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Abstract: We present an algebraic study of Riesz spaces (ie, real vector lattices)
with a (strong) order unit. We exploit a categorical equivalence between those
structures and a variety of algebras called RMV–algebras. We prove two different
sheaf representations for Riesz spaces with order unit: the first represents them as
sheaves of linearly ordered Riesz spaces over a spectral space, the second represents
them as sheaves of local Riesz spaces over a compact Hausdorff space. Motivated
by the latter representation we study the class of local RMV–algebras. We study the
algebraic properties of local RMV–algebra and provide a characterisation of them
as special retracts of the real interval [0, 1]. Finally, we prove that the category of
local RMV–algebras is equivalent to the category of all Riesz spaces.
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1 Introduction

The algebra of real-valued continuous functions C(X), for X a compact and Hausdorff
space, has received great attention in all of its facets (see, eg, Gillman and Jerison [25]
and references therein). Indeed, the rich structure of R lifts to C(X) in several ways,
emanating a number of well known structures such as C∗–algebras, Banach algebras,
vector lattices, etc. In several of those cases the concept of norm is of crucial importance,
yet norms elude the classical tools of universal algebra or first order logic.

A purely algebraic and basic structure that can be pulled back on C(X) is the structure
of lattice ordered abelian group (for short `-group). Since X is compact, by Weierstrass’
Extreme Value Theorem the functions in C(X) are automatically bounded. This entails
that any positively constant function u has the following property:

for every f ∈ C(X) there exists an n ∈ N such that (n)u :=
n times

u + · · ·+ u> f(1)
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2 A. Di Nola, G. Lenzi and L. Spada

If G is an `-group, an element u with the property described in Equation (1) is called
order unit (or strong order unit). One of the reasons for which the concept of order unit
is important is that it allows to define a semi-norm: if G is an `-group and g ∈ G,

‖g‖ := inf
{

p
q
∈ Q | p, q ∈ N, q 6= 0 and

q times
|g|+ · · ·+ |g|≤

p times
u + · · ·+ u

}
(2)

where |g| := g ∨ −g. The operator ‖ ‖ is a norm if and only if G is Archimedean. In
particular, if G = C(X) then ‖ ‖ is the uniform norm (also called sup norm). So, a
single element of the algebra allows us to define the norm, but it can be readily seen by
a compactness argument that order units are not first-order definable. Nevertheless, as
next result shows, this obstruction is only due to the presentation of the structures, so a
mere modification of the language dramatically simplifies the situation.

Theorem 1.1 (Mundici [32, Theorem 3.9]) The category of `-groups with order unit
(u`-groups, for short) and morphisms preserving the units is equivalent to a class of
equationally defined algebras, called MV–algebras.

The importance of Theorem 1.1 cannot be overestimated, in that it allows the study of
normed structures with the full paraphernalia of universal algebra.

Recall that a Riesz space is a vector space over the real numbers endowed with an
order ≤ that is compatible with the vector space operations (ie, such that x ≤ y implies
x + z ≤ y + z and λx ≤ λx) and ≤ is a lattice order (ie, every finite subset has a least
upper bound and greatest lower bound). The real numbers with their usual operations
and order form a Riesz space, also any Lp -space with the almost everywhere point-wise
partial order is a Riesz space. A classical reference for Riesz spaces is Luxemburg and
Zaanen [29]. They are important structures in measure theory, but they also have shown
to be of interest in economics (see eg Aliprantis and Burkinshaw [1]).

In Di Nola and Leuştean [18] it was noticed for the first time1 that the equivalence of
Theorem 1.1 can be extended to an equivalence between the category of Riesz spaces
with order unit and the category of certain equationally-definable algebras called Riesz
MV–algebras (RMV–algebras, for short).

In this work we exploit this equivalence to propose a universal algebraic study of these
structures. This approach can be framed in a long list of successful attempts to use the
tools of logic in functional analysis as for instance, the theory of approximate truth of

1The proof in [18] contains a gap, because it relies on a statement by Birkhoff that turned out
to be erroneous. We remedy this gap here by giving a self-contained proof of the theorem.
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Henson [26], continuous model theory of Chang and Keisler [9], and continuous first
order logic of Ben Yaacov and Usvyatsov [3]. (See also the introduction of Iovino [27]
for a longer list of examples.)

The plan of the paper is as follows. In Section 2 we recall definitions and basic properties
of MV–algebras and RMV–algebras that will be used in the rest of the paper. In Section 3
we give two sheaf representations of RMV–algebras: Corollary 3.11 represents them
as sheaves of local RMV–algebras over a compact Hausdorff space; Corollary 3.13
represents them as sheaves of linearly ordered RMV–algebras over a spectral space. In
Section 4 we study local RMV–algebras and prove the characterisations summarised
below.

Theorem 1.2 Let A be an RMV–algebra. The following are equivalent:

(i) A is local,
(ii) A is isomorphic to an algebra of quasi-constant functions,

(iii) A is generated by its radical,
(iv) A/ Rad(A) ∼= [0, 1],
(v) A is isomorphic to ΓR(R −→× W, (1, 0)), for some Riesz space W , where −→×

indicates the lexicographic product.

Proof The equivalence of (i) and (ii) is proved in Theorem 4.10. The equivalence of
(i) and (iii) is proved in Theorem 4.14. The equivalence of (i) and (iv) is proved in
Theorem 4.15. The equivalence of (i) and (v) is proved in Theorem 4.23.

Finally, in Section 4.4 we prove a categorial equivalence between local RMV–algebras
and the full category of Riesz spaces—with or without order unit.

2 Preliminaries

We briefly recall the definition and some basic properties of MV–algebras needed in the
paper, the standard references are Mundici [10] and Mundici [33].

Definition 2.1 An MV–algebra is a structure 〈A,⊕, ∗, 0〉 such that:

〈A,⊕, 0〉 is a commutative monoid(MV 1)

x⊕ 0∗ = 0∗(MV 2)

(x∗)∗ = x(MV 3)
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(x∗ ⊕ y)∗ ⊕ y = (y∗ ⊕ x)∗ ⊕ x(MV 4)

It is customary to define, in the language of MV–algebras, the following derived
operations:

1 := 0∗, x� y := (x∗ ⊕ y∗)∗, x	 y := x� y∗, d(x, y) := (x	 y)⊕ (y	 x)(3)

and for any n ∈ N (n)x :=
n times

x⊕ · · · ⊕ x(4)

The operation d(x, y) is called the Chang distance between x and y. Every MV–algebra
can be endowed with a partial order, by defining:

x ≤ y if and only if x	 y = 0(5)

In fact the above-defined order always induces a distributive lattice structure where
meet and join are term-definable as follows:

x ∨ y := (x	 y)⊕ y and x ∧ y := (x∗ ∨ y∗)∗(6)

Remark 2.2 The operation 	 and the constant 1 can be equivalently taken as basic
operations in the axiomatisation of MV–algebras. The original operations can be
recovered by defining x∗ := 1	 x and x⊕ y := (x∗ 	 y)∗ .

Example 2.3 The standard MV–algebra is given by the set [0, 1], where the operations
are interpreted as x⊕ y = min(x + y, 1) and x∗ = 1− x. An easy calculation shows
that in this algebra,

x� y = max{0, x + y− 1}, x	 y = max{0, x− y}, d(x, y) = |x− y|,
x ∨ y = max{x, y} and x ∧ y = min{x, y}.

As an immediate consequence of Hölder Theorem for ordered groups (see eg Bigard,
Keimel, and Wolfenstein [4, 2.6.3]) one has that the one above is the only structure of
MV–algebra that induces the natural order on [0, 1], so there is no danger of confusion
in speaking of the MV–algebra [0, 1].

Theorem 2.4 (Chang [8]) The variety of MV–algebra is generated, as quasi-variety,
by the MV–algebra [0, 1].

We recall some basic properties of MV–algebras that will be used in the rest of the
paper.

Proposition 2.5 In every MV–algebra A the following properties hold for every
x, y, z ∈ A:

Journal of Logic & Analysis 13:2 (2021)
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(1) if x = y then x	 y = 0
(2) if x ≤ y then x ∧ z ≤ y ∧ z
(3) if x ∧ y = 0 and z ∧ y = 0 then (x⊕ z) ∧ y = 0
(4) if x ∧ y = 0 then for every n ∈ N, x ∧ (n)y = 0
(5) x� (y ∨ z) = (x� y) ∨ (x� z)
(6) (x	 y) ∧ (y	 x) = 0
(7) d(x, y) ≤ d(x, z)⊕ d(z, y)
(8) (n)x ∨ (n)y = (n)(x ∨ y)
(9) if x	 y = z and x ≥ y then y⊕ z = x

Proof Since all properties from (1) to (9) are quasi-equations, by Theorem 2.4 it is
enough to check that they hold in [0, 1]. We leave to the reader this easy exercise.

We now give the definition of Riesz MV–algebras (RMV–algebras, for short); they are
MV–algebras endowed with a scalar multiplication by elements of the real interval
[0, 1]. RMV–algebras were introduced in Di Nola and Leuştean [18] and further studied
in Di Nola, Lapenta, and Leuştean [14, 15].

Definition 2.6 (RMV–algebra) A Riesz MV–algebra (RMV–algebra for short) is an
MV–algebra A endowed with an external multiplication fr for every real number r in
[0, 1], satisfying the following conditions. For every x, y ∈ A and every r, s ∈ [0, 1]:

fr(x	 y) = fr(x)	 fr(y)(RMV 1)

fr	s(x) = fr(x)	 fs(x)(RMV 2)

fr(fs(x)) = fr·s(x)(RMV 3)

f1(x) = x(RMV 4)

where r · s indicates the product in [0, 1] and r	 s := max{0, r− s}. An RMV–algebra
is said to be trivial if it satisfies 0 = 1.

Note that the MV–algebra [0, 1] of Example 2.3 is also an RMV–algebra where
fr(x) = rx is the usual multiplication. Similarly to the case of MV–algebras:

Lemma 2.7 The only endomorphism of the RMV–algebra on [0, 1] is the identity.

