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Infinite-Dimensional Linear Algebra and Solvability of
Partial Differential Equations

TODOR D. TODOROV

Abstract: We discuss linear algebra of infinite-dimensional vector spaces in terms of
algebraic (Hamel) bases. As an application we prove the surjectivity of a large class
of linear partial differential operators with smooth (C∞–coefficients) coefficients,
called in the article regular, acting on the algebraic dual D∗(Ω) of the space of
test-functions D(Ω). The surjectivity of the partial differential operators guarantees
solvability of the corresponding partial differential equations within D∗(Ω). We
discuss our result in contrast to and comparison with similar results about the
restrictions of the regular operators on the space of Schwartz distribution D′(Ω),
where these operators are often non-surjective.
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1 Introduction

In Sections 3–5 we present the basic results of infinite-dimensional linear algebra, an
old branch of mathematics initiated in1905 by Georg Hamel [12], dealing with infinite-
dimensional vector spaces in terms of algebraic (Hamel) bases rather than topological or
orthonormal Hilbert bases. The approach is mostly algebraic. In Theorem 5.4 we show
that a linear operator is injective if and only if its dual operator is surjective; a result
well-known for finite-dimensional vector spaces but less-known for infinite-dimensional
spaces. This gives rise to the Definition 5.5 of a regular linear operator—a surjective
operator on the dual space with injective co-dual.

Several discussions of the earlier versions of this text convinced us that the algebraic
(Hamel) bases have gradually been falling out of popularity in the last several decades.
That is why the first part of the article (Sections 3–5) is written in somewhat tutorial
manner, with many illustrative examples (Section 7). A reader who knows Theorem 5.4
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2 Todor D. Todorov

from the finite-dimensional linear algebra and who believes in its validity for infinite-
dimensional vector spaces might skip reading the first several sections and start directly
from Section 8.

In Sections 8 we apply infinite-dimensional linear algebra to the particular case of the
vector space D(Ω) and its algebraic dual D∗(Ω). Here Ω is an open set of Rd in the
usual topology of Rd . Somewhere in this section we abandon the realm of algebra
and start involving concepts and methods from functional analysis and the theory
of partial differential operators (Hörmander [15]–[17]). In particular, Definition 5.5
(mentioned above)—if applied to D(Ω)—gives rise to the concept of regular operator
with C∞–coefficients: a surjective linear operator P∗(x, ∂) with C∞–coefficients acting
on D∗(Ω) which has an injective co-dual (transposed) operator P(x, ∂) on D(Ω).

For readers without background in the Schwartz theory of distributions (Vladimirov [39])
who are otherwise interested in the main topic of our article, we offer a characterization
of the space of Schwartz distributions D′(Ω) as a particular subspace of D∗(Ω) without
the usual involvement of the strong topology on the space of test-functions D(Ω)
(Section 9). We shortly outline a sequential approach to distribution theory based on
our characterization (Remark 9.2). Thus, the dilemma D′(Ω) vs. D∗(Ω)—discussed
in Section 11— can be followed by readers without strong (or any) background in the
Schwartz theory of distributions.

In Section 11 we identify several subclasses of linear partial differential operators
in mathematics (Hörmander [15]–[17]) as regular (thus, surjective on D∗(Ω)) which
include the following:

• All linear partial differential operators with constant coefficients are regular.
• The Hans Lewy [23] operator: L∗(x, ∂) = ∂

∂x1
+ i ∂

∂x2
− 2i(x1 + ix2) ∂

∂x3
is regular.

• All second order elliptic operators with C∞–coefficients are regular.
• All elliptic operators with analytic coefficients are regular.

All of these operators are surjective on D∗(Ω), but not necessarily surjective on the
following three invariant subspaces D(Ω), E(Ω) and D′(Ω) (Section 10). Consequently,
we prove the solvability of the partial differential equations of the form P∗(x, ∂)U = T
in D∗(Ω), for regular operators P∗(x, ∂) : D∗(Ω) 7→ D∗(Ω). In other words, we prove
the existence of a solution U in D∗(Ω) for every choice of T also in D∗(Ω). We should
recall that:

• Every linear partial differential operator with constant coefficients P∗(∂) on
D′(Rd) is surjective; this is the famous existence theorem of Malgrange [28] and
Ehrenpreis [9].

• The Malgrange-Ehrenpreis existence result might, however, fail in D′(Ω) for
operators which are hypoelliptic but not elliptic, subsets Ω of Rd which are
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open, but not P-convex for supports (Hörmander [14, Theorem 10.6.6, Corollary
10.6.8]). Thus, the partial differential equation P∗(∂)U = f might have no
solutions in D′(Ω) even for some smooth f .

• Hans Lewy [23] was the first to show that the Lewy operator L∗(x, ∂) is not
surjective on D′(R3). Thus, the partial differential equations of the form
L∗(x, ∂)U = ϕ might fail to have solution U in D′(R3) even for some test-
functions ϕ ∈ D(R3). A general existence result also fails in the space of
hyperfunctions (Schapira [35]).

• The elliptic operators mentioned above are, in general, also non-surjective on
D′(Ω).

In Section 12 we show—with the help of Hamel bases—that the space of generalized
distributions Ê(Ω) introduced in Todorov [37, §2] can be embedded as a C-vector
subspace into the algebraic dual D∗(Ω) of the space of test-functions D(Ω). Because
Ê(Ω) was defined in the framework of nonstandard analysis (Robinson [33]), we look
upon D∗(Ω) as a standardization of Ê(Ω). Actually, our article itself can be viewed as
a standardization of the results in [37], because the surjectivity of the regular operators
was first proved in [37] in the framework of L(Ê(Ω)), while the main result of this
article (Theorem 8.4) holds within L(D∗(Ω)). Thus, by replacing Ê(Ω) with D∗(Ω),
our result about the regular operators becomes accessible even for readers without
background in nonstandard analysis. Our standardization is, of course, not an isolated
event in mathematics; we remind two more cases of standardizations in the history of
mathematics.

Our inspiration comes from the Fundamental Theorem of Algebra: following this
analogy the space D′(Ω) is the counterpart of the field of real numbers R, the space
D∗(Ω) is the counterpart of the field of complex numbers C, and the class of regular
operator is the counterpart of the ring of polynomials C[x]. We are trying to convince
the reader that the space D∗(Ω)—rather than D′(Ω)—deserves to be considered as
the natural theoretical framework for the class of regular operators P∗(x, ∂), since the
equations of the form P∗(x, ∂)U = T often have no solutions in D′(Ω).

Recall as well that the global solvability of arbitrary analytic partial differential equations
was studied in Rosinger [34, Chapter 2] and Oberguggenberger [29, Section 22]. The
existence results for continuous partial differential operators are obtained by means of
the Dedekind order completion method in Oberguggenberger and Rosinger [31].

A general solvability of evolution-type equations appears in Colombeau, Heibig and
Oberguggenberger [7], using regularized derivatives in the framework of Colombeau
algebra of generalized functions (see Colombeau [6] and Oberguggenberger [29]).
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4 Todor D. Todorov

As we mentioned above, the surjectivity of the regular operators was first proved in
Todorov [37] in the framework of nonstandard analysis. Meanwhile (in the period
between the publication of [37] and the writing of this article) two more similar articles in
the framework of D∗(Ω) appeared: an unpublished manuscript Oberguggenberger and
Todorov [32] and Oberguggenberger [30]. In this article we shall use some of the results
in [30].

Finally, we should mention that our article has somewhat an ideological edge because
we challenge at least two widely spread prejudices in the mathematical community.
The first one is that Hamel bases are not and can never be mathematically useful. The
second one is that we should never go beyond the space of Schwartz distributions D′(Ω)
as a framework of a partial differential equation, especially if the equation is linear.
That is to say, “better to admit (perhaps with some regret) that a given equation has no
solutions rather than look for a solution outside D′(Ω)”.

This article is dedicated to Professor Michael Oberguggenberger on occasion of his
65th birthday.

2 Notations and set-theoretical framework

The set-theoretical framework of this text is the usual ZFC–axioms (Zermelo–Fraenkel
axioms with the Axiom of Choice) along with the GCH (Generalized Continuum
Hypothesis) in the form 2κ = κ+ for every cardinal κ (or equivalently, 2ℵα = ℵα+1

for all ordinals α). Here we write κ+ for the successor of κ. For the domain of ZFC
and GCH axioms we use the superstructures Ŝ with the set of individuals S = K ∪ V ,
where V is the vector space over a field K under consideration (eg V = Rn with K = R
or V = Cn with K = C, etc). Our formal language is based on bounded quantifiers of
the form (∀x ∈ A)α(x) and (∃x ∈ B)β(x), where A,B ∈ Ŝ \ S and α(x) and β(x) are
predicates (Davis [8, pages 11–15]). We believe however, that the rest of this text can
be followed without a familiarity with the concept of superstructure.

We recall that the following are equivalent (Wolf [40, page 255] and/or Jech [20,
Chapter 11, A1]):

• Axiom of Choice.
• Zorn’s Lemma.
• Every set can be well-ordered.
• The usual partial order on the class of cardinal numbers is a total order.
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In particular, Zorn’s Lemma will be involved in Theorem 3.6 and the total order between
cardinals is needed in the proof of Lemma 3.9. Also, “every set can be well-ordered"
will be useful to supply a basis with a well-ordering if desired (Remark 6.4).

Actually, we do not need the GCH except for the purpose of simplifying the calculations
with cardinals and the dimension of vector spaces. For example, with the help of GCH,
ℵ0 < dim(V) ≤ c implies simply dim(V) = c (rather than only dim(V) = ℵ1 ). Here
ℵ0 = card(N) and c = card(R).

If X is a set, we shall treat X as a subset of the power set P(X), in symbols, X ⊂ P(X)
by means of the embedding x 7→ {x}. If X and Y are two sets, we denote by YX the set
of all functions from X to Y .

