform on G without the need to mention the adjoint HFI
approximation ϕ : Ĝ → ∗Ĝ of the dual group Ĝ .

Proposition 2.3.4 Let F : M(G) → Cbu
(
Ĝ
)

be the Fourier–Stieltjes transform on G,
µµµ ∈ M(G) and g ∈ M(G,G0,Gf) be a weak lifting of µµµ. Then

F(µµµ)(γγγ) = µ̂µµ(γγγ) ≈ Fη(g)(∗γγγ)

for each γγγ ∈ Ĝ.

Proof As ∗γγγ ◦ η is almost homomorphic and S–continuous on Gf , by [19, Theo-
rem 2.2.4] there is γ ∈ G‹

0 such that ∗γγγ(η x) ≈ γ(x) for each x ∈ Gf . According to
Theorem 2.3.3:

µ̂µµ(γγγ) ≈ ĝ(γ) = ⟨g, γ⟩
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Due to saturation there is an internal set X such that Gf ⊆ X ⊆ G and ∗γγγ(η x) ≈ γ(x)
holds for all x ∈ X . Denoting Y = G ∖ X we have

|⟨g, ∗γγγ ◦ η⟩ − ⟨g, γ⟩| ≤ |⟨g, (∗γγγ ◦ η − γ) · 1X⟩|+ |⟨g · 1Y ,
∗γγγ ◦ η − γ⟩|

≤ ∥g∥
1
∥(∗γγγ ◦ η − γ) · 1X∥∞

+ ∥g · 1Y∥1
∥∗γγγ ◦ η − γ∥

∞
≈ 0

as both ∥g∥
1

and ∥∗γγγ ◦ η − γ∥
∞

are finite, and both ∥(∗γγγ ◦ η − γ) · 1X∥∞
and ∥g · 1Y∥1

are infinitesimal. The conclusion Fη(g)(∗γγγ) = ⟨g, ∗γγγ ◦ η⟩ ≈ µ̂µµ(γγγ) is now obvious.

Proposition 2.3.4, jointly with Theorems 2.3.1 and 2.3.2, respectively, yield the following
two corollaries.

Corollary 2.3.5 Let F : L1(G) → C0
(
Ĝ
)

be the Fourier transform on G, fff ∈ L1(G)
and f ∈ L1(G,G0,Gf) be a lifting of fff . Then

F( fff )(γγγ) = f̂ff (γγγ) ≈ Fη( f )(∗γγγ)

for each γγγ ∈ Ĝ.

Corollary 2.3.6 Let 1 < p ≤ 2 ≤ q <∞ be dual exponents and F : Lp(G) → Lq(Ĝ
)

be the Fourier transform on G. Let further fff ∈ Lp(G) and f ∈ Lp(G,G0,Gf) be a
lifting of fff . Then

F( fff )(γγγ) ≈ Fη( f )(∗γγγ)

for almost all γγγ ∈ Ĝ with respect to the Haar measure on Ĝ.

2.4 Some standard analogues

The reader might naturally expect that we will derive some standard analogues of the
nonstandard hyperfinite dimensional Fourier approximation theorems from Section 2.3.
Then, as usual in such cases, these standard results would be “highly existential” and
giving no explicit bounds for the precision of the approximations. Therefore, it is
surprising that, given a Hausdorff LCA group G and a function fff ∈ L1(G) or a measure
µµµ ∈ M(G), we can explicitly describe some functions f , g : G → C defined on some
finite abelian group G approximating fff or µµµ, such that their discrete Fourier transforms
f̂ = F( f ), ĝ = F(g) approximate the Fourier transforms f̂ff = F( fff ), µ̂µµ = F(µµµ),
respectively. Moreover, we are able to give some explicit bounds for the precision
of the approximations of the Fourier transforms F( fff ) or F(µµµ) in terms of the norm
∥ fff∥