Proof Let e be an endomorphism of the RMV–algebra [0, 1]. Since e is a homomor-
phism, e(1) = 1, whence for every real r ∈ [0, 1] we have e(r) = e(fr(1)) = fr(e(1)) =

fr(1) = r .
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Lemma 2.8 (See [18, Lemma 4]) In every RMV–algebra the following properties
hold:

(1) fr(0) = 0
(2) f0(x) = 0
(3) If x ≤ y then fr(x) ≤ fr(y)
(4) If r ≤ s then fr(x) ≤ fs(x)
(5) fr(x) ≤ x

Proof (1) For any r ∈ [0, 1],

fr(0) = fr(0	 0) by Proposition 2.5(1)

= fr(0)	 fr(0) by (RMV 1)

= 0 by Proposition 2.5(1).

(2) For any x ∈ A,

f0(x) = fr	r(x) by Definition 2.6

= fr(x)	 fr(x) by (RMV 2)

= 0 by Proposition 2.5(1).

(3) If x ≤ y, then by Equation (5), x	 y = 0, hence, for any r ∈ [0, 1],

0 = fr(0) by (1)

= fr(x	 y) by hypothesis

= fr(x)	 fr(y) by (RMV 1).

It follows, again by Equation (5), that fr(x) ≤ fr(y).

(4) If r ≤ s, then by Definition 2.6, r 	 s = 0, hence, for any x ∈ A,

0 = f0(x) by (2)

= fr	s(x) by hypothesis

= fr(x)	 fs(x) by (RMV 2).

Hence fr(x) ≤ fs(x).

(5) Since for every r ∈ [0, 1], r ≤ 1, by (4) fr(x) ≤ f1(x) = x , where the last equality
holds because of (RMV 4).

Lemma 2.9 Let A be an RMV–algebra and let r, s ∈ [0, 1] such that r + s ≤ 1. Then
for every x ∈ A, f(r+s)(x) = fr(x)⊕ fs(x)

Journal of Logic & Analysis 13:2 (2021)



Sheaf, locality and Riesz spaces 7

Proof Let r, s ∈ [0, 1] such that r + s ≤ 1 and x ∈ A. Then

f(r+s)(x)	 fr(x) = f(r+s)	r(x) by Equation (RMV 2),

= fs(x) by the definition of 	.

Also, by Lemma 2.8(4), f(r+s)(x)	 fr(x). So by Proposition 2.5(9) we conclude that
f(r+s)(x) = fr(x)⊕ fs(x).

Lemma 2.10 There is only one structure of RMV–algebra on [0, 1].

Proof As remarked in Example 2.3, there is only one way to endow [0, 1] with an
MV–algebraic structure, so it only remains to be checked that, in turn, there is only one
way to endow this MV–algebra with operations that make it an RMV–algebra. To this
end, suppose that for r ∈ [0, 1] the operations fr turn [0, 1] into an RMV–algebra. Let
m ∈ N be such that m ≥ 2; then by Lemma 2.9, (m− 1)f1/m(x) = f(m−1)/m(x). Hence:

(m− 1)f1/m(x) = f(m−1)/m(x) = f1	1/m(x) = f1(x)	 f1/m(x) = x	 f1/m(x)

So, for every x ∈ [0, 1] the element f1/m(x) satisfies the equation (m− 1)y = x	 y in
the indeterminate y. However, this equation has only one solution in [0, 1], given by
x/m. Therefore it must be that f1/m(x) = x/m. It follows that for every n < m, also
fn/m(x) = nx/m.

Finally, if r is any real number in [0, 1] and m/n ≤ r ≤ p/q then, by Lemma 2.8(4),
fm/n(x) ≤ fr(x) ≤ fp/q(x), so mx/n ≤ fr(x) ≤ px/q. Letting m/n and p/q tend to r , we
have fr(x) = rx .

In the light of the previous result we will freely refer to [0, 1] as an RMV–algebra, for
there is no confusion on the RMV–operations defined on it.

Theorem 2.11 Every non-trivial RMV–algebra A has a unique RMV–subalgebra
isomorphic to [0, 1], given by the elements of the form fr(1). This subalgebra will
henceforth be indicated by R(A).

Proof We start by noticing that in every RMV–algebra A, the subalgebra generated by
the empty set is given by:

R(A) := {fr(1) | r ∈ [0, 1]}

Indeed, since 1 is a constant and fr are operations in the language of RMV–algebras,
it is clear that those elements belong to the subalgebra of A generated by the empty
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set. The set R(A) is also a subalgebra of A; indeed, by Remark 2.2, it is enough to
check that it is closed under the operations 	 and fr for r ∈ [0, 1]: if s, t ∈ [0, 1], then
fs(1) 	 ft(1) = fs	t(1) by (RMV 2) and fs(ft(1)) = fs·t(1) by (RMV 4). This ensures
that R(A) is closed under RMV-operations.

Let us now prove that the map that sends fr(1) into r ∈ [0, 1] is well-defined. Let
r 6= s be real numbers in [0, 1], then either s < r or r < s. Assuming without loss
of generality that the first inequality holds we obtain r 	 s 6= 0. The axiom RMV
2 gives fr(1) 	 fs(1) = fr	s(1). We claim that the right-hand side of last equation is
different from 0. Indeed, suppose by way of contradiction that fr	s(1) = 0. Since
r 	 s 6= 0 there exists m ∈ N such that 1/m < r 	 s, and by Lemma 2.8(4) this entails
f 1

m
(1) = 0. Whence, by Lemma 2.9, f1(1) = 0 against the fact that A is non-trivial. So,

fr(1) 	 fs(1) 6= 0, therefore by (the contrapositive of) Proposition 2.5(1), we obtain
that fr(1) 6= fs(1). It is straightforward to check that this map is an isomorphism of
RMV–algebras from R(A) into [0, 1].

Suppose now that B is another subalgebra of A isomorphic to [0, 1]. Obviously R(A)
is the smallest RMV-subalgebra of A, so R(A) ⊆ B. By way of contradiction, suppose
there exists a ∈ B \ R(A). Let g : R(A)→ [0, 1] and h : B→ [0, 1] be the two given
isomorphisms. Set b := g−1(h(a)) ∈ R(A) ⊆ B, then in particular a 6= b and both
belong to B. Now observe that h(a) = fh(a)(1) and thus, by Lemma 2.10,

b = g−1(fh(a)(1)) = fh(a)(g−1)(1) = fh(a)(1R(A))

which entails h(a) = fh(a)(1) = h(fh(a)(1R(A))) = h(b). As h is injective, a = b, which
contradicts our hypothesis. So a cannot exist and R(A) = B.

Our interest for RMV–algebras stems from the fact that the equivalence of Theorem 1.1
can be extended to an equivalence between RMV–algebras and Riesz spaces with order
unit.

Theorem 2.12 There is a functor ΓR from the category of Riesz spaces with order unit
to the category of RMV–algebras which is full, faithful and dense, hence it witnesses
an equivalence of the aforementioned categories.

This result was originally stated in Di Nola and Leuştean [18]. However, the proof
published there is incomplete because it relies on [18, Corollary 2], which is false as in
turn it relies on the false Birkhoff [5, Corollary, page 349]. (For a counter-example see
Di Nola, Lenzi, Marra, and Spada [16].) We remedy this gap by giving a full proof here.
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Proof of Theorem 2.12 The functor ΓR is defined as follows. If 〈R,+,−, ·,∧,∨, 0, u〉
is a Riesz space with order unit, ΓR(R, u) is defined as the RMV–algebra whose elements
are in [0, u] := {r ∈ R | 0 ≤ r ≤ u} and the operations are defined as:

x⊕ y := (x + y) ∧ u x∗ := u− x fr(x) := r · x

The verification that ΓR(R, u) satisfies axioms (RMV 1)–(RMV 4) is routine. If
h : R → S is a unit preserving homomorphism of Riesz spaces, ΓR(h) is defined as
restriction, ie ΓR(h) := h|

ΓR(R)
.

Faithfulness: Let us prove that the functor is faithful, ie it is injective on morphisms.
Consider two unit preserving morphisms of Riesz spaces f , f ′ : (R, u)→ (S, v) which
coincide on [0, u] and let x be an arbitrary element of R. Since any element of R is the
difference of two positive elements, there is no loss of generality is assuming that x ≥ 0.
Then for some integer n we have 0 ≤ x ≤ nu. Hence, 0 ≤ x/n ≤ u so, x/n ∈ [0, u]
and f (x/n) = f ′(x/n), therefore f (x) = (n)f (x/n) = (n)f ′(x/n) = f ′(x). We conclude
that, f and f ′ coincide on R.
Fullness: Let us prove that the functor is full, ie it is surjective on morphisms. Let µ be
a homomorphism of RMV–algebras, then µ is also a morphism of MV–algebras and,
by Mundici [32, Proposition 3.5], it can be lifted to a morphism λ of the corresponding
u`-groups (R, u) and (S, v). We prove that µ is also a Riesz space homomorphism
preserving the order unit. Let us write R+ for the set {x ∈ R | x > 0} and similarly for
R. We preliminary check that the property holds for positive elements, ie if x ∈ R+

and r ∈ R+ , then λ(rx) = r(λx). Indeed, under this assumption x = x1 + . . . + xn ,
for suitable xi ∈ [0, u] and r = r1 + 1 + . . . + 1, with r1 ∈ [0, 1]. Recall that λ
extends µ, and the latter is an RMV-homomorphism. Hence, λ(r1xi) = r1λ(xi) for
every i ≤ n. From this, by distributivity of scalar multiplication in Riesz spaces, it
follows λ(rx) = r(λx). Now we can check the general case. Let x ∈ R, r ∈ R. Then
x = x1 − x2 where x1, x2 ∈ R+ ; r = r1 − r2 , where r1, r2 ∈ R+ ; and:

λ((r1 − r2)(x1 − x2)) = λ(r1x1 + r2x2 − r1x2 − r2x1)

= λ(r1x1) + λ(r2x2)− λ(r1x2)− λ(r2x1)

= r1λ(x1) + r2λ(x2)− r1λ(x2)− r2λ(x1)

= (r1 − r2)(λx1 − λx2)

= (r1 − r2)(λ(x1 − x2)) .