For index sets (for indexing bases, for example) we use the popular sets: N,R,Rd,

P(R),P(Rd),P(P(R)), etc with cardinalities ℵ0, c, c, c+, c+ , (c+)+ , respectively. We
sometimes use the field of scalars K itself as an index set or Kd,P(K),P(Kd),P(P(K)),
etc.

In what follows V stands for a generic vector space over a field K (Axler [2]).

Sometimes we shall write V|K instead of V . If we write U
�
⊆ V , we mean that both U

and V are vector spaces over the same field and U is a vector subspace of V . Similarly,
V ∼= W means that V and W are isomorphic vector spaces. L(V) denotes the K-vector
space consisting of all linear operators L : V 7→ V . We denote by V∗ the algebraic dual
of V . We denote by T(v) or 〈T, v〉 the evaluation of T ∈ V∗ at v ∈ V .

Let T d denote the usual topology on Rd and let X, Y ∈ T d be two open set of Rd . We
denote by Diff(X, Y) the set of all diffeomorphisms from X to Y . If θ ∈ Diff(X, Y), we
denote by Jθ : X → R, Jθ = | det

(
∂θ
∂x

)
|, the corresponding Jacobian determinant. We

denote by Diff(X) the group of diffeomorphisms from X to itself.

Let Ω stand for a (generic) open subset of Rd . Here is a list of popular functional
spaces and notations:

• E(Ω) = C∞(Ω) denotes the space C∞ -functions from Ω to C.
• D(Ω) = C∞0 (Ω) denote the space of test-functions on Ω, ie the C∞ -functions

from Ω to C with compact support (Vladimirov [39]).
• L2(Ω) denotes the usual Hilbert space of Lebesgue measurable square integrable

functions from Ω to C.
• L∞(Ω) denotes the space of Lebesgue measurable bounded functions from Ω to

C.
• Lloc(Ω) stands for the Lebesgue measurable locally integrable functions from Ω

to C.
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6 Todor D. Todorov

• D′(Ω) denotes the space of Schwartz distributions on Ω (Vladimirov [39]).
• E ′(Ω) denotes the space of Schwartz distributions with compact support.
• We denote by D∗(Ω) and E∗(Ω) the algebraic duals of D(Ω) and E(Ω), respec-

tively.

3 Infinite–dimensional linear algebra

We recall the definitions of algebraic (Hamel) basis and dimension of an infinite-
dimensional vector space (Hamel [12]). For more details and the missing proofs we
refer to Jacobson [19], Hungerford [18], Hewitt and Stromberg [13] and Mackey [27].

Definition 3.1 (Basis and Dimension) Let V be a non-trivial vector space over a field
K.

(1) A subset B of V is called free if every finite subset of B consists of linearly
independent vectors in V .

(2) A free set B of V is called maximal (or, a maximal free set) if B cannot be
extended (properly) to a free set of V . Every maximal free set B of V is called
an algebraic basis, Hamel basis, or simply basis of V .

(3) If B is a basis of V , the dimension (or Hamel dimension) of V is defined by
dim V = cardB .

The definition of dimension is justified by the following result.

Lemma 3.2 (Justification) All bases of V have the same cardinality.

Proof We refer to Jacobson [19, Chapter 9, §2, page 240], Hungerford [18, Theorem
2.6, page 184] or Hewitt and Stromberg [13, Theorem 4.58, page 30].

Lemma 3.3 (Span) Let B be a basis of V . Then every non-zero vector v ∈ V
can be uniquely presented as a (finite) linear combination of vectors in B with
non-zero coefficients in K. We summarize this in V = spanB . Consequently,
card V = max{dim V, cardK}.

Proof Let v ∈ V, v 6= 0, and suppose (seeking a contradiction) that v 6=
∑m

k=1 cnvn

for all m ∈ N, all vn ∈ B and all cn ∈ K. Thus the set B = B ∪ {v} is also a free set,
contradicting the maximality of B .
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Definition 3.4 (Spectrum) Let B = {vs : s ∈ S} be a Hamel basis of V with an index
set S with card S = dim V . Let v ∈ V, v 6= 0. Then the (finite) set sp(v) ⊂ S is called
the spectrum of v (relative to B and S) if v =

∑
s∈sp(v) csvs and cs ∈ K \ {0} for all

s ∈ sp(v). We shall sometimes write simply v =
∑

s∈S csvs or even v =
∑

csvs instead
of v =

∑
s∈sp(v) csvs (keeping in mind that the sum

∑
s∈S csvs =

∑
csvs is finite). We

also let sp(0) = ∅ and
∑

s∈∅ csvs = 0.

Notice that cardK ≤ card V and dim V ≤ card V hold trivially. The next equalities
follow immediately from the formula in Lemma 3.3.

Corollary 3.5 (Two Equalities) (1) If cardK < card V , then dim V = card V
(see Example 7.1 in this paper).

(2) If dim V < card V , then card V = cardK (see Example 7.5 and Example 7.12).

Theorem 3.6 (Existence of Basis) Let V be a vector space over a field of scalars K
and let E ⊂ V be a free set of V . Then there exists a basis B of V which contains E
and such that V = span E ⊕ span(B \ E). Consequently, every non-trivial vector space
has a basis.

Proof Consider the family of subsets of V :

F(E) = {S ∈ P(V) : S is a free set and E ⊆ S}

We shall treat F (E) as a partially ordered set under the inclusion, ⊆. Note that F (E) is a
non-empty set, because E ∈ F (E). We observe that every totally ordered subset (chain)
C of F (E) is bounded from above by its union

⋃
C∈C C and also

⋃
C∈C C ∈ F(E). By

Zorn’s Lemma F(E) has a maximal element, B .

Remark 3.7 (Hamel Bases) (1) We sometimes refer to the maximal free sets B of
V as Hamel bases of V after Georg Hamel [12] who proved the above theorem
in 1905 in the particular case of V = R and K = Q (see Example 7.1 later in
the paper).

(2) Unlike the case of finite-dimensional vector spaces, in the case of an infinite-
dimensional vector space V the equality card E = dim V for some free set E of
V does not imply that E is a basis of V . Indeed, let B be a basis of V and let
E = B \ {v} for some v ∈ B . Then E is a free set with card E = dim V , but E
is not a basis for V .

The next result validates the usefulness of the notion of Hamel dimension.
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8 Todor D. Todorov

Theorem 3.8 (Isomorphic Spaces) Let V and W be two vector spaces over the same
field K such that dim V = dim W . Then V and W are isomorphic. In particular, the
mapping σ : V 7→ W , defined by σ(

∑
s∈S csvs) =

∑
s∈S csws , is a vector-isomorphism

from V to W , where (vs)s∈S and (ws)s∈S are bases of V and W , respectively, S is an
index set of card S = dim V = dim W and cs ∈ K for all s ∈ S .

Proof The proof is almost identical to the proof of finite-dimensional case and we
leave it to the reader.

Lemma 3.9 (Subspace Lemma) Let U and V be two vector spaces over the same
field K. Then either U and V are isomorphic, or one of the spaces is (can be embedded
as) a subspace of the other (see Remark 3.10). Consequently, if U is a vector subspace
of V and dim U < dim V , then U is a proper subspace of V .

Proof Let dim U = α and dim V = β . Then exactly one of the following holds:
α = β , α < β , α > β , by the axiom of choice in its forth version (Section 2).

Remark 3.10 (Warning) If U and V are infinite-dimensional vector spaces over the
same field of scalars K, it might happen that U is a proper subspace of V and at the
same time dim U = dim V . For example, let K = R and V be the vector space R∞
consisting of all sequences in R with finite support. Let {(e1), (e2), . . . } be the standard
basis of R∞ , ie (en) is a sequence in R, defined by:

(en)i =

{
1, if n = i

0, if n 6= i

(For more detail, we refer to Section 6.) Then U = span{e2, e3, . . . } is obviously a
proper subspace of R∞ . On the other hand, L ∈ L(U,V), defined by L(en+1) = en, n ∈
N, is an isomorphism from U to V .

Corollary 3.11 (Algebraic Complement) Every subspace U of V has a (non-unique)
algebraic complement W to V , ie a subspace W of V such that V = U ⊕W .

Proof Let A ⊆ B hold for two (index) sets with card(A) = dim(U) and card B = dim V .
Let {uα : α ∈ A} be a (Hamel) basis of U , and

{uα : α ∈ A} ∪ {wβ : β ∈ B \ A}

be its extension to a Hamel basis of V (Theorem 3.6). Then W = span{wβ : β ∈
B \ A}.
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The next result is in sharp contrast to its counterpart in the finite-dimensional linear
algebra.

Lemma 3.12 (Realification) Let V|R(i) denote the vector space V over a field of the
form R(i), where R is a formally real (orderable) field. Let V|R denote the realification
(decomplexification) of V|R(i). Then if one of the vector space is infinite-dimensional,
so is the other, and dim(V|R(i)) = dim(V|R).

Proof If {vs : s ∈ S} is a Hamel basis of V|R(i), then {vs + ivs : s ∈ S} is a Hamel
basis of V|R and card({vs : s ∈ S}) = card({vs + ivs : s ∈ S}).

4 Algebraic dual

We shortly discuss the properties of the algebraic dual V∗ of an infinite-dimensional
vector space V . Both V∗ and V∗∗ are proper vector space extensions of V . In sharp
contrast to the finite-dimensional case however, the vector spaces V , V∗ and V∗∗ are
never isomorphic.

Theorem 4.1 (Dimension of Dual Space) Let V be an infinite dimensional vector
space over the (infinite) field K and V∗ denotes the algebraic dual of V . Then
dim V∗ = max {2dim V , cardK} = max {(dim V)+, cardK}. (The formula fails for
finite-dimensional V .) Consequently, dim V∗ > dim V for any infinite-dimensional
vector space V .