1
or the total variation ∥µµµ∥ and a parameter ε > 0, given in advance, describing

the precision of the approximation of fff or µµµ, respectively, by f or g. These results
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(Theorems 2.4.4 and 2.4.5) depend just on the Adjoint Approximation Scheme from
Zlatoš [19, Theorem 2.5.5], so that the only nonstandard ingredient they are based on
is the Adjoint Hyperfinite LCA Group Approximation Theorem [19, Corollary 2.5.2]
from which Theorem 2.5.5 follows. For a compactly supported continuous function
fff : G → C (or, more generally, for fff ∈ C0(G) ∩ L1(G) or fff ∈ C0(G) ∩ Lp(G))
even “nicer” discrete approximations are available. The corresponding estimates
(Theorems 2.4.7 and 2.4.8), however, rest on an additional nonstandard result, namely
on the fact that the Haar measure on G can be obtained by pushing down the Loeb on
an hyperfinite approximating group G constructed from a properly normalized counting
measure on G.

Taking advantage of its generality, we will start with the approximation of the Fourier–
Stieltjes transform F : M(G) → Cbu

(
Ĝ
)

.

Assume that X is a Hausdorff locally compact space whose topology is induced by some
uniformity U , (K,U) is an X–raster and η : X → X is a finite (K,U) approximation of
X. An η–tagged U–fine Borel partition of K, briefly a tagged Borel (U, η) partition
of K, is a finite family πππ = {(P1, x1), . . . , (Pn, xn)} where Pi are nonempty pairwise
disjoint Borel sets such that

K = P1 ∪ . . . ∪ Pn

and the elements xi ∈ X satisfy Pi ⊆ U[η(xi)] as well as η(x) = η(xi) for all i ≤ n and
x ∈ η−1[Pi]. (The reader should notice that η(xi) /∈ Pi , in which case η−1[Pi] = ∅,
may still happen.)

Lemma 2.4.1 For every X–raster (K,U) there exist a finite (K,U) approximation
η : X → X of X and an η–tagged U–fine Borel partition πππ = {(P1, x1), . . . , (Pn, xn)}
of K.

Proof There exists an entourage V ⊆ U which is an open subset of X × X. Let
η : X → X be a finite (K,V) approximation of X (thus η is a (K,U) approximation,
of X, as well). Let Y be a minimal subset of X with the property that, for any x ∈ X ,
K ∩ V[η(x)] ̸= ∅ if and only if η(x) = η(y) for some y ∈ Y . Then, necessarily, η is
injective on Y . There is an open entourage W ∈ U , W ⊆ V such that the sets W[η(y)]
W[η(z)] are disjoint for any y ̸= z in Y . Since all the sets V[xxx], W[xxx] for xxx ∈ X are
open in X, ordering the set Y = {y1, . . . , ym} and putting
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S1 = V[η(y1)] ∖
m⋃

j=2

W[η(yj)]

Sk = V[η(yk)] ∖
( k−1⋃

i=1

Si ∪
m⋃

j=k+1

W[η(yj)]
)

for 1 < k < m,

Sm = V[η(ym)] ∖
m−1⋃
i=1

Si

we obtain a family of pairwise disjoint Borel sets {S1, . . . ,Sm} such that η(yk) ∈ Sk

for each k ≤ m and K ⊆ S1 ∪ . . . ∪ Sm . Let {x1, . . . , xn} = {yk1 , . . . , ykn} where
1 ≤ k1 < . . . < kn ≤ m are all those subscripts k ≤ m which satisfy K ∩ Sk ≠ ∅.
Finally we put

Pi = K ∩ Ski

where xi = yki for i ≤ n. It is clear that πππ = {(P1, x1), . . . , (Pn, xn)} is a tagged Borel
(U, η) partition of K we have been looking for. (The function σ : K → X used in
the proofs of Proposition 1.2.1 as well as of [19, Proposition 1.2.6] can be defined by
σ(xxx) = xi for xxx ∈ Pi .)

