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Computability of convergence rates in the Ergodic Theorem
for Martin-Löf random points

GEORGE DAVIE

Abstract: In this paper we look at the convergence rates for the ergodic averages in
the pointwise ergodic theorem for computable ergodic transformations on Cantor
space. While, for example, these rates are layerwise computable for Martin-Löf
random points and effectively open sets with measure a computable real, they are
also layerwise computable for an arbitrary interval. For the shift operator, however,
there are effectively open sets for which there are no effective rates, in particular, not
layerwise computable ones. We also show that, when the measure of the effectively
open set is any real α , the convergence rates are computable in α and the layers
relative to α .
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1 Introduction

Probability laws that hold for almost all points can often be proven to hold for all
Martin-Löf random points, a set of measure 1. For example, the Laws of Large Numbers,
and the Law of the Iterated Logarithm, Vovk [17].

Further, under certain conditions one can use the randomness degree (the compressibility
coefficient or layer) of a point to find the rate at which it satisfies the probability law,
see Davie [5] and Hoyrup and Rojas [9].

In the first theme above, it was independently shown in the two papers Bienvenu,
Day, Hoyrup, Mezhirov and Shen [3] and Franklin, Greenberg, Miller and Ng [6]
that the ergodic average of every Martin-Löf random point will equal the measure
of the corresponding set for all effectively open/closed sets for computable ergodic
transformations in computable measure spaces. In the terminology of [6], every
Martin-Löf random point is Birkhoff for this context.

In general, the convergence rates of the ergodic averages are, however, not computable.
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2 George Davie

While the results of Avigad, Gerhardy and Towsner [2] and those of Hoyrup and Rojas
[9] imply that the convergence rates are layerwise computable when the measure of the
effectively open set is a computable number, the computability of the measure of the set
is not necessary. In fact, rates of convergence of the ergodic averages are layerwise
computable for any interval.

We also construct, for the classical ergodic operator on Cantor space, the shift operator,
an effectively open set for which convergence rates are not layerwise computable
(in fact not even effective), and deduce from this a sufficient condition for layerwise
computability of rates.

Lastly we show (using the result from [2] again) that for the measure of the effectively
open set any real α , the convergence rates are computable in α and the layers relative
to α .

2 Definitions and notation

Our ergodic setting is Cantor space with the normal product measure. We denote an
infinite sequence by ω . Our ergodic transformations T will be computable unless
noted otherwise. A function f on infinite binary sequences is computable if there is an
algorithm that, given access to an infinite binary sequence ω , will, on input n, output
the first n digits of f (ω). Of course, the algorithm uses only finitely many digits of ω
for each such computation.

We work throughout with effectively open sets. An effectively open set O is a union
of a computably enumerable set of basic open sets, in our case intervals. Note that, if
we are interested in the membership of such sets, then we do not at any finite stage,
have the complete set (and hence the characteristic function 1O ). At each stage n of
enumeration, we have only an approximation On to the set and 1n to the characteristic
function.

Martin-Löf random points are defined via Martin-Löf tests [14]:

Definition 2.1 A Martin-Löf test U is a sequence of uniformly effective open sets
Un such that µ(Un) < 2−n . A point ω passes the test U if ω /∈

⋂
n Un . A point is

Martin-Löf random if it passes all Martin-Löf-tests.

We will assume that the test is nested, that is Un+1 ⊆ Un . Call the first k ∈ N for which
ω /∈ Uk , the actual layer of ω . Any l > k, l ∈ N is a valid layer for ω .
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Martin-Löf random points have many equivalent definitions, including the property
that no betting strategy can succeed against the points when considered as infinite
binary sequences and also that the points, when considered as such sequences, have
incompressible initial segments.

There exist universal Martin-Löf tests which are such that, if a sequence passes it, then
it passes all Martin-Löf tests. We will work with an optimal Martin-Löf test, which is
an even stronger notion. A Martin-Löf test is optimal if, for any other Martin-Löf test
V there exists a c ∈ N such that Vc+n ⊂ Un for all n ∈ N .

Algorithmic randomness has been generalised to computable probability spaces, see
Weihrauch [18] for the context of computable analysis, and Gàcs [1] and Hoyrup and
Rojas [8, 10] for the generalisation of Martin-Löf randomness to computable probability
spaces. We will mostly stay in Cantor space in this paper.

2.1 Layerwise computable and decidable

Layerwise computability is a weakening of the standard notion of computability which
has profound links with measure theory and topology. The seminal papers in this area
are Hoyrup and Rojas [8, 9]. For an excellent recent survey, see Hoyrup [11].