Density: Finally, we prove that the functor is dense, ie, any RMV–algebra is isomorphic
to an algebra in the range of ΓR . Let A be a RMV–algebra and let A′ be its MV–
algebraic reduct. Since the functor Γ of Theorem 1.1, from u`-groups into MV–algebras,

Journal of Logic & Analysis 13:2 (2021)



10 A. Di Nola, G. Lenzi and L. Spada

is an equivalence of categories, there is a u`-group (R0, u) such that A′ = Γ(R0, u).
We extend R0 to a Riesz space R such that ΓR(R, u) = A. If s ∈ R, let z ∈ Z and
r ∈ [0, 1) be such that s = z + r , we define, for any a ∈ A ⊆ R0 :

s · a :=
z times

a + · · ·+ a +fr(a)

By Mundici [10, Chapter 7] every element of R0 is a finite sum of elements of A and
their opposites, hence the scalar multiplication defined above extends to all R0 . We
leave to the reader the routine checking that R0 endowed with this scalar multiplication
is a Riesz space. This concludes the proof.

Definition 2.13 (MV and RMV ideals) Let A be an RMV–algebra. A non-empty
subset I of A is called MV–ideal if I is downward closed (ie, x ≤ y and y ∈ I imply
x ∈ I ) and it is closed under ⊕. A non-empty subset J of A is called RMV–ideal if it is
an MV–ideal and it is closed under the operations fr , ie, for every r ∈ [0, 1], if x ∈ J
then fr(x) ∈ J .

Lemma 2.14 For any RMV–algebra A, there is an isomorphism from the lattice of
MV–congruences of A and the lattice of its MV–ideals. Similarly, there is a lattice
isomorphism between RMV–congruences of A and its RMV–ideals.

Proof Both isomorphisms are defined in the same way: if J is an MV– or RMV–ideal
and θ is an MV- or RMV–congruence of A then:

θ 7→ Jθ := {a ∈ A | aθ0} J 7→ θJ := {(a, b) ∈ A2 | d(a, b) ∈ J}

The fact that they are isomorphisms is well-known in the case of MV–algebras (see eg
[10, Proposition 1.2.6]); the case of RMV–algebra is a straightforward adaptation of
the argument for MV–algebras. See also Di Nola, Lenzi, Marra, and Spada [16] for a
general proof that has both MV and RMV as special cases.

Lemma 2.15 In any RMV–algebra A, MV–ideals and RMV–ideals coincide. There-
fore MV–congruences and RMV–congruences coincide.

Proof By definition, every RMV–ideal is an MV–ideal. Vice versa, let A be an
RMV–algebra and J ⊆ A be an MV–ideal. By Lemma 2.8(5), fr(x) ≤ x for every
x ∈ A and for every r ∈ [0, 1], hence J is an RMV–ideal.

In the light of the previous lemma, we will simply speak of ideals.
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Notation If A is an RMV–algebra, J is an ideal of A and a ∈ A, we henceforth write
[a]J for the image of a under the natural epimorphism induced by the congruence θJ . If
S ⊆ A, we write 〈S〉 for the ideal generated by the set S , ie the smallest ideal containing
S . Finally, If I and J are ideals, we write I ∨ J for the ideal generated by the set I ∪ J .

Lemma 2.16 (See [10, Lemma 1.2.1]) Let A be an RMV–algebra and x, y ∈ A.
Then x ∈ 〈{y}〉 if and only if there exists n ∈ N such that x ≤ (n)y.

The following is a folklore result for MV–algebras. For sake of completeness we give
here a proof for RMV–algebras.

Lemma 2.17 Let A be an RMV–algebra and a, b ∈ A. Let 〈{a}〉, 〈{b}〉 be the
principal ideals generated by a and b, respectively. Then 〈{a}〉 ∩ 〈{b}〉 = 〈{a ∧ b}〉.

Proof x ∈ 〈{a}〉 ∩ 〈{b}〉

⇔ ∃n ∈ N s.t. x ≤ (n)a and x ≤ (n)b by Lemma 2.16

⇔ ∃n ∈ N s.t. x ≤ (n)a ∧ (n)b

⇔ ∃n ∈ N s.t. x ≤ (n)(a ∧ b) by Proposition 2.5(8)

⇔ x ∈ 〈{a ∧ b}〉 by Lemma 2.16.

Definition 2.18 (Prime, maximal and primary ideals) Let A be RMV–algebra. An
ideal I of A is called

(1) maximal if it is maximal among proper ideals with respect to the inclusion
order—we call Max(A) the set of all maximal ideals of A;

(2) prime if x ∧ y ∈ I implies that either x ∈ I or y ∈ I , we call Spec(A) the set of
all prime ideals of A; and

(3) primary if it is contained in a unique maximal ideal, we call Prim(A) the set of
all primary ideals of A.

Definition 2.19 (Radical) The intersection of all maximal ideals of an RMV–algebra
A is called the radical of A and denoted by Rad(A). We call the elements of Rad(A)
infinitesimals.

Definition 2.20 (Local RMV–algebras) A non-trivial RMV–algebra A is called local
if it contains a unique maximal ideal (or, equivalently, if Rad(A) is a maximal ideal).

We postpone to Section 4.1 a discussion on the aptness of the attribute local in the above
definition.
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12 A. Di Nola, G. Lenzi and L. Spada

Remark 2.21 Notice that local RMV–algebras do not form a subvariety, in fact no
proper non-trivial subvariety of RMV–algebras exists as shown in Corollary 2.30
below. However, the class of local RMV–algebras is axiomatised, within the variety of
RMV–algebras, by the first order formula:

∀x
(
x ≤ x∗ OR x∗ ≤ x OR d(x, x∗)2 = 0

)
Indeed, an RMV–algebra is local if and only if its MV–algebra reduct is local and the
above formula is known to axiomatise local MV–algebras Di Nola, Esposito, and Gerla
[13, Theorem 8.1].

Lemma 2.22 Let A be RMV–algebra and I be an ideal of A, then:

(1) I is maximal if and only if A/I is isomorphic to [0,1], in a unique way.
(2) I is prime if and only if the lattice order of A/I is linear.
(3) I is primary if and only if A/I is local.

Proof (1) The quotient of an MV–algebra by a maximal ideal is isomorphic (in a
unique way) to a subalgebra of [0, 1] (see eg Marra and Spada [31, Lemma 3.8]). As
shown in the proof of Theorem 2.11, any non-trivial 0-generated RMV-subalgebra is
isomorphic to [0, 1], so the quotient of an RMV–algebra by a maximal ideal must be
isomorphic to [0, 1].

(2) In an MV–algebra this statement holds (see eg Mundici [33, Proposition 4.13]).
Hence, by Lemma 2.15 the statement is also true for RMV–algebras.

(3) Notice that the natural quotient map πI : A→ A/I gives an isomorphism between
the lattice of ideals of A containing I and the lattice of ideals of A/I (see eg Burris and
Sankappanavar [6, Theorem 6.20, Chapter II]). Now suppose that I is primary and let
M be the unique maximal ideal containing I . Then M/I must be the unique maximal
ideal of A/I , so A/I is local. Conversely, suppose that A/I is local and let N,N′ be
maximal ideals of A containing I . Then N/I and N′/I are maximal ideals of A/I .
Since A/I is local, we have N/I = N′/I . Since N and N′ both contain I , this implies
N = N′ . So I is primary.

We now recall a few results on RMV–algebras which are either already known or easy
consequences of the fact that they hold in MV–algebras.

Definition 2.23 Let A be an RMV–algebra and P ⊆ A, we define

O(P) := {x ∈ A | x ∧ y = 0 for some y /∈ P}(7)

P⊥ := {x ∈ A | x ∧ y = 0 for all y ∈ P}(8)

We write y⊥ as a shorthand for {y}⊥ .
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Lemma 2.24 Let A be RMV–algebra. The following hold.

(1) If P ⊆ A, then O(P) =
⋃
{y⊥ | y 6∈ P}.

(2) If P ∈ Spec(A), then O(P) =
⋂
{M ∈ Spec(A) | M is minimal in the order ⊆

and M ⊆ P}.
(3) If P ∈ Spec(A), then O(P) is a primary ideal contained in P.
(4) If I is an ideal of A, then I⊥ =

⋂
{P ∈ Spec(A) | I 6⊆ P}.

(5) y⊥ = (〈{y}〉)⊥
(6) If I ⊆ A, then I⊥ is an ideal of A.
(7) If H = I⊥ then H ∩ I = {0}.
(8) Let H and I be ideals of A, if H ∩ I = {0} then H ⊆ I⊥ .

Proof For (1), x ∈ O(P) if and only if there exists y 6∈ P such that x ∧ y = 0. This in
turn is equivalent to ∃y 6∈ P such that x ∈ y⊥ , in other words x ∈

⋃
{y⊥ | y 6∈ P}.

(2) to (4) are proved for MV–algebras in Ferraioli and Lettieri [21, Proposition 2.10],
Filipoiu and Georgescu [22, Lemma 2.1 and 2.4] and [21, Lemma 2.7], respectively. In
the light of Lemma 2.15 the results hold also for RMV–algebras.

One inclusion in (5) is obvious. For the other, suppose x ∈ y⊥ , ie x ∧ y = 0.
Let z ∈ 〈{y}〉, then by Lemma 2.16, there exists n ∈ N such that z ≤ (n)y. By
Proposition 2.5(2) x ∧ z ≤ x ∧ (n)y and the latter is equal to 0 by (4) of the same
proposition, so x ∧ z = 0, whence x ∈ (〈{y}〉)⊥ .