Let µµµ be a complex regular Borel measure on X with finite total variation. Depending
on some finite (K,U) approximation η : X → X and a tagged Borel (U, η) partition
πππ = {(P1, x1), . . . , (Pn, xn)} of K, we will define a function gπππµµµ : X → C enabling to
approximate the integration with respect to the measure µµµ in a sense to be made precise
shortly. We denote Pi = η−1[η(xi)] = {x ∈ X : η(x) = η(xi)} for i ≤ n and put:

gπππµµµ(x) =


µµµ(Pi)
|Pi|

for x ∈ Pi

0, for x ∈ X ∖
⋃n

i=1 Pi

Then the function gπππµµµ is an “approximate weak lifting” of µµµ, in the following sense.

Proposition 2.4.2 Let µµµ ∈ M(X), hhh ∈ Cb(X) and ε > 0. Assume that (K,U) is an
X–raster such that |µµµ|(X ∖ K) ≤ ε and |hhh(xxx) − hhh(yyy)| ≤ ε for any xxx,yyy ∈ X whenever
xxx ∈ K and (xxx,yyy) ∈ U. Finally, let η : X → X be a finite (K,U) approximation of X
and πππ = {(P1, x1), . . . , (Pn, xn)} be a tagged Borel (U, η) partition of K. Then:∣∣∣∣∣

∫
hhh dµµµ−

∑
x∈X

hhh(ηx) gπππµµµ(x)

∣∣∣∣∣ ≤ ε
(
∥hhh∥

∞
+ ∥µµµ∥

)
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Before passing to the proof itself, the reader should realize that, since the variation
∥µµµ∥ = |µµµ|(X) is finite, there is indeed a compact set K ⊆ X such that |µµµ|(X ∖ K) ≤ ε,
and, due to the continuity of hhh, the compactness of K and local compactness of X,
there is an entourage U such that |hhh(xxx) − hhh(yyy)| ≤ ε for any xxx ∈ K, yyy ∈ U[xxx].

Proof A straightforward computation using the notation from the definition of the
function gπππµµµ gives:∣∣∣∣∣

∫
hhh dµµµ−

∑
x∈X

hhh(ηx) gπππµµµ(x)

∣∣∣∣∣ ≤
∣∣∣∣∫

X∖K
hhh dµµµ

∣∣∣∣+ n∑
i=1

∣∣∣∣∣
∫

Pi

hhh dµµµ−
∑
x∈Pi

hhh(ηx) gπππµµµ(x)

∣∣∣∣∣
For the first summand on the right we have:∣∣∣∣∫

X∖K
hhh dµµµ

∣∣∣∣ ≤ ε ∥hhh∥
∞

Using the fact that η(x) = η(xi) for x ∈ Pi , we obtain the following estimate for each
of the remaining right-hand summands:∣∣∣∣∣

∫
Pi

hhh dµµµ−
∑
x∈Pi

hhh(ηx) gπππµµµ(x)

∣∣∣∣∣ =
∣∣∣∣∫

Pi

hhh dµµµ− hhh(ηxi)µµµ(Pi)
∣∣∣∣

=

∣∣∣∣∫
Pi

(hhh − hhh(ηxi)) dµµµ
∣∣∣∣ ≤ ε |µµµ(Pi)|

Putting things together we obtain:∣∣∣∣∣
∫

hhh dµµµ−
∑
x∈X

hhh(ηx) gπππµµµ(x)

∣∣∣∣∣ ≤ ε ∥hhh∥
∞
+ ε

n∑
i=1

|µµµ(Pi)| ≤ ε
(
∥hhh∥

∞
+ ∥µµµ∥

)
In the special case when X = G is a Hausdorff LCA group and hhh = χχχ where
χχχ ∈ Ĝ is a continuous character of G we obtain the following standard counterpart
of Proposition 2.3.4 as a corollary. In the next three results we assume that the inner
product on the unitary space CG of functions on the finite abelian group G below is
normalized by the coefficient d = 1.