Definition 2.2 A function f defined on the random infinite binary sequences is
layerwise computable if it is computable in the pair (ω, l ), where l is any valid layer
for ω .1

That is, we need a layer l as an extra input alongside ω . The function f gives the same
output on (ω, l ) for l any valid layer. For example, if the actual layer of ω is 1, then the
function is defined on each of (ω, k), k ≥ l with the same output.

Definition 2.3 A set is layerwise decidable if the membership is decidable given a pair
(ω, l ).

No claim is made for behaviour on an input (ω, k) where either ω is not random, or k is
not a valid layer for ω .

Note also that a layerwise computable function can be “made computable” on as large a
measure set as we want. Hence if we want, for example, a layerwise function to act like

1There is also a notion of exactly layerwise computable/decidable in which the actual layer
must be given, see Hölzl [7].
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a normal computable function on more than measure 1 − 2−k points, we can just give
all input points the same layer l for some effective l > k .

A typical example of layerwise computability is the following. Consider an enumeration
of an effectively open set O. It is in general not decidable whether a given point will
appear in the enumeration or not. When the measure of the set is a computable number
however, the decision becomes layerwise decidable, see Davie [5].

This principle is very useful to us and we state it as a lemma:

Lemma 2.4 Let O be an effectively open set with measure a computable real. Upper
bounds for the stage of appearance of Martin-Löf random points in O are then layerwise
computable; consequently, their membership of O is layerwise decidable. Conversely,
if the membership is layerwise computable then the measure is a computable real.

In the more general context of computable measure spaces, the counterpart of Lemma
2.4 is that a set is so-called effectively µ-measurable if and only if it is layerwise
decidable. Another fundamental result in this context is that a function is layerwise
computable if and only if it is so-called effectively measurable, Hoyrup and Rojas [8].

3 Hitting times

As an illustration of the concept of layerwise computability we look at the following
theorem of Kučera [12], which played a central role in both papers Bienvenu et al [3],
and Franklin et al [6]:

Theorem 3.1 (Kučera) If A is an effectively closed set of Cantor space with measure
greater than 0, then every Martin-Löf random sequence ω must have a tail in A.

In other words, under the shift operator, there will be a finite hitting time for (shifts of)
ω to enter A.

Kučera in fact proved the converse too, that is, that having a tail in every such set A
characterizes the Martin-Löf random points.

When the measure of the set A is a computable real we have the following layerwise
computable version:

Proposition 3.2 Let an effectively closed set A have measure a computable real, then
finding the first tail of an infinite binary sequence ω that hits A is layerwise computable.
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That is, hitting times for the set A under the shift operator are layerwise computable.

Proof Consider the complement of A which is an effectively open set O with
computable measure, we find the first tail that misses O. By Hoyrup and Rojas [9] the
layer can change by at most a (computable) constant every time we take the next tail.
We can thus use Lemma 2.4 for each consecutive tail. For each tail we thus have a
computable upper bound on how long we have to wait for it to appear in the enumeration
of the effectively open set. For some tail this stage of the enumeration will be reached
before the tail appears in the enumeration. We can then conclude that this tail will not
appear and this is therefore the first tail which misses O.

Note that ω ∈ O if and only if the hitting time of ω is 0. Hence, if we could decide
hitting times layerwise computably, then we could decide membership of O layerwise
computably, and by Lemma 2.4, µ(O) would be a computable real. (Thanks to the
referee of a previous submission for pointing this out.) Hence we have:

Corollary 3.3 Hitting times for effectively open sets are layerwise computable if and
only if the set has measure a computable real.

It is shown in Pauly, Fouché and Davie [15] that if we could decide hitting times, we
could construct random finite sequences of arbitrary length.

4 Ergodic systems

Definition 4.1 A dynamical system is ergodic if for every set S and almost every point
ω , the ergodic average 1

n

∑n−1
i=0 1S(T iω) converges as follows:

lim
n→∞

1
n

n−1∑
i=0

1S(T iω) = µ(S)

Definition 4.2 Write An(ω) = 1
n

∑n−1
i=0 1S(T iω).

Following Franklin et al [6], call a point ω which satisfies the above condition for a set
S a Birkhoff point for S .