Proof We start from the formula dim V∗ = (cardK)dim V derived in Jacobson [19,
Chapter 9, §5, page 245]. Next, assuming ZFC+GCH (Section 2), we show that
yx = max{y, 2x} = max{y, x+} for every two infinite cardinals, x and y. Indeed, if
y = ℵ0 , the formula follows from the fact that ℵ0 < 2x . Let y be uncountable. Then
y = 2κ for some infinite cardinal κ by the GCH. Thus:

yx = (2κ)x = 2κx = 2max{κ,x}

=

{
2κ, if κ ≤ x

2x, if κ ≥ x
=

{
y, if y ≤ 2x

2x, if y ≥ 2x

= max{y, 2x} = max{y, x+}

Finally, we let y = card(K) and x = dim V . The second equality in the above formula
follows from the first equality since 2dim V = (dim V)+ by the GCH (Section 2).

Journal of Logic & Analysis 13:5 (2021)



10 Todor D. Todorov

Notice that dim V∗ ≥ cardK and dim V∗ ≥ (dim V)+ hold trivially. The next equalities
follow immediately from the formula in Theorem 4.1.

Corollary 4.2 (Two More Equalities) (1) If cardK < dim V∗ , then card V∗ =

dim V∗ = (dim V)+ (see Example 7.1 in this paper).
(2) If (dim V)+ < dim V∗ , then dim V∗ = cardK (see Example 7.12).

Definition 4.3 (Embeddings & Restricted Duals) (1) Let B = {vs : s ∈ S} be a
basis of V indexed by a set S . Let {Φr : r ∈ S} be a subset of V∗ defined by:

Φr(vs) =

{
1 if r = s

0 if r 6= s

The subspace V∗B = span{Φr : r ∈ S} of V∗ is the restricted dual of V relative to
B . The mapping σB : V 7→ V∗ (with range σ[V] = V∗B ), defined by σB(vs) = Φs

for all s ∈ S , is the vector space embedding of V into V∗ relative to B . We write
this as V ⊂B V∗ . If B is a standard Hamel basis of V , we shall write σ , V∗ and
V ⊂ V∗ instead of σB , V∗B and V ⊂B V∗ , respectively (for an example we refer
to (2) and (3) in Definition 6.1).

(2) The mapping ι : V 7→ V∗∗ , defined by ι(v)(T) = T(v) for all T ∈ V∗ , is called
the canonical embedding of V into V∗∗ (it does not depend on a choice of any
basis). We write simply, V ⊂ V∗∗ .

Corollary 4.4 (Embedding of Duals) Let U be a subspace of V and W be an algebraic
complement of U to V , ie V = U ⊕W (Corollary 3.11). Let σW : U∗ 7→ V∗ be the
mapping defined by σW(T)(v) = T(u) for all v ∈ V , where v = u + w, u ∈ U and
w ∈ W . Then σW is a vector space embedding of U∗ into V∗ . We denote this by
U∗ ⊆W V∗ or even by U∗ ⊆ V∗ (if W is understood).

For a recent study, from a purely algebraic point of view, of the relationship between
the restricted dual V∗ and the algebraic dual V∗ of a vector space V with a countable
Hamel basis, we refer to the recent article Chirvasitu and Penkov [5] (no relation to
solvability of PDE and generalized functions).

5 Linear maps and operators

We present selected results of linear algebra (needed for the rest of the article) which are
well-known for finite-dimensional vector spaces, but less-known for infinite-dimensional
spaces.
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Theorem 5.1 (Extension Principle) Let U,V and W be three vector spaces over the
same field of scalars, K (the case W = K is not excluded) and let U be a subspace of
V . Then every linear map L ∈ L(U,W) can be extended (non-uniquely) to a linear map
L̂ ∈ L(V,W).

Proof Let A ⊆ B hold for two (index) sets with card(A) = dim(U) and card(B) =

dim(V). Let {uα : α ∈ A} be a (Hamel) basis of U and {uα : α ∈ A}∪{vβ : β ∈ B\A}
be its extension to a (Hamel) basis of V (Theorem 3.6). Let L̂ : V 7→ W be a map
defined by L̂(uα) = L(uα) for α ∈ A and anything (for example, L̂(vβ) = 0) for
β ∈ B \ A. Then L̂ is an extension of L we are looking for.

Definition 5.2 (Duals and Co-Duals) Let O ∈ L(V) and O∗ ∈ L(V∗) be two
operators such that O∗(T) = T ◦ O for all T ∈ V∗ . Then we say that the operator O∗
is the dual of O and that O is the co-dual (or transposed) of O∗ . We sometimes use
the notation O = t(O∗).

Remarks 5.3 (Bracket Notation) We often write 〈T, v〉 instead of T(v) for the
evaluation of T ∈ V∗ at v ∈ V . In this bracket notation the above definition can be
summarized as follows: 〈O∗(T), v〉 = 〈T,O(v)〉 for all v ∈ V and all T ∈ V∗ .

Theorem 5.4 (Surjective Dual) Let V be a vector space and V∗ be its (algebraic)
dual. Then O ∈ L(V) is injective iff its dual O∗ ∈ L(V∗) is surjective.

Proof (⇒) Let T ∈ V∗ . We have to show that the equation O∗(Λ) = T has a solution
Λ in V∗ . Indeed, define Φ : ran(O) 7→ K by Φ(O(v)) = T(v) for all v ∈ V ,
where ran(O) stands for the range of O . We observe that Φ is well-defined,
because O is injective by assumption. It is clear that Φ ∈ (ran(O))∗ , because
T is linear. By the Extension Principle (Theorem 5.1), Φ can be extended to
some Λ ∈ V∗ . Thus O∗(Λ)(v) = Λ(O(v)) = Φ(O(v)) = T(v) for all v ∈ V . So,
O∗(Λ) = T , as required.

(⇐) Let O(v) = 0 for some v ∈ V . We have to show that v = 0. Indeed, let
T ∈ V∗ . Since O∗ is surjective, there exists Λ ∈ V∗ such that T = O∗(Λ).
Thus T(v) = O∗(Λ(v)) = Λ(O(v)) = Λ(0) = 0. Thus T(v) = 0 for all T ∈ V∗

implying v = 0.

The above result gives rise to the concept of a regular operator (used in Todorov [37] in
the particular case of V = D(Rd) (Example 7.6).
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Definition 5.5 (Regular Operators) An operator O∗ in L(V∗) is regular if O∗ has
an injective co-dual (transposed) O ∈ L(V).

Corollary 5.6 (Solvability) Let V be a vector space and V∗ be its (algebraic) dual.
Let O∗ ∈ L(V∗) be a regular operator. Then the equation O∗(Λ) = T is solvable in V∗

in the sense that for every choice of T ∈ V∗ there exists Λ ∈ V∗ such that O∗(Λ) = T .

Proof An immediate consequence of Theorem 5.4.

6 Coordinate isomorphism

We discuss vector spaces KS
0 , which are infinite-dimensional counterpart of the familiar

vector spaces Kd .

Definition 6.1 (The Space KS
0 ) Let K be a field and S be a non-empty set (well-

ordered if desired).

(1) We denote by KS
0 the set of all functions f : S 7→ K with finite support

supp( f ) = {s ∈ S : f (s) 6= 0}.
(2) For each s ∈ S we define the net es : S 7→ K by

es(t) =

{
1, if s = t

0, if s 6= t

or simply es(t) = δst for short. We refer to the set {es : s ∈ S} as the standard
(Hamel) basis of KS

0 .
(3) Let (KS

0)∗ be the (algebraic) dual of KS
0 and let {Φr : r ∈ S} be a subset of (KS

0)∗

defined by Φr(es) = δrs . The subspace (KS
0)∗ = span{Φr : r ∈ S} of (KS

0)∗

is the restricted dual of KS
0 (Definition 4.3). The mapping σ : KS

0 7→ (KS
0)∗ ,

defined by σ(es) = Φs for all s ∈ S , is the vector space embedding of KS
0 into

(KS
0)∗ , which will be written simply as KS

0 ⊂ (KS
0)∗ .

Theorem 6.2 (Properties of KS
0 ) Let K be a field and S be a non-empty set (as

above). Then:

(1) KS
0 is a vector space over K and {es : s ∈ S} is a bases for KS

0 . Consequently,
dimKS

0 = card S and cardKS
0 = max{card S, cardK}.

(2) dim(KS
0)∗ = card(KS

0)∗ = max{(card S)+, cardK}.
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Proof The part (i) follows immediately from the definition of the spaces KS
0 and

Lemma 3.3. For part (ii) we calculate: dim (KS
0)∗ = max {(dimKS

0)+, cardK} =

max {(card S)+, cardK} by Theorem 4.1. Next, we apply Lemma 3.3 in the par-
ticular case V = (KS

0)∗ and calculate: card(KS
0)∗ = max{dim(KS

0)∗, cardK} =

max {(max {(card S)+, cardK}, cardK} = max {(card S)+, cardK} as required.

Notice that if S is an ordered finite set, the space KS
0 reduces to the familiar Kd , where

d = card S .

Theorem 6.3 (Coordinate Isomorphism) Let K be a field, V be a vector space over
K (as before). Let S be a set of card S = dim V and B = {vs : s ∈ S} be a basis of V .
Then:

(1) The mapping Γ : V 7→ KS
0 , defined by Γ(v) = f , where v =

∑
s∈S f (s) vs ,

is a vector isomorphism. We call Γ a coordinate isomorphism and f the
coordinate function of v relative to the basis B (sometimes the notation fv or
even fv,B should be used instead of f ). In the particular case of S = B , we have
Γ : V 7→ KB0 , where Γ(v) = f and v =

∑
w∈B f (w) w.

(2) For every s ∈ S we have Γ−1(es) = vs , where {es : s ∈ S} is the standard basis
of KS

0 (Definition 6.1).

Proof (1) We observe that Γ(vs) = es for every s ∈ S . Thus Γ ∈ L(V,KB0 ) is a
bijection.

(2) follows directly from (ii).