Corollary 2.4.3 Let G be a Hausdorff LCA group, µµµ ∈ M(G), χχχ ∈ Ĝ and ε ∈
(0, 2π/3). Assume that (K,U) is a G–raster such that |µµµ|(X ∖ K) ≤ ε, and χχχ ∈
Bohrε(U). Finally, let η : G → G be a finite (K,U) approximation of G and
πππ = {(P1, x1), . . . , (Pn, xn)} be a tagged Borel (U, η) partition of K. Then:∣∣F(µµµ)(χχχ) −Fη

(
gπππµµµ

)
(χχχ)

∣∣ ≤ ε
(
1 + ∥µµµ∥

)
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Proof It suffices to realize that Ĝ ⊆ Cb(G), ∥χχχ∥
∞

= 1 for any χχχ ∈ Ĝ,

|χχχ(xxx) −χχχ(yyy)| ≤ 2 sin
ε

2
< ε

whenever χχχ ∈ Bohrε(U) and xxx,yyy ∈ G satisfy xxx − yyy ∈ U, and, finally:

Fη

(
gπππµµµ

)
(χχχ) = ⟨gπππµµµ, χχχ ◦ η⟩ =

∑
x∈G

gπππµµµ(x)χχχ(ηx)

The disadvantage of the modified Fourier transform Fη : CG → CĜ lies in the
fact that, for χχχ ∈ Ĝ, the functions χχχ ◦ η : G → C occurring in the expressions
Fη(g)(χχχ) = ⟨g, χχχ ◦ η⟩ are, in general, just “approximate characters” and not true
characters of the finite abelian group G. Thus the Fast Fourier Transform algorithm
does not apply to the computation of the values Fη(g)(χχχ) for χχχ ∈ Ĝ. This trouble can
be overcome by making use of a “sufficiently good” adjoint pair of finite approximations
η : G → G, ϕ : Ĝ → Ĝ of the LCA groups G, Ĝ, respectively; then each of the
“approximate characters” χχχ ◦ η of G can be replaced by a genuine character γ ∈ Ĝ
such that ϕ(γ) is “close enough” to χχχ. Nonetheless, the modified Fourier transform Fη

will prove as a helpful auxiliary tool in deriving the needed estimates.

According to the Adjoint Approximation Scheme Theorem 2.5.5 from Zlatoš [19], for
every G–raster (Q,V), every Ĝ–raster (∆∆∆,ΥΥΥ) and any α = ε ∈ (0, π/3), there exists
an ε–adjoint ε–pairing preserving with reserve approximation scheme of the pair of
groups G, Ĝ, given by some rasters (K,U), (ΓΓΓ,ΩΩΩ), a finite abelian group G, a finite
(K,U) approximation η : G → G and a finite (ΓΓΓ,ΩΩΩ) approximation ϕ : Ĝ → Ĝ of the
groups G, Ĝ, respectively, compatible with the rasters (Q,V), (∆∆∆,ΥΥΥ). All this means
that U ⊆ Bohrε(ΓΓΓ), ΩΩΩ ⊆ Bohrε(K),∣∣∣∣arg

(ϕγ)(ηx)
γ(x)

∣∣∣∣ ≤ ε

for any x ∈ G, γ ∈ Ĝ such that η(x) ∈ K+U, ϕ(γ) ∈ ΓΓΓΩΩΩ, as well as (Q,V) ≤ (K,U),
(∆∆∆,ΥΥΥ) ≤ (ΓΓΓ,ΩΩΩ) and:

Bohrε
(
η−1[V])

⊆ ϕ−1[ΓΓΓ] Bohrε
(
ϕ−1[ΥΥΥ])

⊆ η−1[K]
Moreover, one can arrange that at least one of the approximations η , ϕ is injective.
However, neither the injectivity of η or ϕ nor the last two inclusions will be used in the
sequel. Additionally, given a complex regular Borel measure µµµ on G with finite total
variation, we can always choose K big enough to ensure that |µµµ|(G ∖ K) ≤ ε. Again,
d > 0 denotes a normalizing multiplier for the inner product on the unitary space CG

of functions on the finite abelian group G below.
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Theorem 2.4.4 (The Finite Fourier–Stieltjes Approximation Theorem) Let G be a
Hausdorff LCA group, µµµ ∈ M(G) and ε ∈ (0, π/3). Assume that a G–raster (K,U)
and a Ĝ–raster (ΓΓΓ,ΩΩΩ) together with a finite abelian group G and maps η : G → G,
ϕ : Ĝ → Ĝ, form an ε–adjoint approximation scheme of the pair of groups G,
Ĝ, which is ε–pairing preserving with reserve. Finally, let |µµµ|(G ∖ K) ≤ ε and
πππ = {(P1, x1), . . . , (Pn, xn)} be a tagged Borel (U, η) partition of K. Then∣∣F(µµµ)(χχχ) −F