Kučera’s theorem is used in both [3] and [6] to show that:

Theorem 4.3 (Bienvenu, Day, Hoyrup, Mezhirov, Shen / Franklin, Greenberg, Miller
and Ng) Let T be a computable ergodic measure-preserving transformation. Then
every Martin-Löf point is a Birkhoff point for every effectively open/closed set with
measure > 0.
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6 George Davie

4.1 Convergence rates for ergodic systems

Let T be a computable ergodic transformation on Cantor space. To compute the
convergence rate for a point ω and set S in the Ergodic Theorem is to have a computable
function which, on inputs ω and ε, will output a number of iterations of the ergodic
function T after which the ergodic average of the point ω will not vary more than ε

from µ(S), the measure of the set.

For the convergence rates to be layerwise computable, we need not only the point ω as
input, but also a valid layer of ω to find the number of iterations of T needed.

4.2 Layerwise computable for O with computable measure

We have the following two important theorems, the first from Hoyrup and Rojas [8]:

Theorem 4.4 (Hoyrup, Rojas) If fn are uniformly layerwise computable functions
and fn converges effectively almost everywhere, then the convergence rates for fn for
random sequences are layerwise computable.

We also have the very powerful result of Avigad, Gerhardy and Townser [2]:

Theorem 4.5 Let X be a separable metric space and T be an ergodic measure-
preserving transformation. Then, for any f in L2(X), the function n(ε) such that for
every k ≥ n(ε)

µ
(
{ω | max

n(ε)≤m≤k
|Am(ω) − An(ε)(ω)| > ε}

)
< ε

is computable in f and T .

If we set fn = An , the ergodic average after n steps, then Theorem 4.5 says that fn
converges effectively almost everywhere. Then by Theorem 4.4 the convergence rates
for fn = An are layerwise computable:

Proposition 4.6 Let T be a computable ergodic transformation on Cantor space. If
an effective open set O has measure a computable real, then the rate of convergence
of An(ω) to µ(O) in the pointwise Ergodic Theorem for Martin-Löf random points is
layerwise computable. That is, there is a layerwise computable n(ε) such that for all
k > n(ε):

|Ak(ω) − µ(A)| < ε

Journal of Logic & Analysis 14:2 (2022)
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A referee has informed us that Proposition 4.6 has been noted before and in fact
holds for all effectively measure-preserving transformations (or equivalently, layerwise
computable transformations)—not just for computable ones—and for all L1 -computable
observables, not only indicator sets. For good measure, such a generalisation should
also be for any computable probability space.

5 The converse fails

Is it perhaps the case that, analogous to Lemma 2.4, the convergence rates are layerwise
computable only if the measure of the set O has computable measure? That is, does the
converse of Proposition 4.6 hold?

This is not the case; in fact, convergence is layerwise computable for any interval. The
next result also shows that the layerwise computability of the convergence rates for
effectively open sets has less to do with the measure than the packing of the effectively
open set.

Theorem 5.1 The convergence of the ergodic averages is layerwise computable (and
hence effective) for any interval.

Proof We do the proof for the interval I having left endpoint 0. The general case is
similar. Given n and ε = 1/2k , we must find a stage i after which

|Am(ω) − µ(I)| ≤ 1
2k

for all ω in layer n. Divide the unit interval into 2k+2 dyadic intervals, each of length
1/2k+2 . Since each of these intervals Ik is computable, Proposition 4.6 allows us to
find, for each Ik , a stage after which, for all ω in layer n:

|Am(ω) − µ(Ik)| ≤ ε

23k+3 =
2−k

23k+3 =
1

22k+3

Take the maximum off these stages. At this stage then the piece I′ of I which is entirely
contained in such intervals has:

|Am(ω) − µ(I′)| ≤ 2k+2 × 1
22k+3 =

1
2(k+1)

The remaining piece I′′ of I is also contained in an interval of length 1/2(k+2) . Hence
on this piece, the average can be no less than 0 (clearly) and no more than:

1
2k+2 +

1
22k+3

Journal of Logic & Analysis 14:2 (2022)
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Since these pieces are disjoint we add the averages to get that:

|Am(ω) − µ(I)| ≤ 1
2k

Ergodic averages for intervals are effective because of the neat “packing” of the set. It
is clear that we can, in particular, transform any effectively open set O into an interval
by just adding, for each interval enumerated in O, an interval of equal measure adjacent
to our rightmost endpoint at that stage, to form in the limit the interval

[
0, µ(O)

)
.

Since the “bad” intervals above (for which we are forced to use the entire interval length
as approximation) are those intervals that are only partly contained in I, we see that we
can approximate the averages effectively as long as there are not too many of these bad
intervals:

Corollary 5.2 Let J ⊂ [0, 1] and let kn be the number of dyadic intervals of length
2−n which only partially overlap the set J. Then the convergence rates are layerwise
computable (and hence effective) if kn × 2−n → 0 in an effective way.