For (6), let I ⊆ A and take x, y ∈ I⊥ , hence for all z ∈ I we have x ∧ z = y ∧ z = 0, by
Proposition 2.5(3) we also have (x⊕ y) ∧ z = 0, hence I⊥ is closed under ⊕. The fact
that I⊥ is downward closed is an immediate consequence of the monotonicity of ∧,
Proposition 2.5(2).

To prove (7), suppose h ∈ H , then by hypothesis h ∧ i = 0 for all i ∈ I . So, if h also
belongs to I , then h ∧ h = 0, whence h = 0.

To prove (8) we reason by contradiction. Suppose that there exists h ∈ H and h 6∈ I⊥ ;
the latter implies that there exists some i ∈ I such that h ∧ i 6= 0, but H and I are
downward closed, so h ∧ i belongs to both of them and is different from 0.

Definition 2.25 Henceforth we will indicate by PrimO(A) the set of primary ideals of
an RMV–algebra A that have the form O(M) for some M ∈ Max(A).

Lemma 2.26 In every RMV–algebra A:⋂
I∈PrimO(A)

I = {0}
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As a consequence, every RMV–algebra is isomorphic to a subdirect product of local
RMV–algebras.

Proof The first statement was originally proved for MV–algebras in [22, Lemma 2.2].
In the light of Lemma 2.15 the results holds also for RMV–algebras. The second
statement is an exercise in universal algebra, combined with Lemma 2.22(3).

Lemma 2.26 has an analogue in terms of linearly ordered RMV–algebras.

Lemma 2.27 Every RMV–algebra is isomorphic to the subdirect product of linearly
ordered RMV–algebras.

Proof This is known as Chang’s subdirect representation theorem for MV–algebras
[10, Theorem 1.3.3], which asserts that subdirectly irreducible MV–algebras are linearly
ordered. In the light of Lemma 2.15 the same holds for RMV–algebras.

Lemma 2.28 (Chinese reminder theorem for RMV–algebras) Let I1, I2, . . . , In be
ideals of an RMV–algebra A and let a1, a2, . . . , an be elements of A such that
[ai]Ii∨Ij = [aj]Ii∨Ij for i, j = 1, 2, . . . , n. Then there exists a ∈ A such that [a]Ii = [ai]Ii

for i = 1, 2, . . . , n.

Proof This was originally proved for MV–algebras in [21, Theorem 2.6]. In the light
of Lemma 2.15 the results holds also for RMV–algebras.

Theorem 2.29 (Marchioni [30, Theorem 3.5]) Every linearly ordered RMV–algebra
A can be embedded in a suitable ultrapower of the RMV–algebra [0, 1] that depends
only on the cardinality of A. As a consequence, every RMV–algebra B is isomorphic
to an RMV–algebra of functions from Spec(B) into a suitable ultrapower [0, 1]∗ , by
the map that sends any b ∈ B into the function gb : Spec(B) → [0, 1]∗ such that
gb(P) = [b]P .

Corollary 2.30 No proper non-trivial sub-quasi-variety of RMV–algebra exists (a
fortiori, no proper non-trivial subvariety of RMV–algebras exists).

Proof By Theorem 2.11, every non-trivial RMV–algebra contains a copy of [0, 1],
which, by Theorem 2.29 generates the full class of all RMV–algebras as a quasi-
variety.
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3 Sheaf representation

Several sheaf representations for MV–algebras are known, we refer to Gehrke, van
Gool, and Marra [24] for a complete and unifying account of them. In this section we
provide two sheaf representations of RMV–algebras: Corollary 3.11 and Corollary 3.13.
When combined with Theorem 2.12, the two results afford two sheaf representations of
Riesz spaces with order unit.

The first result is similar to the representation proved for MV–algebras in Filipoiu and
Georgescu [22]. However, the proof we present here is much shorter as it uses a general
and powerful criterion in Davey [12]. The second result is similar to the representation
proved for MV–algebras in Dubuc and Poveda [19]. Also in this case our proof is much
shorter as it uses a general result in Cornish [11].

We recall a few basic definitions and some results from [12], for the sake of completeness
and to fix the notation.

Definition 3.1 (Sheaf space) A sheaf space of sets is a triple (F,X, π) where X—the
base space—and F—the étalé space— are topological spaces, and π : F → X is a local
homeomorphism, ie, for each a ∈ F , there exist open sets A 3 a and A′ 3 π(a), such
that π is a homeomorphism from A into A′ .

If x ∈ X , we denote by Fx the set π−1(x) and we call it the stalk at x . If Y ⊆ X , then
F(Y) denotes the set of continuous maps σ : Y → F , such that σ(y) ∈ Fy for all y ∈ Y .
The elements of F(Y) are called (local) sections over Y , the elements of F(X) are called
global sections.

Definition 3.2 (Sheaf space of algebras) Let L be a purely functional first order
language. A sheaf space of sets (F,X, π) is called sheaf of algebras of type L if

(1) for each x ∈ X , Fx is an algebra of type L, and
(2) for each open subset U of X the set F(U) forms an algebra of type L under

point-wise operations.

Let K be a class of algebras in some language L, if (F,X, π) is a sheaf space of algebras
of type L such that conditions in (1) and (2) above hold with “algebra of type L”
replaced by “algebra in K”, then (F,X, π) is a sheaf space of K-algebras.

Remark 3.3 If in the above definition K is a variety (=equational class of algebras),
then the conditions of (1) and (2) are equivalent (see [12, Lemma 1.2] and the ensuing
discussion).
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It is shown in [12, Theorem 1.5] that, in the context of varieties, the definition above
of sheaf space of K-algebras is equivalent to the classical definition of sheaves as
contravariant functors with values in K satisfying the gluing axioms.

3.1 Compact sheaf representation

Given an algebra A, an element a ∈ A, and a congruence Θ on A, we indicate by [a]Θ
the equivalence class of a in A/Θ. If {Θx | x ∈ X} is a family of congruences on an
algebra A and U ⊆ X , we define ΘU =

⋂
x∈U Θx . Since we will often work with ideals

rather than congruences, if I is an ideal of A and a ∈ A, we will write [a]I for [a]θI ,
where θI is the congruence associated to I by Lemma 2.14.

Definition 3.4 (The sheaf associated to an algebra) Given an algebra A, a topological
space (X, τ ), and a family {Θx | x ∈ X} of congruences on A, one can define the triple
(FA,X, π) as follows:

i) FA is the disjoint union of the quotients A/Θx as x varies in X ; in symbols:

FA :=
⊎
x∈X

A/Θx

ii) The function π is defined as the projection from FA into X , ie, π([a]Θx) := x .
iii) Upon defining, for any a ∈ A, the function â : X → FA as â(x) := [a]Θx , the set FA

is endowed with the topology generated by the sub-basis {â[U] | U ∈ τ, a ∈ A}.

In general, the above-defined triple may fail to be a sheaf of algebras. The following
result, due to Davey, characterises in terms of the topology on X the cases in which the
triple is indeed a sheaf .

Theorem 3.5 ([12, Lemma 2.1, Corollary 2.2]) Let A be an algebra in a language L.
Let {Θx | x ∈ X} be a family of congruences on A and τ be a topology on X .

(1) The triple defined in Definition 3.4 is a sheaf of L-algebras if and only if the
following condition holds:

For any a, b ∈ A and any x ∈ X , if [a]Θx = [b]Θx , then there exists
an open set U 3 x such that [a]ΘU = [b]ΘU ,

where ΘU :=
⋂

x∈U Θx .
(2) Additionally, if the above condition holds, and A is a subdirect product of the

algebras {A/Θx | x ∈ X}, then the assignment a 7→ â from the algebra A into
the algebra of global sections of (FA,X, π) is an injective L-homomorphism.
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The set of maximal ideals of an MV–algebra A is usually regarded as a topological space
by endowing it with the Zariski-like topology generated by the open sets of the form
{M ∈ Max(A) | a 6∈ M} for a ∈ A. The problem is that in general maximal ideals are not
enough to separate the elements of an arbitrary RMV–algebra. So, Theorem 3.5 would
not necessarily provide an embedding if applied to the set of congruences corresponding
to maximal ideals. In view of Lemma 2.26 we may remedy this by considering the
obvious bijection O : Max(A)→ PrimO(A), that sends M ∈ Max(A) into O(M). Indeed,
the map is clearly surjective, and it is injective because every primary ideal is contained
in a unique maximal ideal. Using this bijection we endow PrimO(A) with a topology
that makes it homeomorphic to Max(A), as follows.

Definition 3.6 We endow the set PrimO(A) with the topology generated by the
following open sets:

U(a) := {O(M) ∈ PrimO(A) | a 6∈ M} for a ∈ A(9)

Remark 3.7 It is an immediate consequence of the Definition 3.6 that the space Max(A)
is homeomorphic to PrimO(A).

Theorem 3.8 Let A be an RMV–algebra. Consider the family of congruences
{θP | P ∈ PrimO(A)}, where θP is the congruence in bijection, according to Lemma 2.14,
with P ∈ PrimO(A). Then (FA, PrimO(A), π) constructed as in Definition 3.4 is a sheaf
of local RMV–algebras over a compact Hausdorff space and A embeds into the algebra
of global sections of (FA, PrimO(A), π) by the assignment that sends a ∈ A into
â ∈ FA(PrimO(A)).

Proof In order to prove that (FA, PrimO(A), π) is a sheaf of algebras we use Theo-
rem 3.5(1). To this end we first need to prove:

Claim 1 For any a, b ∈ A, the set U := {Q ∈ PrimO(A) | [a]Q = [b]Q} is open in the
topology defined in (9).