(
gπππµµµ

)
(γ)

∣∣ ≤ ε
(
1 + 3 ∥µµµ∥

)
for any χχχ ∈ ΓΓΓ, γ ∈ G such that ϕ(γ) ∈ χχχΩΩΩ.

Proof Under the conditions of the theorem we have:∣∣F(µµµ)(χχχ) −F
(
gπππµµµ

)
(γ)

∣∣ ≤ ∣∣F(µµµ)(χχχ) −Fη

(
gπππµµµ

)
(χχχ)

∣∣+ ∣∣Fη

(
gπππµµµ

)
(χχχ) −F

(
gπππµµµ)(γ

)∣∣
Since χχχ ∈ ΓΓΓ ⊆ Bohrε(U), Corollary 2.4.3 implies that:∣∣F(µµµ)(χχχ) −Fη

(
gπππµµµ

)
(χχχ)

∣∣ ≤ ε
(
1 + ∥µµµ∥

)
Defining the sets Pi ⊆ X as previously and denoting P = P1 ∪ . . . ∪ Pn , we have
supp g ⊆ P, implying the following estimate for the second summand on the right:∣∣Fη

(
gπππµµµ

)
(χχχ) −F

(
gπππµµµ

)
(γ)

∣∣ = ∣∣⟨gπππµµµ, χχχ ◦ η⟩ − ⟨gπππµµµ, γ⟩
∣∣ = ∣∣⟨gπππµµµ, (χχχ ◦ η) − γ⟩

∣∣
≤

∥∥gπππµµµ
∥∥

1

∥∥((χχχ ◦ η) − γ
)
· 1K

∥∥
∞

≤ |µµµ|(K) max
x∈K

|χχχ(ηx) − γ(x)|

∥∥gπππµµµ
∥∥

1
=

∑
x∈X

∣∣gπππµµµ(x)
∣∣ = n∑

i=1

|µµµ(Pi)| ≤ |µµµ|(K)since

If x ∈ P, χχχ ∈ ΓΓΓ and ϕ(γ) ∈ χχχΩΩΩ then η(x) ∈ K + U, χχχ−1ϕ(γ) ∈ ΩΩΩ ⊆ Bohrε(K) and
ϕ(γ) ∈ ΓΓΓΩΩΩ, hence, due to the ε–pairing preservation with reserve:

|χχχ(ηx) − γ(x)| ≤ |χχχ(ηx) − (ϕγ)(ηx)|+ |(ϕγ)(ηx) − γ(x)|

≤ 2 sin
ε

2
+ 2 sin

ε

2
< 2ε

Thus, finally:∣∣F(µµµ)(χχχ) −F
(
gπππµµµ

)
(γ)

∣∣ ≤ ε(1 + ∥µµµ|) + 2ε|µµµ|(K) ≤ ε
(
1 + 3 ∥µµµ∥

)
It is clear that, for any µµµ ∈ M(G), the expression ε

(
1 + 3 ∥µµµ∥

)
can be made arbitrarily

small by choosing ε small enough. It follows that, since the Fourier–Stieltjes transform
µ̂µµ = F(µµµ) : Ĝ → C is uniformly continuous, the discrete Fourier transform ĝ = F(g)
restricted to the set ϕ−1

[
ΓΓΓΩΩΩ

]
⊆ G can serve as an arbitrarily precise table of the
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function µ̂µµ restricted to the set ΓΓΓ ⊆ Ĝ, depending on the corresponding approximation
scheme, ∥µµµ∥ and ε.