Remark 6.4 (Well-Ordered Bases) We often use matrices (including row and column
matrices) to visualize the coordinate functions of the vectors and linear operators relative
to a particular basis of V . The matrix approach is exceptionally popular in the cases
of finite or countable dimensional vector spaces as well as in separable Hilbert spaces.
Can we extend the matrix approach to uncountable vector spaces? The answer is yes;
we have to invoke the axiom of choice again in the form of its third version (Section 1):
Every set, in particular every basis B of V , can be well-ordered. Alternatively, we can
well-order the index set S in KS

0 . We call these bases well-ordered bases.

7 Examples of infinite-dimensional spaces

We present several examples of infinite-dimensional vector spaces and their algebraic
duals and demonstrate how to choose an algebraic (Hamel) basis (Theorem 3.6). We
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shall often rely on the formulas:

card V = max{dim V, cardK}(1)

dim V∗ = max{(dim V)+, cardK}(2)

card V∗ = max{dim V∗, cardK}(3)

(Lemma 3.3 and Theorem 4.1) along with the shortcuts presented in Corollary 3.5 and
Corollary 4.2. Here is some advice for the order of the calculations. If dim(V) is known
(or easy to calculate), we recommend the order of calculations: dim(V) 7→ card(V) 7→
dim(V∗) 7→ card(V∗). If card(V) is known (or easy to calculate), we recommend:
card(V) 7→ dim(V) 7→ dim(V∗) 7→ card(V∗). Recall that dim(V) ≤ card(V) holds
trivially.

Example 7.1 (Hamel Example) Let R|Q denote the Q-vector space of R and (R|Q)∗

stand for its (algebraic) dual. We have dim(R|Q) = cardR = c by Corollary 3.5, since
cardQ < cardR. Also, dim (R|Q)∗ = max{c+,ℵ0} = c+ by (2) and card(R|Q)∗ = c+
by Corollary 4.2, since again, cardQ < cardR. For the original source of this example,
we refer to Hamel [12].

Example 7.2 (The Space R|A and its Dual) Let A denote the field of algebraic real
numbers. Let R|A denote the A-vector space of R and (R|A)∗ stand for its dual.
As in the previous example, we have dim(R|A) = cardR = c and dim (R|Q)∗ =

card(R|A)∗ = c+ since cardA = cardQ < cardR.

Example 7.3 (RN and its Dual) Let RN denote the R-vector space of all sequences
in R and (RN)∗ denote its dual space. We show that dim(RN) = card(RN) = c and
dim (RN)∗ = card(RN)∗ = c+ . Indeed, card(RN) = cℵ0 = (2ℵ0)ℵ0 = 2ℵ0ℵ0 = 2ℵ0 = c

(the last step is due to the CH, Section 2). On the other hand, dim(RN) ≤ c holds
trivially. To show dim(RN) ≥ c, observe that the subset E = {( 1

rn ) : r ∈ R, r 6= 0} of
RN is a free set of RN , where ( 1

rn ) = ( 1
r ,

1
r2 , . . . ). Thus dim(RN) = c (as required) and

RN ∼= RR2

0 by Theorem 6.3, since card(R2) = c. Consequently, E can be extended to
a Hamel basis, say, B = {g(r,s) : (r, s) ∈ R2, (r, s) 6= (0, 0)} of RN by Theorem 3.6,
where g(r,0) = ( 1

rn ) for all r ∈ R, r 6= 0.

Next, dim(RN)∗ = max {c+, c} = c+ by (2) and card (RN)∗ = c+ by Corollary 4.2,
since cardR < dim(RN)∗ . Consequently, (RN)∗ ∼= RP(R2)

0 by Theorem 6.3. Let us
consider the subset

E∗ = {ε{(a,b)} : (a, b) ∈ R2, (a, b) 6= (0, 0)}
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of (RN)∗ , defined by:

ε{(a,b)}(g(r,s)) =

{
1, if (a, b) = (r, s)

0, otherwise

We observe that E∗ is a free set of (RN)∗ . Thus E∗ can be extended to a basis B∗ = {εA :
A ∈ P(R2)} of (RN)∗ by Theorem 3.6, where εA = ε{(a,b)} for all A = {(a, b)} such
that (a, b) 6= (0, 0). The subspace (RN)∗B = span{ε{(a,b)} : (a, b) ∈ R2, (a, b) 6= (0, 0)}
of (RN)∗ is the restricted dual of RN relative to the base B (Definition 4.3).

Example 7.4 (CN and its Dual) Let CN denote the C-vector space of all sequences
in C and let (CN)∗ be its algebraic dual. Similarly to the previous example, we
have dim(CN) = card (CN) = c and dim (CN)∗ = card(CN)∗ = c+ Consequently,
CN ∼= CR2

0 and (CN)∗ ∼= CP(R2)
0 .

Example 7.5 (The Space of Polynomials and its Dual) Let C[z] denote the C-vector
space consisting of all polynomials with coefficients in C. Let (C[z])∗ denote the
algebraic dual of C[z].

We have dim(C[z]) = ℵ0 , because (1, z, z2, . . . ) is (obviously) a basis of C[z]. Also,
cardC[z] = max{dimC[z], cardC} = max{ℵ0, c} = c by (1).

Next, dim(C[z])∗ = max{(ℵ0)+, cardC} = max{c, c} = c by (2) and card (C[z])∗ =

max{dim(C[z])∗, cardC} = max{c, c} = c by (3). Thus, dimC[z] = ℵ0 and
cardC[z] = dim (C[z])∗ = card (C[z])∗ = c.

The next example is important for the rest of the article.

Example 7.6 (D(Ω) and its Dual) Let Ω be an open set of Rd and D(Ω) = C∞0 (Ω)
denote the space of test-functions on Ω (Vladimirov [39]). Let D∗(Ω) denote the
algebraic dual of D(Ω) (not to be confused with the space of Schwartz distributions
D′(Ω), Vladimirov [39]).

We show that dimD(Ω) = cardD(Ω) = c. Indeed, cardD(Ω) ≤ c, because the
mapping ψ : D(Ω) 7→ CΩ∩Qd

, ψ(ϕ) = ϕ�Ω∩Qd , is an injection (due to the continuity
of ϕ) and card(CΩ∩Qd

) = 2ℵ0 = c. Thus dimD(Ω) ≤ c since dimD(Ω) ≤ cardD(Ω)
holds trivially. To show that dimD(Ω) ≥ c, we observe that the set E = {τhϕ ∈ D(Ω) :
h ∈ Rd}, is a free set of D(Ω) (Definition 3.1). Here ϕ ∈ D(Ω) is a (fixed) non-zero
test-function and (τhϕ)(x) = ϕ(x− h). Indeed, suppose

∑m
n=1 cnτhnϕ = 0 for some

m ∈ N, some cn ∈ C and some mutually distinct hn ∈ Rd such that τhnϕ ∈ D(Ω). The
Fourier transform produces

(∑m
n=1 cne−ihnz

)
F [ϕ](z) = 0, where both

∑m
n=1 cne−ihnz
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and F[ϕ](z) are entire functions. So, we can cancel F[ϕ](z), because the ring of
entire functions forms an integral domain. However,

∑m
n=1 cne−ihnz = 0 implies

c1 = · · · = cm = 0 (as desired), since the exponents are linearly independent. Thus
dimD(Ω) = c. Finally, cardD(Ω) = max{dimD(Ω), cardC} = max{c, c} = c

(as required) by (1). Consequently, D(Ω) ∼= CRd×R
0 , since card(Rd × R) = c

(Section 6). Next, the free set E can be extended to a basis BD(Ω) of D(Ω) of the
form BD(Ω) = {ϕh,r : (h, r) ∈ Rd × R}, where ϕh,0 = τhϕ for all h ∈ Rd such that
τhϕ ∈ D(Ω) (Theorem 3.6).

We show that dimD∗(Ω) = cardD∗(Ω) = c+ . Indeed,

dimD∗(Ω) = max{(dimD(Ω))+, cardC} = max{c+, c} = c+

by (2). Also, we observe that cardD∗(Ω) = c+ by Corollary 4.2, since cardC <

dimD∗(Ω). Thus D∗(Ω) ∼= CP(Rd×R)
0 , since cardP(Rd × R) = c+ (Section 6).

Here is one particular choice of a basis BD∗(Ω) of D∗(Ω). Let {Φg,s : (g, s) ∈ Rd ×R}
be the subset of D∗(Ω) such that:

Φg,s(ϕh,r) =

{
1, if (g, s) = (h, r)

0, if (g, s) 6= (h, r)

It is clear that {Φg,s : (g, s) ∈ Rd × R} is a free set of D∗(Ω) and thus, it can be
extended to a basis BD∗(Ω) = {ΦX : X ∈ P(Rd × R)} of D∗(Ω) by Theorem 3.6,
where Φ{(h,r)} = Φh,r for all (h, r) ∈ Rd ×R. The subspace D∗(Ω)BD(Ω) = span{Φh,r :
(h, r) ∈ Rd × R} of D∗(Ω) is the restricted dual of D(Ω) relative to the base BD(Ω)

(Definition 4.3).

Example 7.7 (E(Ω) and its Dual) Let E(Ω) = C∞(Ω) and let E∗(Ω) denote the
algebraic dual of E(Ω). Similarly to the previous example, we have card E(Ω) =

dim E(Ω) = c and card E∗(Ω) = dim E∗(Ω) = c+ . Thus E(Ω) ∼= CRd×R
0 and

E∗(Ω) ∼= CP(Rd×R)
0 (Section 6). Notice that D∗(Ω) ⊂ E∗(Ω) by Corollary 4.4, in sharp

contrast to the embedding of the distributions with compact support E ′(Ω) ⊂ D′(Ω) in
distribution theory (Vladimirov [39, page 43]).

Example 7.8 (D′(Ω) and its Dual) Let D′(Ω) denote the space of Schwartz distribu-
tions on Ω (Vladimirov [39]) and let D′∗(Ω) denote the algebraic dual of D′(Ω).