Hence, if we can, given ε, find an n(ε) such that dividing into 2n intervals and finding
enough iterations of T to get the average on these intervals close, then the ergodic
averages are layerwise computable and hence effective.

In the following section we will construct an example where the rates are far from
computable.

6 Convergence is not effective for the shift operator

Layerwise computability (equivalently, uniform layerwise convergence) implies effective
convergence (Hoyrup and Rojas [9]), so the next theorem shows in particular that there
are no layerwise computable rates here. The proof uses ideas in the proof of the well
known result of Krengel [13], that there are no general rates of convergence for the
ergodic theorems. In particular, we use the idea of Rokhlin’s Lemma [16] to “spread”
the unit interval out into many small sets A,T−1A, . . . ,T−nA with large union.

Theorem 6.1 There is an effectively open set O for which the convergence of the
ergodic averages under the shift operator T is not effective.

Journal of Logic & Analysis 14:2 (2022)
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Proof Recall that the shift operator T , “shifts” an infinite binary sequence to the left;
eg, T(010111..) = 10111 . . . This is well known to be a measure-preserving ergodic
transformation.

Chaitin’s halting probability, Ω (see Chaitin [4]), is the measure of an enumeration of
halting programs in a dovetailing of the running of all programs on the empty input. A
program p that halts (and is then enumerated) is seen as the interval 0.p and measure
1/2|p| is then added to the total measure so far, which approaches Ω. Since the set of
programs is prefix free, Ω < 1.

To ensure that µ(O) is bounded far below 1, we add a fixed initial segment of two zeroes
to each halting program to ensure that the total measure of our effectively open set is
less than 1/4. We will use this modified halting probability along with its associated
effectively open set as a “measure provider”. That is, we will not enumerate the modified
interval 0.00p itself into our set O but will add many small intervals, adding to the
same measure 1/2|p|+2 .

(1) Dovetail the running of all programs. Let p be the ith program which halts in
the dovetailing.

(2) When p halts, we have measure 1/2|p|+2 available to add new intervals to our
set O, as follows.

(3) Form a string of 0’s as long as the number of steps l ran in the dovetailing until
p halted. That is, form 0l .

(4) See this string of 0’s as the interval adjacent to 0 in the unit interval. (By
ergodicity of the shift operator, this interval will, in the limit, be hit on average
its measure, 1/2l , by almost all binary sequences.)

(5) As the ith part of our set O we now enumerate the interval 0l and a set of its
inverse images under T . The first three intervals to be enumerated are then

0l, 0(0l) and 1(0l).

Continue taking inverse images of these, namely

00(0l), 10(0l), 10(0l), 11(0l).

We thus obtain one interval of measure 2−l , two of measure 2−l−1 , four of
measure 2−l−2 and so on. Call the nth set of intervals consisting of 2n intervals
of total measure 2−l set In .

(6) Continue to enumerate these inverse images until we have exhausted the measure
of 0.00p. If for example |p| = k − 2 then we have measure 1/2k available and
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since each set In has measure 2−l we can enumerate in O at least2 s of the sets
In where s × 2−l = 2−k , hence at least 2l−k sets In . Note that the set In consists
of binary strings w for which Tn(w) ∈ 0l ; that is, binary sequences which hit 0l

after n steps.
(7) Make a note of when half of the measure is used up, that is, the In we are at when

this happens. Note that n ≥ 2l−k−1 . Call the union of the In ’s enumerated after
this point, that is, intervals from length l + n and up, set H , with µ(H) = 2−k−1 .
Now, for each of the strings w in H it is the case that Tm(w) is in C for
0 ≤ m ≤ 2l−k−1 . That is, while µ(O) < 1/4, the ergodic average for at least
measure 2−k−1 of sequences is 1 for 0 ≤ m ≤ 2l−k−1 . Recall that l is the total
runtime so far, which makes 2l−k−1 a very late stage under T .

Now, if there was an algorithm which, given k , could find bounds after which fewer
than 2−k−1 of sequences will have ergodic average 1, we would have the runtime lk for
the longest running program p of length k − 2. Being able to do this for each k solves
the Halting Problem. This gives us a contradiction.