Proof of Claim 1 Let Q ∈ PrimO(A) and M be the unique maximal ideal for which
Q = O(M). Notice preliminarily that by Lemma 2.14 if Q ∈ U , then d(a, b) ∈ Q. By
definition of O(M) there exists c 6∈ M such that d(a, b) ∧ c = 0. Since Q = O(M), we
have Q ∈ U(c). In addition U(c) ⊆ U . Indeed, if R ∈ U(c), let N be the maximal ideal
such that R = O(N), then by definition of U(c), c 6∈ N and since d(a, b) ∧ c = 0 the
definition of O(N) entails that d(a, b) ∈ O(N) = R whence [a]R = [b]R . We conclude
that U can be written as the union of all U(c) where each c ∈ A is found as above,
hence U is open.
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As a consequence of Claim 1, the main condition of Theorem 3.5 is satisfied. Indeed, Let
a, b ∈ A and fix any P ∈ PrimO(A), suppose that [a]P = [b]P , then by Claim 1 the set U
is open, by its definition [a]U := [a]⋂

P∈U P = [b]⋂
P∈U P = [b]U , and obviously P ∈ U .

By Theorem 3.5(1) we conclude that (FA, PrimO(A), π) is a sheaf of RMV–algebras.

The stalks (FA)P for P ∈ PrimO(A) are local by Lemma 2.22(3) and Lemma 2.24, for
(FA)P ∼= A/P. By Remark 3.7 PrimO(A) is homeomorphic to Max(A); since the latter
is known to be compact and Hausdorff (see eg Cabrer and Spada [7, Remark 3.8])
PrimO(A) will be as well.

Finally, by Lemma 2.26, the ideals in PrimO(A) are enough to afford a subdirect
decomposition of A, so by Theorem 3.5 the assignment a 7→ â is an injective RMV-
homomorphism.

Remark 3.9 Notice that any open set in PrimO(A) with the topology given in (9) can
be written in the form U(I) := {O(M) | I 6⊆ M}, with I a suitable ideal of A. Indeed if
U is open, then it can be written as U =

⋃
a∈S Ua for some subset S of A. Then if we

set I := 〈S〉, we have that if O(M) ∈ U , then there exists a ∈ S such that a 6∈ M , so
also 〈{a}〉 6⊆ M , whence I 6⊆ M . Vice versa, if I 6⊆ M , then S 6⊆ M , whence there
exists a ∈ S such that a 6∈ M .

Lemma 3.10 The assignment a 7→ â of Theorem 3.8 is surjective; in other words for
every global section σ ∈ FA(PrimO(A)) there exists a ∈ A such that σ = â.

Proof The proof is similar to Ferraioli [20, Proposition 4.1.5]; we spell out the details
for the sake of completeness. Let I be an index set such that {Pi | i ∈ I} = PrimO(A).
Fix Pi ∈ PrimO(A), by Definition 3.1 σ(Pi) ∈ A/Pi , so there exists ai ∈ A such that
σ(Pi) = [ai]Pi , hence σ(Pi) = âi(Pi). By Theorem 3.5(1), there is an open set Ui

containing Pi , such that:

σ(Q) = â(Q), for any Q ∈ Ui(10)

There is no loss of generality in taking Ui to be a basic open, so there exists bi ∈ A such
that Ui = U(bi). The open sets {U(bi) | i ∈ I} form an open covering of PrimO(A) so,
by compactness a finite open covering {U(b1), . . . ,U(bn)} can be extracted. Since

PrimO(A) =
n⋃

i=1

U(bi) = U(b1 ∨ · · · ∨ bn)

one has that 〈{b1}〉 ∨ · · · ∨ 〈{bn}〉 = A. Let us define:

Hij :=

{
A if U(bi ∧ bj) = ∅⋂
{Q ∈ PrimO(A) | Q ∈ U(bi ∧ bj)} otherwise
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Notice that if Q ∈ U(bi∧bj) then Q ∈ U(bi)∩U(bj), so by (10), σ(Q) = [ai]Q = [aj]Q ,
hence [ai]Hij = [aj]Hij for any i, j ≤ n. For any i, j, h ≤ n, by Proposition 2.5(7)
d(ai, aj) ≤ d(ai, ah)⊕d(ah, aj) ∈ Hih∨Hhj . So, letting Ii := 〈{bi}〉, the ideal generated
by bi :

d(ai, aj) ∈
n⋂

h=1

(
Hih ∨ Hhj

)
=

(
n⋂

h=1

(
Hih ∨ Hhj

))
∩

n∨
k=1

Ik because
n∨

k=1

Ik = A

=

n∨
k=1

(
n⋂

h=1

(
Hih ∨ Hhj

)
∩ Ik

)

⊆
n∨

k=1

((
Hik ∨ Hkj

)
∩ Ik

)
=

n∨
k=1

(Hik ∩ Ik) ∨
n∨

k=1

(
Hkj ∩ Ik

)

Let Ji :=
∨n

k=1 (Hik ∩ Ik). Then [ai]JI∨Jj = [aj]Ji∨Jj for i, j = 1, 2, . . . , n. So, by the
Chinese Remainder Theorem (Lemma 2.28) there exists a ∈ A such that [a]Ji = [ai]Ji

for i = 1, 2, . . . , n. In other words, for every i ≤ n, we have d(ai, a) ∈ Ji . As the next
step we claim that

Claim 2 For any i, k ≤ n, Hik ∩ Ik ⊆ I⊥i .

Proof of Claim 2 We reason by cases.
If U(bi ∧ bk) = ∅, then by Lemma 2.26 bi ∧ bk = 0, it follows by Lemma 2.24(5) that
bk ∈ I⊥i , hence, using Lemma 2.24(6), we have Ik ⊆ I⊥i . Furthermore, since in this
case by definition Hik = A, it holds Hik ∩ Ik = Ik . So we conclude Hik ∩ Ik ⊆ I⊥i .
If U(bi ∧ bk) 6= ∅, then by definition Hik =

⋂
{O(N) | N ∈ U(bi ∧ bk)} =

⋂
{O(N) |

N ∈ U(〈{bi ∧ bk}〉)} =
⋂
{O(N) | N ∈ U(Ii ∩ Ik)}, where the latter equality holds

because of Lemma 2.17. By way of contradiction suppose that x ∈ Hik ∩ Ik but x 6∈ I⊥i .
This means that there exists a ∈ Ii such that x ∧ a 6= 0. By Lemma 2.26 there exists
N ∈ PrimO(A) such that x ∧ a 6∈ N . But x ∧ a ∈ Ii ∩ Ik , because x ∈ Ik and a ∈ Ii and
they are both downward closed. So, N ∈ U(Ii ∩ Ik) and since x ∈ Hik , we have x ∈ N .
In turn this would imply x∧ a ∈ N , which contradicts our hypothesis. So, in both cases
we have Hik ∩ Ik ⊆ I⊥i .

As an immediate consequence of the claim and Lemma 2.24(6) we obtain that Ji ⊆ I⊥i
for every i ≤ n. In addition I⊥i ⊆ O(N) for every N ∈ U(bi), because if N ∈ U(bi),
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then bi /∈ N , hence byLemma 2.24(1) I⊥i ⊆ O(N). Therefore d(ai, a) ∈ O(N), for
each N ∈ U(bi) and i = 1, . . . , n. It follows that â|U(bi)

= âi |U(bi)
= σ|Ui for every

i = 1, 2, . . . , n, that is σ = â.

Corollary 3.11 Every RMV–algebra is isomorphic to the algebra of global sections of
a sheaf of local RMV–algebras over a compact Hausdorff space.

Proof By combining Theorem 3.8 with Lemma 3.10.

3.2 Spectral sheaf representation

In this section we give an application of the following result by Cornish that provides
sufficient conditions to represent an algebra using the spectrum of prime ideals as base
space, topologised with the co-Zariski topology. Recall that the co-Zariski topology is
defined on a set of prime ideals exactly as the Zariski topology, but the basic open sets
and the basic closed sets are swapped. Recall also that a congruence θ is called prime,
if θ = θ1 ∩ θ2 implies θ = θ1 or θ = θ2 . It is known, and easy to check, that prime
congruences correspond to prime ideals by the isomorphisms of Lemma 2.14.

Theorem 3.12 (Cornish [11, Theorem 2.5]) Let A be an algebra and C(A) be its set
of congruences. Suppose that a subset D ⊆ C(A) satisfies the following conditions:

(1) D contains the identity congruence id and the total congruence ω .
(2) It is closed under intersections.
(3) D is upper regular in C(A), ie the join of any subset of D exists and coincide

with the join in C(A).
(4) D is a distributive lattice.
(5) D consists of permuting congruences.
(6) D is compactly generated.
(7) The intersection of two compact elements in D is again compact.

Then A is isomorphic to the sheaf associated to it as in Definition 3.4, where the space
(X, τ ) is the space of prime elements of D with the co-Zariski topology.

Notice that D satisfies (4) and (5) above if and only if it satisfies the Chinese Remainder
Theorem (Lemma 2.28) relatively to the congruences in D (see [11, Lemma 2.2]).

Corollary 3.13 Every RMV–algebra A is isomorphic to the algebra of global sections
of a sheaf of linearly ordered RMV–algebras on the space Spec(A) with the co-Zariski
topology.
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Proof Consider an RMV–algebra A and take as D in Theorem 3.12 above the whole
set of congruences on A. Then (1) to (3) and (6) are obvious. (4) and (5) hold because
of Lemma 2.28 (although they are well-known to hold for MV–algebras, and the
results obviously extend to RMV–algebras). Finally, to see that (7) holds, notice that
the compact elements in the lattice of congruences of A are the finitely-generated
congruences, which correspond to principal ideals. So an application of Lemma 2.17
concludes the proof.

Remark 3.14 As one of the referees pointed out the two sheaf representations of this
section could alternatively be derived by the recent results contained in Gehrke and van
Gool [23] and in particular from Corollary 3.12 contained therein. Indeed, as noted
after Theorem 3.12, the variety of RMV–algebras is both congruence permutable and
congruence distributive. In addition RMV–algebras have the Compact Intersection
Property, by Lemma 2.17. In contrast with the injectivity of Theorem 3.5(1), [23,
Corollary 3.12] guarantees without further work that the algebra is isomorphic to the
algebra of global sections of its representing sheaf, therefore our Lemma 3.10 would not
be necessary. However, the results in [23] require extra work to characterise precisely
the stalks in the representation, while in our approach they are clearly described by the
construction itself.