Let mmm be the Haar measure on the Hausdorff LCA group G; the inner product, the
p–norms and the Fourier transform f̂ff = F( fff ) on the corresponding Lebesgue spaces
Lp(G) (1 ≤ p ≤ 2) are defined via the Haar integral on G. In the next theorem,
nonetheless, the inner product, the corresponding norms and the discrete Fourier
transform f̂ = F( f ) on the space CG over a finite abelian group G still use the
normalizing multiplier d = 1.

For a function fff ∈ L1(G) we denote by µµµfff the regular complex Borel measure such
that dµµµfff = fff dmmm; its total variation is

∥∥µµµfff
∥∥ = ∥ fff∥

1
. Given a G–raster (K,U), a

finite (K,U) approximation η : G → G of G and a tagged Borel (U, η) partition
πππ = {(P1, x1), . . . , (Pn, xn)} of K, we denote

fπππ = gπππµµµfff

where the function gπππµµµfff
was defined prior to Proposition 2.4.2. Then, as a special case

of the Finite Fourier–Stieltjes Approximation Theorem 2.4.4, we obtain the following
result.

Theorem 2.4.5 (The Finite Fourier Approximation Theorem 1) Let G be a Hausdorff
LCA group, fff ∈ L1(G) and ε ∈ (0, π/3). Assume that a G–raster (K,U) and a Ĝ–raster
(ΓΓΓ,ΩΩΩ) together with a finite abelian group G and maps η : G → G, ϕ : Ĝ → Ĝ form
an ε–adjoint approximation scheme of the pair of groups G, Ĝ which is ε–pairing
preserving with reserve. Finally, let ∥ fff · 1G∖K∥1

≤ ε and πππ = {(P1, x1), . . . , (Pn, xn)}
be a tagged Borel (U, η) partition of K. Then∣∣F( fff )(χχχ) −F

(
fπππ
)
(γ)

∣∣ ≤ ε
(
1 + 3 ∥ fff∥

1

)
for any χχχ ∈ ΓΓΓ, γ ∈ G such that ϕ(γ) ∈ χχχΩΩΩ.

Since Cc(G) is a dense subspace in L1(G), it would be sufficient in some sense to deal
with compactly supported continuous functions fff ∈ L1(G) in the last Theorem 2.4.5.
In that case the composition f = fff ◦ η : G → C can be taken as an approximate lifting
of fff . As the Fourier transform f̂ff = F( fff ) : Ĝ → C of any function fff ∈ L1(G) belongs
to C0

(
Ĝ
)

, the composition f̂ff ◦ ϕ forms an approximate lifting of f̂ff . If supp fff ⊆ K
then the function f = fff ◦ η restricted to the set η−1

[
K
]

can serve as a sufficiently
representative table of the function fff restricted to the set K. The discrete Fourier
transform f̂ = F( f ) = F( fff ◦ η) is close to the composition f̂ff ◦ ϕ on the set ϕ−1

[
ΓΓΓ
]
.

Then both f̂ , f̂ff ◦ ϕ restricted to the set ϕ−1
[
ΓΓΓ
]

can serve as sufficiently representative
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tables of the function f̂ff restricted to the set ΓΓΓ. Before passing to a more precise
formulation, we need to introduce some notions and formulate some preliminary results.

Given a Hausdorff LCA group G, a symmetric compact neighborhood K of 0 ∈ G
and an ε > 0, a pair (U, η) consisting of a symmetric neighborhood U ⊆ K of 0 and a
finite (K,U) approximation η : G → G of G is called ε–adequate for K if∣∣∣∣∣

∫
fff dmmm − mmm(K)∣∣η−1

[
K
]∣∣ ∑

x∈G

fff (ηx)

∣∣∣∣∣ ≤ ε ∥ fff∥
∞

for every continuous function fff : G → C such that supp fff ⊆ K.