We have cardD′(Ω) = dimD′(Ω) = c, because D′(Ω) is sequentially separable in the
weak-star-topology (the topology of the pointwise convergence, Definition 8.1) and
also, D′(Ω) is a countable union of weak-star-bounded sets of D′(Ω); the polars of
the elements of a countable subsets of D(Ω). It remains to take into account that the
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weak-star-bounded sets of D′(Ω) are metrizable in the weak-star-topology; thus, of
cardinality at most c (Köthe [22, page 261, §21.3 (4)]). Consequently, D′(Ω) and
CRd×R

0 are isomorphic C-vector spaces, since card(Rd × R) = c.

Next, we have cardD′∗(Ω) = dimD′∗(Ω) = c+ . Indeed, dimD′∗(Ω) = max{c+, card
C} = c+ by (2) and cardD′∗(Ω) = max{c+, c} = c+ by (3). Consequently, D′∗(Ω)
and CP(Rd×R)

0 are isomorphic C-vector spaces (Section 6).

Example 7.9 (Hilbert Space H and its Dual) Let H be a separable (infinite-
dimensional) Hilbert space over C with an inner product 〈·, ·〉. Let (e1, e2, . . . )
be a Hilbert (not Hamel) basis of H . Recall that H = span{e1, e2, . . . } is a proper inner
subspace of H , which is dense in H relative to the norm topology generated by the norm√
〈·, ·〉. Let H∗ denote the algebraic dual of H and H∗∗ denote the algebraic double

dual of H . We have cardH = dimH = c and thus H ∼= CR
0 . Indeed, cardH ≥ c by

(1), since cardC = c. The inequality cardH ≤ c follows from fact that H is a metric
space (hence, of cardinality at most c). Thus, cardH = c. Next, dimH ≤ cardH = c

holds trivially. To show dimH ≥ c, observe that dim(H) = dim(L2(R)), because H
and L2(R) are vector-isomorphic (as separable Hilbert spaces), D(R) ⊂ L2(R) and
dimD(R) = c (Example 7.6). Thus, dimH = c as required.

How do we choose a Hamel basis of H? Unfortunately, Hilbert spaces (separable or
not) do not have orthonormal Hamel bases. Suppose (seeking a contradiction) that B is
an orthonormal Hamel basis of a Hilbert space H . Let (e1, e2, . . . ) be an orthonormal
sequence in H . Consider the sequence (v1, v2, . . . ) in H by v1 = e1, v2 = e1 + 1

2 e2 ,
etc vn =

∑n
k=1

ek
k . Then (v1, v2, . . . ) is a Cauchy sequence, but it is divergent. Indeed,

suppose (seeking a contradiction again) that limn7→∞ ||vn − v|| for some v ∈ H . We
have v =

∑m
k=1 ckwk for some m ∈ N, some ck ∈ C and some wk ∈ B . After

replacing, we get limn7→∞ ||
∑n

k=1
ek
k −

∑m
k=1 ckwk|| = 0, a contradiction, since in

(w1, · · · ,wm, e1, e2, . . . ) there are not more than finitely many repetitions and the set
{w1, · · · ,wm, e1, e2, . . . } consists of mutually orthogonal unit vectors only. Thus, H
is non-complete, another contradiction.

So, we have to choose a non-orthonormal Hamel basis of H , which is desirable to be
as close to an orthonormal as possible. One way to do this is to start from a Hilbert
(non-Hamel) orthonormal basis (e1, e2, . . . ) of H (mentioned already above) and to
extend it (non-uniquely) to a Hamel basis BH = {er : r ∈ R} of H , by Theorem 3.6.
Note that the basis BH is non-orthogonal (although it is an extension of an orthonormal
Hilbert basis).

We show now that cardH∗ = dimH∗ = c+ and thus H∗ ∼= CP(R)
0 (Section 6).

Indeed, we have dim(H∗) = max{(dim V)+, cardC} = max{c+, c} = c+ by (2). Also,
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card(H∗) = max{dimH∗, cardC} = max{c+, c} = c+ by (3). Let {εs : s ∈ R} be
the subset of H∗ defined by εs(er) = δsr for all r, s ∈ R. It is clear that {εs : s ∈ R} is
a free set of H∗ and thus it can be extended to a basis BH∗ = {εs : s ∈ P(R)} of H∗ .
The subspace H∗BH = span{εs : s ∈ R} of H∗ is the restricted dual of H relative to
BH (Definition 4.3).

Finally, we have dimH∗∗= cardH∗∗ = (c+)+ by (1)-(3) and thus H∗∗ ∼= CP(P(R))
0

(Section 6). Let ι : H 7→ H∗∗ be the canonical embedding of H into H∗∗ , defined by
ι(ϕ)(T) = T(ϕ) for all T ∈ H∗ (Definition 4.3). Then ι[BH] is a Hamel basis of ι[H].
Let W be an algebraic complement of ι[H] to H∗∗ , ie H∗∗ = ι[H]⊕W (Corollary 3.11).
Let BW = {wA : A ∈ P(P(R)) \ R} be a Hamel basis of W . Then B∗∗ = ι[BH] ∪ BW

is a Hamel basis of H∗∗ .

Remark 7.10 (An Alternative) Alternatively to the example above, we can define a
(new) inner product on H by (v,w) =

∑
r∈sp(v)∩ sp(w) ārbr , where v =

∑
r∈sp(v) arer ∈

H and w =
∑

s∈sp(w) bses ∈ H (Definition 3.4). We observe that sp(er) = {r}.
Thus, (er, es) = δrs for all r, s ∈ R. The latter means that BH = {er : r ∈ R} is
an orthonormal Hamel basis of H relative to (·, ·). We observe that (·, ·) coincides
with 〈·, ·〉 on H = span{e1, e2, . . . }, since BH = {er : r ∈ R} is an extension of
{e1, e2, . . . }. Notice however, that

(
H, (·, ·)

)
is not a Hilbert space by what was

explained above; it is non-complete relative to the norm
√

(·, ·). Rather,
(
H, (·, ·)

)
is

merely an infinite-dimensional inner vector space over C, which admits an orthonormal
Hamel basis and which shares with

(
H, 〈·, ·〉

)
a common inner subspace H .

Summarizing, the vector spaces D(Ω), E(Ω), D′(Ω), E ′(Ω), L2(Ω), l2(C), H , CRd×R
0

and CR
0 are mutually isomorphic and all of dimension c. Also, D∗(Ω), D′∗(Ω), E∗(Ω),

(L2(Ω))∗ , (l2(C))∗ , H∗ , CP(Rd×R)
0 and CP(R)

0 are mutually isomorphic and all of
dimension c+ . Similarly, D∗∗(Ω), D′∗∗(Ω), E∗∗(Ω), (L2(Ω))∗∗ , (l2(C))∗∗ , H∗∗ and
CP(P(R))

0 are mutually isomorphic and all of dimension (c+)+ .

The next several examples are about vector spaces over a field of nonstandard complex
numbers ∗C. The reader who is unfamiliar with nonstandard analysis (Robinson [33]),
might skip these examples and resume the reading from Section 8. Recall that for
every infinite cardinal κ there exists a unique (up to a field isomorphism) nonstandard
extension ∗C of C in a κ+ –saturated ultrapower nonstandard model with the set of
individuals R (Chang and Keisler [4]; for a presentation we refer also to the Appendix
in Lindstrøm [25]). Recall as well that ∗C is an algebraically closed non-Archimedean
field containing C (as a subfield) with card(∗C) = κ+ . Also, ∗C = ∗R(i), where ∗R
is a κ+ –saturated real closed non-Archimedean field containing R as a subfield. We
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should alert the reader that the asterisk in front, ∗C, has nothing to do with the asterisk
after, C∗ .

Example 7.11 (The Space ∗C|C and its Dual) Let ∗C |C denote the C-vector
space of ∗C and (∗C |C)∗ stand for its dual. We have card(∗C) = card(∗C|C) =

dim(∗C|C) = κ+ and card(∗C|C)∗ = dim(∗C|C)∗ = (κ+)+ . Indeed:
• If κ > ℵ0 , then dim(∗C|C) = κ+ by Corollary 3.5, since cardC < card(∗C).

Next, dim(∗C|C)∗ = max{(κ+)+, c} = (κ+)+ by (2) and card(∗C|C)∗ = (κ+)+
by Corollary 4.2, since cardC < dim(∗C|C)∗ .

• If κ = ℵ0 , then dim(∗C|C) ≤ c holds trivially since card(∗C) = (ℵ0)+ = c. To
show that dim(∗C|C) = c, we observe that the set E = {ρr : r ∈ R} is a free
subset of ∗C of cardinality c. Here ρ is a (fixed) positive infinitesimal in ∗C
(actually, ρ ∈ ∗R). The next two formulas, dim(∗C|C)∗ = card(∗C|C)∗ = c+ ,
follow by exactly the same arguments as in case κ > ℵ0 .

Example 7.12 (The Space of Nonstandard Polynomials and its Dual) Let ∗C[z]
denote the vector space over the field ∗C consisting of all polynomials in one variable
with coefficients in ∗C. Let (∗C[z])∗ stand for the dual space of ∗C[z] (warning again,
the two asterisks have different meaning). As in Example 7.5, dim(∗C[z]) = ℵ0 , because
{1, z, z2, . . . } is (obviously) a Hamel basis of ∗C[z], and card(∗C[z]) = dim(∗C[z])∗ =

card(∗C[z])∗ = κ+ .

Let κ be an infinite cardinal and let ∗E(Ω) be the nonstandard extension of E(Ω) =

C∞(Ω) in a κ+ –saturated ultra-power nonstandard model with set of individuals R
(the same nonstandard framework as in Examples 7.11). We have card(∗E(Ω)) = κ+ .
Indeed, card(∗E(Ω)) ≤ κ+ holds, because ∗E(Ω) = E(Ω)I/U , where card(I) = κ and
U is a κ+ –good free ultrafilter on I (Chang and Keisler [4] or Lindstrøm [25]). Thus,
card(E(Ω)I) = cκ = κ+ . On the other hand, card(∗E(Ω)) ≥ κ+ holds, because ∗E(Ω)
is κ+ –saturated. Thus, card(∗E(Ω)) = κ+ . With this in mind, we have the following
example.