7 Relativised randomness

In the example above we did not have effective convergence, since we were enumerating
very long intervals of large total measure, very late. Having access to Ω would have
helped of course, since then we could see how close we are to the total measure Ω at
each stage of the enumeration. Theorem 4.5 states that access to Ω is enough for the
convergence rates to be effective. We would like to prove a layerwise version of this.

To do this we must define relative layerwise computability. This will use the standard
notion of relative randomness, with α seen as an oracle:

Definition 7.1 A Martin-Löf test relative to the binary sequence α is a sequence of
sets Ui : i ∈ N uniformly c.e. in α with µ(Ui) < 2−i . A point ω passes the test U if
ω /∈

⋂
n Un . A point is Martin-Löf random relative to α if it passes all Martin-Löf tests

relative to α .

We will call such tests relative Martin-Löf tests.

2Note: Why “at least”? The intervals enumerated above will contain some overlap, eg the
interval 0(0l) ⊂ 0l . We do not need to use any measure up on 0(0l) but only on new intervals
that are disjoint from all previous chosen ones.
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Changing from a standard Martin-Löf test to a relative Martin-Löf test will generally
change the layers of some points, and classify some previously random sequences as
non-random. For example, the sequences computable in α , ie Turing reducible to α ,
will—even if random before—now be computable (in α).

Note that there are more relative Martin-Löf tests than normal Martin-Löf tests since
we have access to an oracle which can enable us to build sets which are effectively
open relative to the oracle, but not really effectively open. Hence, a sequence which is
Martin-Löf random relative to any number is also Martin-Löf random.

Definition 7.2 A function is layerwise computable in α if it is computable given, as
extra inputs, a valid layer relative to α and (an oracle for) α .

In Davie [5] a few generalisations of Lemma 2.4 are listed which all fail, including a
seemingly natural oracle form. We note that in fact, the natural oracle form of Lemma
2.4 is the following natural relativisation, which holds by adapting the proof in the
obvious way:

Lemma 7.3 Let O be an effectively open set with measure a real α . Upper bounds
for the stage of appearance of Martin-Löf random points relative to α in O are then
relatively layerwise computable; consequently, their membership of O is relatively
layerwise decidable.

7.1 Relativised effective Borel–Cantelli Lemmas

As a digression we note that Lemma 7.3 allows us to formulate relativised versions of
Theorem 2 in [5].3

Theorem 7.4 (Borel–Cantelli Lemmas: effective relative forms)

(i) Let a sequence of events Ai form a uniform sequence of effectively open sets
relative to a real α such that

∑
i µ(Ai) = α , where α is finite. Then k such that

ω /∈ An for all n ≥ k is relatively layerwise computable.
(ii) If (a) the events An are mutually independent and (b)

∑
i µ(Ai) diverges, then,

given m, a k such that at least one of the events An (m < n < k) occur is
relatively layerwise computable.

3See also Hoyrup and Rojas [8] for generalisations of the effective Borel–Cantelli lemmas in
[5].
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7.2 Layerwise computable in µ(O)

By Lemma 7.3 we then have the following relative layerwise computable form for the
ergodic theorem for any effectively open set:

Theorem 7.5 The rate of convergence of An(ω) to µ(O) is layerwise computable in
µ(O).

In other words, for any effectively open set, we do indeed have rates for the convergence
of each element of a layer to the ergodic average. Only in this case, the layer is relative
to the measure of the set we are considering. This allows some standard Martin-Löf
random sequences to not have relatively layerwise convergence rates (those that are
no longer random with respect to α). Note however, that Theorem 4.3 assures us that
these points will be Birkhoff whatever the measure of the set.

So this also means that the only points which have a chance of not being Birkhoff points
for these sets are the points which are not random with respect to the measure of the
set. That is, for a point not to satisfy the convergence in Birkhoff’s theorem it must be
intimately related to the measure of the set.

8 2–random sequences

We have seen that we get layerwise computability in µ(O) for the convergence rates,
by Theorem 7.5. We now show that for a set of measure 1, the rates are layerwise
computable in Ω, whatever O is.

The set of 2–random binary sequences is the set of binary sequences which are Martin-
Löf random with respect to α = Ω.4 By Theorem 7.5, the rates for the 2–random
sequences will be governed by the particular µ(O); but, since the measure of every
effectively open set is computable in Ω, the rates will also be layerwise computable in
Ω. Hence:

Theorem 8.1 For 2–random ω and any effective open set O, the convergence rates of
An(ω) to µ(O) in the pointwise ergodic theorem are layerwise computable in Ω.

4Recall that Ω encodes the halting probability for our Turing machine, hence encodes the
Halting Problem.
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