Once we realize that every HFI approximation η : G → ∗G is a (∗K, ∗U) approximation
for any G–raster (K,U) and, due to the fact that the Haar measure on G can be obtained
by pushing down the Loeb measure on ∗G obtained from the normalizing multiplier
d = mmm(K)

/ ∣∣η−1
[
K
]∣∣, the pair (U, η) is ε–adequate for K and each ε > 0, we readily

obtain the following lemma by the transfer principle.

Lemma 2.4.6 Let G be a Hausdorff LCA group, K be a symmetric compact neigh-
borhood of 0 ∈ G and ε > 0. Then there exists a symmetric neighborhood U0 ⊆ K
of 0 such that for any G–raster (K,U) satisfying U ⊆ U0 and any finite (K,U)
approximation η : G → G the pair (U, η) is ε–adequate for K.

In the next theorem the inner product on the finite dimensional linear space CG ,
the discrete Fourier transform F : CG → CĜ and all the p–norms on CG use the
normalizing coefficient

d =
mmm(K)
|K|

where K = η−1
[
K
]
.

Theorem 2.4.7 (The Finite Fourier Approximation Theorem 2) Let G be a Hausdorff
LCA group, fff ∈ Cc(G) and ε ∈ (0, π/3). Assume that a G–raster (K,U) and
a Ĝ–raster (ΓΓΓ,ΩΩΩ) together with a finite abelian group G and maps η : G → G,
ϕ : Ĝ → Ĝ form an ε–adjoint approximation scheme of the pair of groups G, Ĝ which
is ε–pairing preserving with reserve. Finally, let supp fff ⊆ K and the pair (U, η) be
ε–adequate for K. Then

|F( fff )(χχχ) −F( fff ◦ η)(γ)| ≤ ε
(
1 + 2mmm(K)

)
∥ fff∥

∞

for any χχχ ∈ ΓΓΓ, γ ∈ G such that ϕ(γ) ∈ χχχΩΩΩ.
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Proof Since

|F( fff )(χχχ) −F( fff ◦ η)(γ)| ≤ |F( fff )(χχχ) −Fη( fff ◦ η)(χχχ)|+ |Fη( fff ◦ η)(χχχ) −F( fff ◦ η)(γ)|

it suffices to estimate the summands on the right. As supp( fff ·χχχ) = supp fff ⊆ K and
|χχχ(xxx)| = 1 for each xxx ∈ G, under the assumptions of the theorem we have

|F( fff )(χχχ) −Fη( fff ◦ η)(χχχ)| =

∣∣∣∣∣
∫

fff χχχ dmmm − d
∑
x∈G

fff (ηx)χχχ(ηx)

∣∣∣∣∣
≤ ε ∥ fff ·χχχ∥

∞
= ε ∥ fff∥

∞

as well as:

|Fη( fff ◦ η)(χχχ) −F( fff ◦ η)(γ)| =
∣∣⟨ fff ◦ η,

(
(χχχ ◦ η) − γ

)
· 1K⟩

∣∣
≤ ∥ fff ◦ η∥

1

∥∥((χχχ ◦ η) − γ)
)
· 1K

∥∥
∞

Then
∥ fff ◦ η∥

1
= d

∑
x∈K

| fff (ηx)| ≤ d |K| ∥ fff ◦ η∥∞ ≤ mmm(K) ∥ fff∥
∞

and

|χχχ(ηx) − γ(x)| ≤ |χχχ(ηx) − (ϕγ)(ηx)|+ |(ϕγ)(ηx) − γ(x)| ≤ 2 sin
ε

2
+ 2 sin

ε

2
≤ 2ε

whenever ϕ(γ) ∈ χχχΩΩΩ and x ∈ K = η−1
[
K
]
. The second inequality of the theorem

follows immediately.

In particular, for χχχ = ϕ(γ) a brief inspection of the proof gives the estimate

|F( fff )(ϕγ) −F( fff ◦ η)(γ)| ≤ ε
(
1 +mmm(K)

)
∥ fff∥

∞

for γ ∈ ϕ−1
[
ΓΓΓ
]

under the conditions of the last theorem (and even without the
assumption that the approximation scheme is ε–preserving with reserve). This result
can be generalized to all the Fourier transforms F : Lp(G) → Lq(Ĝ

)
for any pair

of adjoint exponents p ∈ [1, 2], q ∈ [2,∞], in particular, to the Fourier–Plancherel
transform F : L2(G) → L2(Ĝ

)
.