Example 7.13 (The Space ∗E(Ω)|C and its Dual) Let ∗E(Ω)|C denote the vector
space of ∗E(Ω) over C and (∗E(Ω)|C)∗ be the algebraic dual of ∗E(Ω)|C (the asterisks in
front and after E(Ω) have different meaning). We have card(∗E(Ω)) = card(∗E(Ω)|C) =

dim(∗E(Ω)|C) = κ+ and card(∗E(Ω)|C)∗ = dim (∗E(Ω)|C)∗ = (κ+)+ . Indeed:
• If κ > ℵ0 , then dim(∗E(Ω)|C) = κ+ by Corollary 3.5, since cardC <

card(∗E(Ω)). Next, dim(∗E(Ω)|C)∗ = max{(κ+)+, c} = (κ+)+ by (2) and
card(∗E(Ω)|C)∗ = (κ+)+ by Corollary 4.2, since cardC < dim(∗E(Ω)|C)∗ .
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• If κ = ℵ0 , then dim(∗E(Ω)|C) ≤ c holds trivially since card(∗E(Ω)) = (ℵ0)+ =

c. To show that dim(∗E(Ω)|C) = c, we observe that the set E = {eλx : λ ∈ C} is
a free subset of ∗E(Ω) of cardinality c. The next two formulas, dim(∗E(Ω)|C)∗ =

card(∗E(Ω)|C)∗ = c+ , follow by exactly the same arguments as in case κ > ℵ0 .

Example 7.14 (The Space ∗E(Ω)|∗C and its Dual) Let ∗E(Ω)|∗C denote the vector
space of ∗E(Ω) over the field ∗C and (∗E(Ω)|∗C)∗ be its dual space. As in the pre-
vious example, we have card(∗E(Ω)) = card(∗E(Ω)|∗C) = dim(∗E(Ω)|∗C) = κ+ and
card(∗E(Ω)|∗C)∗ = dim (∗E(Ω)|∗C)∗ = (κ+)+ . Indeed, dim(∗E(Ω)|∗C) ≤ κ+ holds
trivially, because card(∗E(Ω)) = κ+ (Example 7.13). To show that dim(∗E(Ω)|∗C) =

κ+ , we observe that E = {eλx : λ ∈ ∗C} is a free subset of ∗E(Ω) of cardi-
nality κ+ . Next, dim (∗E(Ω)|∗C)∗ = max{(κ+)+, κ+} = (κ+)+ by (2). Finally,
card(∗E(Ω)|∗C)∗ = (κ+)+ by Corollary 4.2, since card(∗C) < dim(∗E(Ω)|C)∗ .

8 Linear functionals in D∗(Ω) as generalized functions: the
main result

We supply D∗(Ω) (Example 7.6) with the structure of a sheaf of differential C-vector
spaces (and, more generally, a sheaf of differential modules over E(Ω) = C∞(Ω)). This
structure is inherited from D(Ω) by duality. Our framework is the infinite-dimensional
linear algebra presented in Sections 3–5 applied to particular case V = D(Ω) and its
dual V∗ = D∗(Ω). As before, Ω stands for a (generic) open subset of Rd (Section 2).

We are trying to convince the reader that D∗(Ω) deserves to be treated as a space of gen-
eralized functions. In what follows the space Lloc(Ω) (and more literarily, SΩ[Lloc(Ω)]
explained below) presents the set of classical functions as apposed to the generalized
functions in D∗(Ω). The embedding of Schwartz distributions (Vladimirov [39]) in
D∗(Ω) will be discussed in the next section.

Our approach is a refinement and generalization of distribution theory. That is why,
starting from this section, we follow the tradition of distribution theory and use the
bracket notation mentioned in (Remark 5.3): We shall write 〈T, ϕ〉 instead of T(ϕ) for
the evaluation of T ∈ D∗(Ω) at ϕ ∈ D(Ω).

Definition 8.1 (The Space D∗(Ω)) (1) Let f ∈ E(Ω) and T ∈ D∗(Ω). We define
the product f T ∈ D∗(Ω) by 〈f T, ϕ〉 = 〈T, fϕ〉 for all ϕ ∈ D(Ω).

(2) Let X be an open set of Rd such that X ⊆ Ω and T ∈ D∗(Ω). We define the
restriction T �X ∈ D∗(X) of T on X by 〈T�X, ϕ〉 = 〈T, ϕ̄〉 for all ϕ ∈ D(X),
where ϕ̄ is the extension of ϕ from X to Ω by zero-values on Ω \ X .
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(3) Let Tn, T ∈ D∗(Ω), n ∈ N. We define the weak (pointwise) convergence Tn
∗7→ T

in D∗(Ω) by limn7→∞〈Tn, ϕ〉 = 〈T, ϕ〉 for all ϕ ∈ D(Ω), where limn7→∞ is the
usual limit in C.

(4) Let α = (α1, . . . , αd) ∈ Nd
0 be a multi-index and |α| = α1 + · · · + αd . Let

∂α = ∂|α|

∂xα1
1 ...∂x

αd
d

be the usual partial derivative operator. We define ∂α :

D∗(Ω) 7→ D∗(Ω) by 〈∂αT, ϕ〉 = (−1)|α|〈T, ∂αϕ〉 for all ϕ ∈ D(Ω).
(5) We define the Schwartz embedding SΩ : Lloc(Ω) 7→ D∗(Ω) by SΩ( f ) = Tf ,

where 〈Tf , ϕ〉 =
∫

Ω f (x)ϕ(x) dx for all ϕ ∈ D(Ω).
(6) Let X and Y be two open sets of Rd , θ ∈ Diff(X,Y) be a diffeomorphism

from X to Y and Jθ : X → Y , Jθ = | det
(
∂θ
∂x

)
|, be the corresponding Jacobian

determinant. We define the change of variables θ∗ : D∗(X) → D∗(Y) by
the formula 〈θ∗(T)(y), ϕ(y)〉 = 〈T(x), (ϕ ◦ θ)(x)Jθ(x)〉 for all ϕ ∈ D(Y). We
sometimes write T(θ−1) instead of θ∗(T).

Examples 8.2 (Inflections and Translations) (1) Let X = Y = Rd and θ(x) = −x .
We denote the inflection θ∗(T) of T by Ť , ie 〈Ť, ϕ〉 = 〈T, ϕ̌〉 for all ϕ ∈ D(Rd),
where ϕ̌(x) = ϕ(−x).

(2) Let (as above) X = Y = Rd , h ∈ Rd and let θ(x) = x + h. We have
〈(θ∗T)(y), ϕ(y)〉 = 〈T(x), ϕ(x + h)〉 for all ϕ ∈ D(Rd). It is customary to call
the mappings τh : D∗(Rd) 7→ D∗(Rd), τhT = θ∗(T), translations and often to
write T(y− h) instead of (θ∗T)(y).

Theorem 8.3 (Properties of D∗(Ω)) (i) D∗(Ω) is a differential module over E(Ω).
Consequently, D∗(Ω) is a vector space over C and SΩ[Lloc(Ω)] is a vector
subspace of D∗(Ω).

(ii) The family {D∗(Ω)}Ω∈T d is a sheaf of differential modules over E(Ω) relative
to the usual topology T d on Rd and the restriction � (Kaneko [21, page 16]).
Consequently, the family {D∗(Ω)}Ω∈T d is a sheaf of differential vector spaces
over C. (Thus the support, supp(T), is well-defined for every T ∈ D∗(Ω)).

(iii) The family {SΩ[Lloc(Ω)]}Ω∈T d is a subsheaf of {D∗(Ω)}Ω∈T d of both E(Ω)–
modules and C–vector spaces. Thus supp( f ) = supp(SΩ( f )) for every f ∈
Lloc(Ω).

(iv) The linear partial differential operator P∗(x, ∂): D∗(Ω) 7→ D∗(Ω), P∗(x, ∂) =∑
|α|≤m cα(x)∂α , with C∞–coefficients cα ∈ E(Ω), is the dual of the operator

P(x, ∂) : D(Ω) 7→ D(Ω), defined by P(x, ∂)ϕ(x) =
∑
|α|≤m(−1)|α|∂α

(
cα(x)ϕ(x)

)
(Definition 5.2). Consequently, P∗(x, ∂) is regular (Definition 5.5)—thus
surjective— iff the operator P(x, ∂) is injective.
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Proof (i) follows from the fact that f ∈ E(Ω) and ϕ ∈ D(Ω) implies fϕ ∈ D(Ω).
(ii) For a short proof we refer to (Oberguggenberger [30, page 10]).

(iii) follows directly from (i).
(iv) We calculate 〈P∗(x, ∂)T, ϕ〉 =

∑
|α|≤m〈cα∂αT, ϕ〉 =

∑
|α|≤m〈∂αT, cαϕ〉 =∑

|α|≤m(−1)|α|〈T, ∂α(cαϕ)〉 = 〈T,
∑
|α|≤m(−1)|α|∂α(cαϕ)〉 = 〈T,P(x, ∂)ϕ〉

for all T ∈ D∗(Ω) and all ϕ ∈ D(Ω). Thus P∗(x, ∂) is the dual of P(x, ∂).
The rest follows immediately from Theorem 5.4 applied for V = D(Ω) and
O = P(x, ∂).

Theorem 8.4 (The Main Result) Let P∗(x, ∂) =
∑
|α|≤m cα(x)∂α be a regular linear

partial differential operator with C∞–coefficients. Then the equation P∗(x, ∂)U = T is
solvable in D∗(Ω) in the sense that for any choice of T in D∗(Ω) this equation has a
solution U in D∗(Ω).