4 Local RMV–algebras

4.1 Localisation of RMV–algebras

We begin this section motivating the name local RMV–algebras. The reasons are
essentially similar to the ones that motivated the name local MV–algebra (see Belluce,
Di Nola, and Gerla [2, Section 5]).

In modern terms one could define the abstract concept of localisation as follows.

Definition 4.1 Assume that A is an algebraic structure in which it make sense to speak
about prime and maximal ideal. Let P be a prime ideal of A. A localization of A at the
prime P is an algebra B of the same type of A such that:

(1) there exist a subalgebra of A and a homomorphism h such that B is isomorphic
to h[A];

(2) the image of P, h[P], is the unique maximal ideal of B; and
(3) Spec(B) is homeomorphic to the subspace of Spec(A) of prime ideals that are

contained in P.
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Here by Spec(A) we mean the space of prime ideals of A with the Zariski topology.

We will show that one can perform a localisation of an RMV–algebra at an arbitrary
prime ideal. Unfortunately the localisation is not unique: this is the reason why we had
to include the possibility of a subalgebra in (1) above; however, we will see that there is
a canonical construction.

Thorough this section A is assumed to be a non-trivial RMV–algebra. We fix some
notation:

Notation Given an RMV–algebra A and an ideal P of A, we set

LA(P) := {A′ ≤ A | P is a maximal ideal of A′}

where A′ ≤ A means that A′ is an RMV-subalgebra of A. We further set:

ωA(P) := {Q ∈ Spec(A) | Q ⊆ P} and ΩA(P) :=
⋂
ωA(P)

Finally, if X ⊆ A we set Ralg(X) to be the RMV-subalgebra of A generated by X .

Proposition 4.2 Let P be any ideal of an RMV–algebra A. Then P is a maximal ideal
of Ralg(P). Hence Ralg(P) ∈ LA(P); in particular LA(P) 6= ∅.

Proof The support of the algebra Ralg(P) can be described as the set:

{t(p1, . . . , pk) | t is an RMV-term and p1, . . . , pk ∈ P} .

Recall that, by Lemma 2.14, the ideal P induces a congruence θP . We prove by induction
on the complexity of t that every element t(p1, . . . , pk) ∈ Ralg(P) is congruent modulo
θP to an element of the form fr(1) ∈ [0, 1]. To simplify the induction steps, we use as
basic operations 	, 1 and {fr | r ∈ [0, 1]}, justified by Remark 2.2. For the base step, it
is readily seen that 1 θP f1(1) and p θP f1(0) for every p ∈ P. For the inductive step first
consider the element t(p1, . . . , pk)	 u(q1, . . . , ql) ∈ Ralg(P) for t, u RMV-terms and
p1, . . . , pk, q1, . . . , ql ∈ P. By induction hypothesis there exist r, s ∈ [0, 1] such that
t(p1, . . . , pk) θP fr(1) and u(q1, . . . , ql) θP fs(1). Since θP is a congruence it also holds
t(p1, . . . , pk)	u(q1, . . . , ql) θP fr(1)	 fs(1) = fr	s(1), where the last equality is justified
by (RMV 2). Similarly, if we consider the element fr̄(t(p1, . . . , pk)) ∈ Ralg(P), then
by induction hypothesis there exists s̄ ∈ [0, 1] such that t(p1, . . . , pk) θP fs̄(1), hence
fr̄(t(p1, . . . , pk)) θP fr̄(fs̄(1)) = fr̄s̄(1), where the last equality is justified by (RMV 3).
This concludes the induction.

To prove that P is maximal in Ralg(P) take an arbitrary p̄ ∈ Ralg(P) \ P. Then there
exists an r ∈ [0, 1] such that p̄ θP fr(1), since p̄ 6∈ P, fr(1) 6= 0. Since fr(1) ∈ R(A) and
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R(A) is isomorphic to [0, 1], there is an n ∈ N such that (n)fr(1) = 1. Hence, (n)p̄ θP 1,
and this entails that ((n)p̄))∗ θP 0 hence ((n)p̄))∗ ∈ P. Since (n)p̄⊕ ((n)p̄)∗ = 1, we
have that P ∪ {p̄} generates the improper ideal in Ralg(P). In other words, P is a
maximal ideal of Ralg(P).

Note that P is not necessarily the unique maximal ideal of Ralg(P). In fact, consider
A = [0, 1]2 and P the ideal generated by the element (0, 1). Then it is readily seen that
(0, 1) generates the full RMV–algebra A, hence Ralg(P) = A but A is obviously not
local.

Proposition 4.3 Let A be an RMV–algebra, P any ideal of A, and A′ ∈ LA(P).
Then A′/ΩA(P) is a local RMV–algebra with maximal ideal P/ΩA(P). In particular
Ralg(P)/ΩA(P) is a local RMV–algebra with maximal ideal P/ΩA(P).

Proof This was proved for MV–algebras in [2, Proposition 12]. Since it is a statement
about ideals, in the light of Lemma 2.15, it also holds for RMV–algebras.

Theorem 4.4 Let A be an RMV–algebra and P a prime ideal of A. Then for any
A′ ∈ LA(P) there is a natural homeomorphism between ωA(P)—seen as a subspace of
Spec(A) with the Zariski topology—and Spec(A′/ΩA(P)).

Proof This was proved for MV–algebras in [2, Proposition 15 and 16]. Since it is a
statement about ideals, in the light of Lemma 2.15, it also holds for RMV–algebras.

Summing up, for every A′ ∈ LA(P), and every P ∈ Spec(A), the algebra A′/O(P)
satisfies Definition 4.1. In particular Ralg(P)/O(P) can be considered the canonical
localization of the RMV–algebra A at the prime ideal P.

The rest of this section is devoted to the study of local RMV–algebras.

4.2 Quasi-constant functions

Motivated by Theorem 2.29 we study RMV–algebras of [0, 1]∗ -valued functions,
with [0, 1]∗ an arbitrary non-principal ultrapower of the RMV–algebra [0, 1], and
characterise local RMV–algebras among them.

Definition 4.5 If [0, 1]∗ is any ultrapower of the RMV–algebra [0, 1], we call st
(for standard part) the canonical quotient from [0, 1]∗ into [0, 1] induced by (the
congruence associated to) the ideal Rad([0, 1]∗).
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Lemma 4.6 Let [0, 1]∗ be an arbitrary ultrapower of the RMV–algebra [0, 1] and let
X be any set. The function st : [0, 1]∗ → [0, 1] extends to a function s̃t : ([0, 1]∗)X →
[0, 1]X , defined for any g ∈ ([0, 1]∗)X by s̃t(g) := st ◦g, which is in turn induced by
the ideal Rad(([0, 1]∗)X).

Proof Since st is surjective, s̃t is surjective as well. Moreover we have:

ker
(
s̃t
)

=
{

g ∈ ([0, 1]∗)X | s̃t(g) = 0
}

by the definition of ker

=
{

g ∈ ([0, 1]∗)X | st(g(x)) = 0 for all x ∈ X
}

by the definition of s̃t

=
{

g ∈ ([0, 1]∗)X | g(x) ∈ Rad([0, 1]∗) for all x ∈ X
}

by the definition of st

=
(
Rad([0, 1]∗)

)X

= Rad(([0, 1]∗)X)

So s̃t is the quotient map of the MV–algebra ([0, 1]∗)X modulo the ideal
Rad(([0, 1]∗)X).

Definition 4.7 If A is an RMV–algebra and x, y ∈ A, we say that x and y are infinitely
close if d(x, y) ∈ Rad(A).

Definition 4.8 A function g from a set X into some non-trivial, linearly ordered
RMV–algebra C is called quasi-constant if it is infinitely close to some constant
function; in symbols, if for all x, y ∈ X , d(g(x), g(y)) ∈ Rad(C).

Lemma 4.9 If A is an RMV–algebra of quasi-constant functions into an ultrapower
[0, 1]∗ of the RMV–algebra on [0, 1], then s̃t[A] ∼= [0, 1].

Proof If g ∈ A is quasi-constant, then s̃t(g) is a constant function form X into
[0, 1], so s̃t[A] is embedded into [0, 1] by the map that evaluates functions in s̃t[A]
at any point in X . Furthermore, by Theorem 2.11, [0, 1] is a subalgebra of s̃t[A].
By Lemma 2.7, the composition of the two embedding must be the identity, hence
s̃t[A] ∼= [0, 1].

Theorem 4.10 An RMV–algebra is local if and only if it can be represented as an
algebra of quasi-constant functions into an ultrapower [0, 1]∗ of the RMV–algebra on
[0, 1].

Proof Let A be an RMV–algebra of quasi-constant functions from X into some
ultrapower [0, 1]∗ . An immediate application of Lemma 4.6 gives that the restriction
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s̃t to A is induced by the ideal Rad(A). By Lemma 4.9, A/ Rad[0, 1] ∼= [0, 1]. Hence,
by Lemma 2.22(1), Rad(A) is maximal, hence A is local. For the other direction, let A
be a local RMV–algebra. Let a ∈ A and P ∈ Spec(A), by Theorem 2.29 we identify
A/P with a suitable ultrapower [0, 1]∗ so that a corresponds to a function ga with
values in [0, 1]∗ such that ga(P) = [a]P for every P ∈ Spec(A).

Let M be the unique maximal ideal of A and P,P′ ∈ Spec(A), then A/P and A/P′ are
local and their unique maximal ideals are M/P and M/P′ , respectively. Furthermore,
by the second isomorphism theorem in Burris and Sankappanavar [6, Theorem 6.15,
Chapter II] (together with the correspondence between congruences and ideals of
Lemma 2.14), if I ⊆ J are ideals of A, then there is an isomorphism from A

I /
J
I into

A/I that sends
[
[a]I
]

I/J into [a]J . Since by Lemma 2.22(1) the only endomorphism of
[0, 1] is the identity we have:

st(ga(P)) =
[
[a]P

]
M/P = [a]M =

[
[a]P′

]
M/P′ = st(ga(P′))

Since P and P′ are arbitrary prime ideals, ga is quasi-constant, as required.