In what follows the q–norms on the linear space CĜ are normalized by means of the
dual normalizing coefficient

d̂ =
1

d |G|
=

|K|
mmm(K) |G|
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Theorem 2.4.8 (The Generalized Finite Fourier Approximation Theorem) Let G
be a Hausdorff LCA group, fff ∈ Cc(G), 2 ≤ q ≤ ∞ and ε ∈ (0, π/3). Assume that
a G–raster (K,U) and a Ĝ–raster (ΓΓΓ,ΩΩΩ) together with a finite abelian group G and
maps η : G → G, ϕ : Ĝ → Ĝ form an ε–adjoint, ε–pairing preserving approximation
scheme of the pair of groups G, Ĝ. Finally, let supp fff ⊆ K and the pair (U, η) be
ε–adequate for K. Then, denoting Γ = ϕ−1

[
ΓΓΓ
]
, we have:∥∥((F( fff ) ◦ ϕ) −F( fff ◦ η)

)
· 1Γ

∥∥
q
≤ ε

(
|K| |Γ |

mmm(K) |G|

)1/q(
1 +mmm(K)

)
∥ fff∥

∞

Proof As already mentioned prior to the theorem, the case p = 1, q = ∞ (under the
convention 1/∞ = 0) directly follows from the proof of Theorem 2.4.7. Using this
fact, a straightforward computation gives:∥∥((F( fff ) ◦ ϕ) −F( fff ◦ η)

)
· 1Γ

∥∥
q
≤

(
d̂

∑
γ∈Γ

|F( fff )(ϕγ) −F( fff ◦ η)(γ)|q
)1/q

≤
(
d̂ |Γ |

)1/q
ε
(
1 +mmm(K)

)
∥ fff∥

∞

≤ ε

(
|K| |Γ |

mmm(K) |G|

)1/q(
1 +mmm(K)

)
∥ fff∥

∞

The function F( fff ) ◦ ϕ restricted to the set Γ ⊆ Ĝ can be viewed as the table of the
Fourier transform f̂ff = F( fff ) evaluated on the finite set of arguments ϕ(γ) ∈ ΓΓΓ ⊆ Ĝ. On
the other hand, the function f = fff ◦ η restricted to the set K ⊆ G can be viewed as the
table of the original function fff evaluated on the finite set of arguments η(x) ∈ K ⊆ G.
Then the function f̂ = F ( fff ◦ η) is the discrete Fourier transform of f computed on the
basis of this table. Under the conditions of Theorem 2.4.8, the tables represented by the
functions F( fff ) ◦ ϕ, F ( fff ◦ η) restricted to Γ are close to each other in the sense of any
of the norms ∥·∥

q
where 2 ≤ q ≤ ∞. Moreover, the theorem gives some explicit upper

bounds on how they can differ.

Theorems 2.4.7 and 2.4.8 can easily be generalized, under slightly modified upper
bounds, to functions fff ∈ C0(G)∩L1(G) or fff ∈ C0(G)∩Lp(G). This is left to the reader.
As pointed out by Gordon in [7] for the Fourier–Plancherel transform L2(G) → L2(Ĝ

)
,

the class of functions fff ∈ L2(G) approximable by the composition fff ◦ η such that
their Fourier transform F( fff ) is simultaneously approximable by the discrete Fourier
transform F ( fff ◦ η) in the sense of Theorem 2.4.8 contains even more general functions,
namely such that both fff and f̂ff are Riemann integrable, ie, continuous almost everywhere
with respect to the Haar measures on G, Ĝ, respectively. It is clear that Gordon’s
remark applies to any pair of adjoint exponents p ∈ [1, 2], q ∈ [2,∞] and not just to
the Hilbert space case p = q = 2.
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