Proof 1. An immediate consequence of Corollary 5.6 applied for V = D(Ω), V∗ =

D∗(Ω), O = P(x, ∂) and O∗ = P∗(x, ∂), since the operator P∗(x, ∂) is the dual of
P(x, ∂) by Theorem 8.3(iv).

Proof 2. Here is an independent proof based on Theorem 3.6 only. Let ran(P(x, ∂)) ⊆
D(Ω) denote the range of P(x, ∂). We define the linear functional Φ: ran(P(x, ∂)) 7→ C
by 〈Φ,P(x, ∂)ϕ〉 = 〈T, ϕ〉 for all ϕ ∈ D(Ω). The mapping Φ is well defined, since
P(x, ∂) is injective by assumption, and Φ ∈ (ran(P(x, ∂)))∗ , because T is linear. Let B1

be a (Hamel) basis of ran(P(x, ∂)). Then B1 can be extended to a basis B of D∗(Ω) by
Theorem 3.6. We define U ∈ D∗(Ω) by U(ψ) = Φ(ψ) for all ψ ∈ B1 and U(ψ) = 0
(or anyhow) for ψ ∈ B \ B1 . It is clear that U is an extension of Φ from ran(P(x, ∂))
to D∗(Ω). Thus 〈P∗(x, ∂)U, ϕ〉 = 〈U, P(x, ∂)ϕ〉 = 〈Φ, P(x, ∂)ϕ〉 = 〈T, ϕ〉, for all
ϕ ∈ D(Ω), as required.

9 Schwartz distributions within D∗(Ω): sequential approach
to distribution theory

We characterize the space of Schwartz distributions D′(Ω) as a particular subspace
of D∗(Ω) without involving the usual strong topology on the space of test-functions
D(Ω) (Vladimirov [39]). We discuss the similarities and differences between D′(Ω)
and D∗(Ω) and give a short outline of a sequential approach to distribution theory based
on our characterization.

Journal of Logic & Analysis 13:5 (2021)



Linear Algebra and Solvability of PDE 23

Theorem 9.1 (Connection to Schwartz Distributions)
(i) The space D′(Ω) of Schwartz distributions on Ω (Vladimirov [39]) coincides

with the weak sequential completion of Lloc(Ω), ie

(4) D′(Ω) = {T ∈ D∗(Ω) : (∃(Tn) ∈
(
SΩ[Lloc(Ω)]

)N)(Tn
∗7→ T)}

where SΩ[Lloc(Ω)] is the image of Lloc(Ω) under SΩ (Definition 8.1) and(
SΩ[Lloc(Ω)]

)N denote the space of all sequences in SΩ[Lloc(Ω)]. (Compare
with Remark 9.2 below.)

(ii) D′(Ω) is a differential E(Ω)–submodule of D∗(Ω). Consequently, D′(Ω) is a
differential C-vector subspace of D∗(Ω).

(iii) The family {D′(Ω)}Ω∈T d is a subsheaf of {D∗(Ω)}Ω∈T d of differential E(Ω)-
modules (and C-vector spaces) (Definition 8.1), where T d stands for the usual
topology on Rd . Consequently, the support supp(T) in D∗(Ω) coincides with
the usual support of T in distribution theory [39, §1.5, page 16], for every
distribution T .

(iv) The inclusion D′(Ω) ⊂ D∗(Ω) is invariant under diffeomorphisms θ ∈ Diff(X, Y).

Proof (i) follows from the fact that the space of Schwartz distributions is se-
quentially complete under the weak convergence and every distribution can be
regularized within D(Ω). For a detailed proof we refer the reader to [39, §1.4,
page 14 and §4.6, pages 80–81].

(ii) The product f T in E(Ω)×D∗(Ω) (Definition 8.1) coincides with the product f T
in E(Ω)×D′(Ω) in the case when T is a distribution.

(iii) The definition of restriction T �X in D∗(Ω) (Definition 8.1) coincides with the
definition of restriction T �X in the Schwartz theory of distributions [39, §1.3,
page 12] in the case when T is a distribution.

(iv) The definition of change of variables Q∗(T) in D∗(Ω) (Definition 8.1) coincides
with the definition of change of variables Q∗(T) in the Schwartz theory of
distributions (Hörmander [15, §6.1]) in the case when T is a distribution.

Remark 9.2 (Sequential Approach to Distribution Theory) (1) The formula (4)
can be written in the form:

(5)
D′(Ω) =

{
T ∈ D∗(Ω) :

(
∃( fn) ∈

(
Lloc(Ω)

)N)(∀ϕ ∈ D(Ω)
)

lim
n7→∞

∫
Ω

fn(x)ϕ(x) dx = 〈T, ϕ〉
}

where
(
Lloc(Ω)

)N denotes the space of all sequences in Lloc(Ω) (Section 2) and
the “lim” stands for the usual limit in C.
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(2) The space Lloc(Ω) in (5) can be replaced by E(Ω) = C∞(Ω) and even by D(Ω) =

C∞0 (Ω) [39, §4.6, page 79]. This gives rise to the following sequential definition
of Schwartz distributions D′(Ω) = F(E(Ω)N)/∼ . Here F(E(Ω)N) denotes the set
of all fundamental sequences ( fn) in E(Ω), ie the sequences with the property
that for every (fixed) test function ϕ ∈ D(Ω) the sequence

( ∫
Ω fn(x)ϕ(x) dx

)
is

fundamental (convergent) in C. Also, ∼ stands for the equivalence relation on
F(E(Ω)N) defined by ( fn) ∼ (gn) if limn 7→∞

∫
Ω

(
fn(x)− gn(x)

)
ϕ(x) dx = 0 for

all ϕ ∈ D(Ω). For a similar sequential approach, we refer to Lighthill [24].

Theorem 9.3 D∗(Ω) \ D′(Ω) 6= ∅.

Proof 1. D′(Ω) is a vector subspace of D∗(Ω), and dim(D′(Ω)) = c, and dim(D∗(Ω)) =

c+ (Example 7.6). Thus D′(Ω) is a proper subspace of D∗(Ω) by Lemma 3.9.

Proof 2. Let {ϕ0, ϕ1, ϕ2, . . . } be a free set of D(Ω) such that ϕn 7→ ϕ0 as n 7→ ∞,
in the strong topology of D(Ω) (Vladimirov [39], §1.2, page 7). Since dim(D(Ω)) = c,
there exists a (Hamel) basis {ϕr : r ∈ R} of D(Ω) which extends the sequence
{ϕ0, ϕ1, ϕ2, . . . } by Theorem 3.6. Define T ∈ D∗(Ω) by T(ϕ0) = 1 and T(ϕr) = 0,
r ∈ R, r 6= 0. Thus T ∈ D∗(Ω) \ D′(Ω) (as required) by Theorem 9.1(i), since
limn7→∞ T(ϕn) = 0 6= 1 = T(ϕ0).

Proof 3. For the existence of discontinuous linear functionals (based on a Borel
theorem), we refer to Oberguggenberger [30, Example 10, page 11].

We borrow the next definition and the following lemma and theorem from [30, page 15].

Definition 9.4 (Convolution) Let S ∈ D∗(Rd) or S ∈ E∗(Rd). Let T ∈ D′(Rd). We
define the convolution S ? T ∈ D∗(Rd) by

〈S ? T, ϕ〉 = 〈S, Ť ? ϕ〉

for all ϕ ∈ D(Rd), where Ť is the inflection of T (Example 8.2) and Ť ∗ ϕ is the usual
convolution in the sense of distribution theory (Vladimirov [39, Chapter 4]).

Lemma 9.5 ∂α(S ? T) = (∂αS) ? T = S ? (∂αT) for all multi-indexes α ∈ Nd
0 .

Proof Let ϕ ∈ D(Rd). We calculate 〈∂α(S ? T), ϕ〉 = (−1)|α|〈S, Ť ? ∂αϕ〉 =

(−1)|α|〈S, ∂α(Ť ?ϕ)〉. On the other hand, (−1)|α|〈S, ∂α(Ť ?ϕ)〉 = 〈(∂αS)?T, ϕ〉. Thus
∂α(S?T) = (∂αS)?T as required. Also, (−1)|α|〈S, ∂α(Ť?ϕ)〉 = (−1)|α|〈S, (∂αŤ)?ϕ〉 =

〈S, ˇ(∂αT) ? ϕ)〉=〈S ? ∂αT, ϕ)〉. Thus ∂α(S ? T) = S ? ∂αT as required.
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Theorem 9.6 (Fundamental Solutions) Let cα ∈ C, α ∈ Nd
0 , |α| ≤ m and P∗(∂) :

D∗(Rd) 7→ D∗(Rd), P∗(∂) =
∑
|α|≤m cα ∂α , be the corresponding linear partial

differential operator with constant coefficients. Then:
(i) The operator P∗(∂) has a fundamental solution F ∈ D∗(Ω), a solution of the

equation P∗(∂) F = δ in D∗(Ω).
(ii) Let F ∈ D∗(Ω) be a fundamental solution of P∗(∂) and T ∈ E ′(Ω). Then

U = F ? T is a solution of P∗(∂) U = T in D∗(Ω).
(iii) Let F ∈ D′(Ω) be a fundamental solution of P∗(∂) and T ∈ D∗(Ω) (or even

T ∈ E∗(Ω)). Then U = F ? T is a solution of P∗(∂) U = T in D∗(Ω).

Proof (i) follows directly from Theorem 8.4, because P∗(∂) is a regular operator
(Section 11) and D′(Ω) ⊂ D∗(Ω) (thus δ ∈ D∗(Ω)). In both (i) and (ii) we
have P∗(∂)U = P∗(∂)(F ? T) = (P∗(∂)F) ? T) = δ ? T = T . The last equality,
δ ? T = T , is derived in (ii) and (iii) somewhat differently:

(ii) 〈T ? δ, ϕ〉 = 〈δ, Ť ? ϕ〉 = (Ť ? ϕ)(0) = 〈T, ϕ〉, for all ϕ ∈ D(Rd).
(iii) 〈T ? δ, ϕ〉 = 〈T, δ̌ ? ϕ〉 = 〈T, δ ? ϕ〉 = 〈T, ϕ〉, for all ϕ ∈ D(Rd) (or even for

all ϕ ∈ E(Rd)).