Corollary 4.11 An RMV–algebra is local if and only if it can be represented as
an algebra of quasi-constant functions with values in a non-trivial, linearly ordered
RMV–algebra.

Proof If an RMV–algebra A is local, then by Theorem 4.10 it is an algebra of
quasi-constant functions into an ultrapower [0, 1]∗ , and the latter is linearly ordered.
Conversely, if A can be represented as an algebra of quasi-constant functions with values
in a linearly ordered RMV–algebra C , then by Theorem 2.29, C can be embedded into
some ultrapower of [0, 1]. Notice that the composition of a quasi-constant function into
C with this embedding gives a quasi-constant function with values in the ultrapower,
because the image under the embedding of the radical of C is included in the radical of
the ultrapower. Hence we can again apply Theorem 4.10 to obtain that A is local.

Remark 4.12 It is important to note that every non-trivial RMV–algebra A has a
largest local RMV-subalgebra. Indeed, by Theorem 2.29, A can be represented as an
algebra of functions from a set I to an ultrapower [0, 1]∗ . Under this representation,
the smallest RMV-subalgebra R(A) is given by the subalgebra of constant functions.
Consider the set:

L(A) := {f ∈ A | f is quasi-constant}

The set L(A) is obviously closed under all RMV-operations and contains all constant
functions with range in [0, 1]∗ . So, by Theorem 4.10, L(A) is a local RMV-subalgebra
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of A. Take an arbitrary proper subalgebra B of A and suppose that B is not contained in
L(A). Then, there is b ∈ B which is not in L(A). Then b is (represented by) a function
that is not quasi-constant. Hence, there must be i, j ∈ I and two rationals p < q such
that b(i) < p and b(j) > q. By McNaughton’s Theorem [10, Theorem 9.1.5], one can
find an MV-term t such that t(b)(i) = 0 and t(b)(j) = 1. Let a := t(b) ∈ B. Consider
the ideal J of B given by all the functions in B which are zero on i: J is not contained
in Rad(B) = Rad(A) ∩ B because a ∈ J \ Rad(B), so B must have at least two distinct
maximal ideals, hence it cannot be local.

4.3 Radical retractions

Lemma 4.13 Let A be an MV–algebra and suppose a, b ∈ A are infinitely close.
Then:

(1) There exists ε ∈ Rad(A) such that a ∨ b = ε⊕ b.
(2) The element a can be written as an MV-polynomial with coefficients in Rad(A)∪
{b}.

Proof (1). By hypothesis (a	 b)⊕ (b	 a) =: d(a, b) ∈ Rad(A), since Rad(A) is an
ideal, hence downward closed, this implies that also (a	 b) ∈ Rad(A). By definition
a ∨ b := (a	 b)⊕ b, whence taking ε := (a	 b) settles the claim.

(2). If a, b ∈ A are infinitely close then a	 b, b	 a ∈ Rad(A). Notice that:

d(a∗, a∗ ∧ b∗)

= (a∗ 	 (a∗ ∧ b∗))⊕ ((a∗ ∧ b∗)	 a∗) by Equation (3)

= (a∗ 	 (a∗ ∧ b∗))⊕ 0 = a∗ 	 (a∗ ∧ b∗) by Equation (5) and a∗ ∧ b∗ ≤ a∗

= a∗ � (a∗ ∧ b∗)∗ = a∗ � (a ∨ b) by Equation (3) and Equation (6)

= (a∗ � a) ∨ (a∗ � b) = a∗ � b by Proposition 2.5(1) and (5)

= b	 a ∈ Rad(A) by Equation (3)

Therefore, a∗ and a∗ ∧ b∗ are infinitely close. By absorption a∗ = (a∗ ∧ b∗) ∨ a∗ ,
hence we can apply (1) to obtain a τ ∈ Rad(A) such that a∗ = (a∗ ∧ b∗)⊕ τ . Now, by
Equation (MV 3) and Equation (3) we obtain

a = (a ∨ b)� τ∗ = (ε⊕ b)� τ∗

where ε, τ ∈ Rad(A), and this concludes the proof.

Theorem 4.14 An RMV–algebra A is local if and only if it is generated by its radical.
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Proof If A is generated by Rad(A), then, by Proposition 4.2, Rad(A) is maximal in A.
Hence, since Rad(A) is contained in all maximal ideals, Rad(A) is the only maximal
ideal of A and A is local.

Conversely, suppose that A is local. By Theorem 4.10 A is isomorphic to an algebra
of quasi-constant functions from a set X into some ultrapower [0, 1]∗ . So, for
any a ∈ A there exists r ∈ [0, 1] such for all i ∈ X , st(a(i)) = r . So, for all
i ∈ X , d(a(i), fr(1)) ∈ Rad([0, 1]∗). Hence, by Lemma 4.13(2), a can be written as
a polynomial with coefficients in Rad(A) ∪ b, where b ∈ R(A). Since R(A) is the
0-generated subalgebra of A, the algebra A is generated by its radical.

Theorem 4.15 An RMV–algebra A is local if and only if A/ Rad(A) ∼= [0, 1].

Proof Preliminarily, notice that by Lemma 2.22(1), A/ Rad(A) ∼= [0, 1] if, and only
if Rad(A) is maximal. Now, if A is local, then Rad(A) is the only maximal ideal of
A, therefore A/ Rad(A) ∼= [0, 1]. Vice versa, if A/ Rad(A) ∼= [0, 1], then Rad(A) is
maximal, whence A is local.

Definition 4.16 Let A be an RMV–algebra and M be an ideal, we say that A is
M-retractive if there exists a section s such that the following diagram commutes:

A
M

A
A
M

s πM

id

When this applies for M = Rad(A) we say that A is Rad-retractive.

Proposition 4.17 Let A be a non-trivial RMV–algebra and M be a maximal ideal of
A. Then A is M -retractive and the section of the quotient map A→ A/M is unique.

Proof The ideal M is maximal, so by Lemma 2.22(1) there is an RMV-isomorphism
h : A/M → [0, 1]. Let πM be the quotient map from A to A/M . Let us define
a map j : [0, 1] → A stipulating that j(x) = fx(1). Now πM ◦ j ◦ h is an RMV–
algebra endomorphism of A/M ; and since A/M is isomorphic to [0, 1], the only RMV
endomorphism of A/M is the identity (Lemma 2.7). So πM ◦ j ◦ h = id and j ◦ h is a
section of πM .

To prove uniqueness, suppose s, t are sections of πM . Since s, t factor the identity they
must be injective, so s(A/M) and t(A/M) must be RMV-subalgebras of A, and they are
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both isomorphic to [0, 1], by the maximality of M . So, by Theorem 2.11 s(A/M) =

t(A/M) = R(A). Since, for every a ∈ A, πM(s(a/M)) = πM(t(a/M)) = a/M , the
elements s(a/M) and t(a/M) must be constants congruent to a modulo M . But, since
M is proper this can happen only if s(a/M) = t(a/M). By the arbitrarily of a we obtain
s = t .

Remark 4.18 Notice that, as an immediate consequence of the previous proposition,
every local RMV–algebra is Rad-retractive. Indeed, if A is local, then Rad(A) is
maximal.

Example 4.19 Consider the RMV–algebra A obtained as direct product of two copies
of the RMV–algebra [0, 1]. Then:

(1) A is Rad-retractive. In fact, it is semisimple so the radical is zero, so trivially the
algebra is radical-retractive (because it is zero-retractive).

(2) A is not local. In fact, the ideal of pairs with the first component zero is maximal,
and the one with the second component zero is also maximal. So A shows that
the implication of Remark 4.18 cannot be inverted.

(3) A is retracts onto [0, 1]. In fact, as a projection we can take (for instance) the
projection of A on the first component, and as a section the diagonal map sending
x ∈ [0, 1] to (x, x) ∈ A. So A shows that Theorem 4.15 cannot be trivially
generalised.

One could conjecture that Rad-retractiveness is a property shared by all RMV–algebras.
In fact, the conjecture is not easily disproved as all natural examples of RMV–algebras
have this property. However, one can build a counter-example to the conjecture.

Proposition 4.20 There is an RMV–algebra which is not Rad-retractive.

Proof Let [0, 1]∗ be the ultrapower of the RMV–algebra [0, 1] modulo a non-principal
ultrafilter on N. Let ε ∈ Rad([0, 1]∗) and consider the function g : N→ [0, 1]∗ defined
by g(n) = 1

n + ε. Let A be the RMV–algebra generated by g in the RMV–algebra
([0, 1]∗)N . We will show that A is not Rad-retractive.

We preliminarily show:

Claim 3 For every a ∈ A, if a is infinitely close to g, then there is a unary RMV-term
u such that u(a) > 0 and u(a) is infinitesimal.
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Proof of Claim 3 Let a ∈ A. Since A is generated by g there exists a unary RMV-term
t such that a = t(g). By Di Nola and Leuştean [18, Theorem 10] the interpretation
of t in the RMV–algebra [0, 1] is a continuous piecewise linear function, let ρ be its
right derivative in 0. Since there exists an open neighbourhood of 0 on which the
interpretation of t in [0, 1] is linear, ρ is a real number and there exists 0 6= m ∈ N
such that for any n ≥ m, t

( 1
n + ε

)
= ρ ·

( 1
n + ε

)
. Since t (g (n)) is infinitely close to

g (n) for every n ∈ N, it must be ρ = 1. So,

for any n ≥ m, t
(

1
n

+ ε

)
=

1
n

+ ε.(11)

Set u0 (x) := ((m− 1) x)� x . Straightforward calculations show that Equation (11) im-
plies that u0

(
t
( 1

m + ε
))

is a positive infinitesimal, whereas for n > m, u0
(
t
(1

n + ε
))

=

0. It follows that the set I ⊆ N such that for i ∈ I , u0
(
t
(1

i + ε
))

is not infinitesimal
and different form 0 is finite. So there must exist k ∈ N such that 1

k < u0
(
t
( 1

i + ε
))

for all i ∈ I .

Set u1 := (k) u0 . By previous calculations u1
(
t
( 1

m + ε
))

= 0 is a positive infinitesimal,
if n > m then u1

(
t
( 1

n + ε
))

= 0, and if n < m then u1
(
t
( 1

n + ε
))

is either equal to 1
or infinitesimal. Finally let u (x) := (u1 (x)) ∧ (u1 (x))∗ ; we have u

(
t
( 1

n + ε
))

= 0 is a
positive infinitesimal, if n > m then u

(
t
(1

n + ε
))

= 0, and if n < m then u
(
t
( 1

n + ε
))

is either equal to 0 or infinitesimal. Summing up, u (t (g)) is a positive infinitesimal.

To conclude the proof of Proposition 4.20 we reason by way of contradiction. So,
suppose that the quotient map π : A→ A/ Rad(A) is a retraction, ie there is a section
s : A/ Rad(A) → A such that π ◦ s is the identity. Notice that s must be injective.
Let e := s ◦ π , so e ◦ e = s ◦ π ◦ s ◦ π = e. The injectivity of s amounts to saying
that e(x) = e(y) if and only if π(x) = π(y), therefore form e(x) = e(e(x)) we deduce
π(x) = π(e(x)); in other words e(x) is infinitely close to x for every x ∈ A (intuitively,
the map e “chooses” a representative in each equivalence class modulo the radical).
So, in particular, e(g) is infinitely close to g, hence by Claim 3, there is a term u such
that u(e(g)) is infinitesimal and non-zero. It follows that e(u(e(g))) = 0. Since e is a
homomorphism and u is a term, we have e(u(e(g))) = u(e(e(g))) = u(e(g)) 6= 0 and
this contradiction concludes the proof.

It should be noticed that an MV–algebra may be endowed with several non-isomorphic
RMV–algebra structures, we refer the reader to Di Nola, Lenzi, Marra, and Spada [16]
for more details on this and to Lenzi [28], which solves the corresponding problem
posed by Conrad in 1975.
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Remark 4.21 As an application of Corollary 3.11 one finds that if an MV–algebra A
is a reduct of an RMV–algebra, then A must be isomorphic to the MV–algebra of global
sections of a sheaf on a compact Hausdorff space, whose stalks are local MV–algebras
that are radical retractive and whose quotient over their radical is isomorphic to [0, 1].
Indeed, since the stalks are local RMV–algebras, they must be radical-retractive by
Remark 4.18 and the quotient of each stalk modulo the radical is [0, 1] by Theorem 4.15.
Obviously these properties are preserved under taking their MV–reducts.

Note that the converse does not hold. Indeed, consider a sheaf in which the base space is
the one point topological space, and the unique stalk is given by an MV-subalgebra A of
[0, 1]∗ generated by [0, 1]∪{ε}, where ε is any positive infinitesimal. The MV–algebra
of global sections of this sheaf is trivially isomorphic to A. The MV–algebra A is local
(being linearly ordered), A/ Rad(A) = [0, 1] (since every element of A is infinitely
close to an element of [0, 1]) and A is radical retractive (since A/ Rad(A) = [0, 1]
embeds naturally in A), but A is not a reduct of an RMV–algebra, because it is not even
divisible. Indeed, every element of A has the form r ± kε where r is real and k is an
integer, so the element ε/2, which belongs to [0, 1]∗ , is not in A, hence A is not even
2-divisible.

Theorem 4.22 Let A be an RMV–algebra and let

ρπ :
∏

P∈Spec(A)

A/P→
∏

P∈Spec(A)

(A/P)/ Rad(A/P)

be the natural retraction whose components are given by the natural quotient maps
πRad(A/P) . The algebra A is Rad-retractive if and only if ρπ(A) embeds in A.

Proof Suppose that A is Rad-retractive and let ρ be the section of the retraction, ie,
πRad(A) ◦ ρ = id . For every RMV–algebra A there is a natural bijection β between the
RMV–algebras ρ(A) and ρπ(A), such that β(ρ(x)) = ρπ(x). In fact, we have ρ(x) = ρ(y)
if and only if ρπ(x) = ρπ(y) if and only if d(x, y) is infinitesimal, where d(x, y) denotes
Chang distance. Moreover, this bijection β is an RMV–algebra homomorphism, hence
ρπ(A) is isomorphic to ρ(A) and embeds into A.

Conversely, if ρπ(A) embeds in A via an embedding j, then the pair of maps (j, ρπ) is a
retraction of A on its radical quotient, and A is Rad-retractive.

Note that a retraction on the factors of a direct product induces a retraction on the
product, so every product of chains, finite or infinite, has a natural retraction by the
previous lemma.
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4.4 An equivalence between Local RMV–algebras and Riesz spaces

Theorem 4.23 An RMV–algebra is local if and only if it is isomorphic to ΓR(R−→×
W, (1, 0W)) where W is a Riesz space.

Proof Let W be an arbitrary Riesz space and let A ∼= ΓR(R−→× W, (1, 0W)). We show
that A is local. Consider the set M = {a ∈ A | a = (0,w) for w ∈ W}. It is easy
to see that M is an ideal of A. Furthermore, every element of A \ M has the form
(r,w) with 0 < r ≤ 1, so there exists a positive integer n such that r > 1/n, whence
(n)(r,w) = 1A . We conclude that no element of A \M can lie in a proper ideal of A.
Summing up, M is the greatest ideal of A, hence A is local.

Conversely, let A be a local RMV–algebra, hence by Theorem 4.14 A is generated by
its radical. Now let (V, u) be the Riesz space with order unit, given by Theorem 2.12,
such that A = ΓR(V, u). Then V , as a group, is generated by A. Moreover, since A
can be generated by Rad(A) by the RMV algebra operations, A can also be generated
by Rad(A) by using the Riesz space operations and u. Summing up, the Riesz space V
is generated by Rad(A) ∪ {u}. Let W be the Riesz subspace of V generated, as a Riesz
space, by Rad(A). Note that every element w of W is infinitesimal with respect to u, in
the sense that for every n ∈ N we have n|w| ≤ u.

So, every element v of V can be written as xu + w, where x is a real number and w ∈ W .
The pair (x,w) is unique, because if xu + w = x′u + w′ then (x− x′)u = w− w′ , and
the right hand side is infinitesimal with respect to u, whereas u is not infinitesimal with
respect to itself, so we must have x− x′ = 0 and therefore w = w′ . The map h sending
v to (x,w) gives a map from V to R−→× W which is a vector space isomorphism.

We are left with showing that h is an isomorphism of ordered sets. For this it is enough
to show that xu + w ≥ 0 in V if and only if (x,w) ≥ 0 in R −→× W . Suppose x = 0.
Then clearly w ≥ 0 if and only if (0,w) ≥ 0 in R−→× W . Now suppose x 6= 0. Since w
is infinitesimal, we have xu + w ≥ 0 in V if and only if xu ≥ 0 in V , and since u ≥ 0,
we have xu ≥ 0 in V if and only if x ≥ 0. But x ≥ 0 in V if and only if (x,w) ≥ 0
in R −→× W . Summing up, xu + w ≥ 0 in V if and only if (x,w) ≥ 0 in R −→× W as
desired.
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Definition 4.24 Let

(1) LRMV be the category of local Riesz MV–algebras and RMV-homomorphisms,
(2) R be the category of Riesz spaces with Riesz homomorphisms, and
(3) R1 be the category of Riesz spaces with order unit with Riesz homomorphisms

preserving the order unit.

We define an assignment ∆0 : R→ R1 as follows.

(1) If W is a Riesz space ∆0(W) := (R−→× W, (1, 0W)).
(2) If h : W → V is a homomorphism of Riesz spaces, ∆0(h) : ∆0(W)→ ∆0(V) is

defined as the map (r,w) 7→ (r, h(w)).

We further define ∆ : R→ LRMV as ∆ := ΓR ◦∆0 .

It is straightforward to check that ∆0 , and hence ∆, are functors.

Theorem 4.25 The functor ∆ is faithful, full, and dense. Hence it gives a categorical
equivalence between Riesz spaces and local RMV–algebras.

Proof To prove faithfulness it is enough to show that the functor ∆0 is faithful, since
the composition of faithful functors is faithful. Now if h, h′ : W → V are two Riesz
homomorphisms and ∆0(h) = ∆0(h′), then (r, h(w)) = (r, h′(w)) for every w ∈ W , so
h = h′ .

To prove fullness it is enough to show that the functor ∆0 is full, since the composition
of full functors is full. Let g : (R−→× W, (1, 0))→ (R−→× V, (1, 0) be a Riesz morphism
preserving the order unit. Then for every r ∈ R, g(r, 0) = rg(1, 0) = r(1, 0) = (r, 0).
Since g(r, 0) = (r, 0) for every r ∈ R and the map g is increasing, the first component
of g(r,w) must be r for every w ∈ W . Hence g(r,w) = (r, k(r,w)) for some function
k . In particular g(0,w) = (0, k(0,w)), and

g(r,w) = g(r, 0) + g(0,w) = g(r, 0) + (0, k(0,w)) = (r, 0) + (0, k(0,w)) = (r, k(0,w)).

Notice that the function h : W → V defined as h(w) = k(0,w) must be a homomorphism
of Riesz spaces because h(w) = π2 ◦ g(0,w)—where π2 is the projection onto the
second coordinate. So g(r,w) = (r, h(w)) = ∆0(k), whence ∆0 is full.

Density of ∆ amounts to the fact that for every local RMV–algebra A there exists a
Riesz space W such that A ∼= ∆(W). This is given by the left-to-right implication of
Theorem 4.23.

The equivalence is reminiscent of the equivalence between perfect MV–algebras and
`-groups of Di Nola and Lettieri [17]. Note that in this case, perfect RMV–algebras do
not exist, but in a sense they are replaced by local RMV–algebras.
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Dipartimento di Matematica, Università di Salerno. Piazza Caccioppoli, 2 84084 Fisciano (SA),
Italy
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