Remark 9.7 (Comparison: D′(Ω) versus D∗(Ω)) There are obvious similarities
between the properties of D∗(Ω) (Theorem 8.3) and the space of Schwartz distributions
D′(Ω) (Vladimirov [39]; see also Remark 9.2 in this paper). However, there are also
essential differences; here are some of them:

(1) The discontinuous (relative to the strong topology on D(Ω)) linear functionals T ∈
D∗(Ω) \ D′(Ω) cannot be approached by a sequence of classical functions in the
sense that there is no sequence ( fn) in Lloc(Ω) such that fn

∗7→ T (Definition 8.1).
In a sense the spaces Lloc(Ω) (more precisely, S[Lloc(Ω)]), D′(Ω) and D∗(Ω)
resemble Q, R and C, respectively: every real number is the limit of some
(fundamental) sequence in Q, but the complex numbers of the for form a+ib, b 6=
0, can not be approximated by sequences in Q (we are unaware of subspace of
D∗(Ω) which plays the role of Q(i) in the above analogy).

(2) The structural theorem for D′(Ω) [39, §2.4, page 41] fails in D∗(Ω). Recall
that the structural theorem states that for every Schwartz distribution T ∈ D′(Ω)
and for every open set X of Rd , such that X ⊂⊂ Ω, there exist a classical
function f ∈ L∞(X) and a multi-index α ∈ Nd

0 such that T = ∂αf in D′(X).
This theorem fails in D∗(Ω).

(3) The convolution (Definition 9.4) fails to regularize T ∈ D∗(Rd) \ D′(Rd) in the
sense that T ? ϕ ∈ E(Rd) does not necessarily hold for all ϕ ∈ D(Rd).

(4) The direct (tensor) product in D′(Ω) [39, §3, page 46] also fails in D∗(Ω).
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(5) From the above list it seems that the space D′(Ω) is superior over D∗(Ω) at least
from the point of view of partial differential operator theory. As we shall see in
the next sections however, the regular operators P∗(x, ∂) are (always) surjective
on D∗(Ω), but their restrictions on D′(Ω) are often not. That means that the
partial differential equations of the form P∗(x, ∂)U = T are always solvable
for U in D∗(Ω), but not necessarily solvable in D′(Ω). The latter property of
D∗(Ω) is the main reason why we believe that the space D∗(Ω)—rather than
D′(Ω)—should be considered as the natural framework of partial differential
equations, especially the linear ones with smooth coefficients.

10 Three invariant subspaces

In order to prepare better for the discussion in the next section, we select three important
subspaces of D∗(Ω) which are invariant under the linear partial differential operators
with C∞–coefficients.

Lemma 10.1 (Three Invariant Spaces) Let P∗(x, ∂) : D∗(Ω) 7→ D∗(Ω), P∗(x, ∂) =∑
|α|≤m cα(x)∂α , be a linear partial differential operator (regular or not) with C∞–

coefficients cα ∈ E(Ω). The subspaces of the test-functions D(Ω) = C∞0 (Ω), the
C∞ -functions E(Ω) = C∞(Ω) and the Schwartz distributions D′(Ω) are all invariant
under P∗(x, ∂).

Proof An immediate consequence from fact that the multiplication by a smooth
function on D∗(Ω) (Definition 8.1(1)) and differentiation on D∗(Ω) (Definition 8.1(4))
both coincide on E(Ω) with the usual multiplication and usual differentiation; and on
D′(Ω)—with the operations with the same names in the sense of Schwartz theory of
distributions (Vladimirov [39]).

11 Examples of regular operators on D∗(Ω): solvable partial
differential equations

Following Todorov [37], Oberguggenberger and Todorov [32] and Oberguggen-
berger [30], we present several examples of regular operators (Definition 5.5) of the
form P∗(x, ∂) : D∗(Ω) 7→ D∗(Ω), P∗(x, ∂) =

∑
|α|≤m cα(x)∂α , with C∞–coefficients

cα ∈ E(Ω). Recall that P∗(x, ∂) is called regular if its co-dual P(x, ∂) : D(Ω) 7→ D(Ω),
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P(x, ∂)ϕ(x) =
∑
|α|≤m(−1)|α|∂α

(
cα(x)ϕ(x)

)
, is injective on D(Ω) (Theorem 8.3(iv)).

Recall as well that the regular operators are exactly the operators for which our main
result (Theorem 8.4) holds, ie these are surjective operators on D∗(Ω).

The restrictions P∗(x, ∂) �D(Ω), P∗(x, ∂) � E(Ω) and P∗(x, ∂) �D′(Ω) of the regular
operators P∗(x, ∂) in our examples below are relatively well-studied in the classical
theory of linear partial differential operators (Hörmander [15]–[17]). With few excep-
tions, these restrictions are non-surjective. Thus we arrived at the main point of our
approach—to extend non-surjective operators from D′(Ω) to surjective operators on
D∗(Ω) and thus to guarantee the existence of solutions for the corresponding partial
differential equations in the framework of D∗(Ω).

Example 11.1 (Constant Coefficients) The linear partial differential operators with
constant coefficients, P∗(∂) : D∗(Ω) 7→ D∗(Ω) where P∗(∂) =

∑
|α|≤m cα ∂α , are

regular. To show that, we have to show that its co-dual (transposed) operator P(∂) :
D(Ω) 7→ D(Ω), P(∂) =

∑
|α|≤m cα (−1)|α| ∂α , is injective. Indeed, the Fourier

transform applied to P(∂)ϕ = 0 leads us to
(∑

|α|≤m cα (iz)α
)
F (ϕ)(z) = 0. Now, both∑

|α|≤m cα (iz)α and F(ϕ) are entire functions and thus the function
∑
|α|≤m cα (iz)α

can be cancelled, because the ring of entire functions forms an integral domain (a ring
without zero-divisors). The result is F(ϕ)(z) = 0, which implies ϕ = 0 (as required).
Consequently, P∗(∂) is surjective on D∗(Ω), ie the equation P∗(∂)U = T has a solution
for U in D∗(Ω) for every choice of T also in D∗(Ω). Recall that the restrictions
P∗(∂)�D(Ω), P∗(∂)�E(Ω) and P∗(∂)�D′(Ω) are not necessarily surjective. In more
detail the situation is as follows:

• In the particular case Ω = Rd the operators P∗(∂)�D(Rd) is neither surjective
nor injective (think of harmonic functions), but the operator P∗(∂) � E(Rd)
is surjective, since every convex open subset of Rd is P∗ -convex for supports
(Hörmander [14, Theorem 10.6.2]). The operator P∗(∂)�D′(Rd) is also surjective:
this is the famous existence theorem of Malgrange [28] and Ehrenpreis [9].

• If Ω 6= Rd however, the operators P∗(∂) �D′(Ω) might be also non-surjective.
In particular, if P∗(∂)�D′(Ω) is non-elliptic, then there exists an open set Ω of
Rd (which is not P∗ -convex for supports) and a smooth function f ∈ E(Ω) such
that the equation P∗(∂)U = f has no distributional solution for U [14, Theorem
10.6.6, Corollary 10.6.8, Theorem 10.8.2]. By our result (Theorem 8.4) however,
P∗(∂)U = f still does have a solution U ∈ D∗(Ω) \ D′(Ω). In addition, we
observe that P∗(∂) is certainly non-hypoelliptic on D∗(Ω) even if its restriction
P∗(∂)�D′(Ω) is hypoelliptic, because the solution U is non-smooth.

• For a recent discussion on hypoellipticity we refer to Street [36].
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Example 11.2 (Elliptic Operators) All second order elliptic operators with C∞–
coefficients P∗(x, ∂) : D∗(Ω) 7→ D∗(Ω) are regular. This follows from the fact that every
test-function ϕ ∈ D(Ω) vanishes on an open set Ω of Rd and thus P(x, ∂)ϕ = 0 implies
ϕ = 0 by the Cauchy uniqueness property (uniqueness continuation principle), since
P(x, ∂) is also a second order elliptic operator with C∞–coefficients. Consequently,
P∗(x, ∂) is surjective on D∗(Ω), ie the equation P∗(x, ∂)U = T has a solution for U in
D∗(Ω) for every choice of T also in D∗(Ω). We should mention that the restrictions
P∗(x, ∂)�D(Ω), P∗(x, ∂)�E(Ω) and P∗(x, ∂)�D′(Ω) are not necessarily surjective. For
more details we refer to (Hörmander [15, 8.5-8.6], [16, 17.2], and [17, 28.1-28.4]).

Example 11.3 (Analytic Coefficients) All elliptic operators with analytic coefficients
P∗(x, ∂): D∗(Ω) 7→ D∗(Ω) are regular since their co-dual (transposed) operators P(x, ∂):
D(Ω) 7→ D(Ω) are also elliptic with analytic coefficients. More generally, all linear
partial differential operators P∗(x, ∂): D∗(Ω) 7→ D∗(Ω) with analytic coefficients of
constant strength are regular (see the discussion before Theorem 13.5.2 in Hörmander [14,
page 196]). Consequently, P∗(x, ∂) is surjective on D∗(Ω), ie the equation P∗(x, ∂)U =

T has a solution for U in D∗(Ω) for every choice of T also in D∗(Ω). We should
note that the restrictions P∗(x, ∂) �D(Ω), P∗(x, ∂) �E(Ω) and P∗(x, ∂) �D′(Ω)are not
necessarily surjective. For the local solvability of equations of the form P∗(x, ∂)U = T
(which is quite a different phenomenon) and for a more comprehensive discussion on
the solvability in general, we refer to Treves [38].

Example 11.4 (Hans Lewy Operator) The Hans Lewy operator

L∗(x, ∂) : D∗(R3) 7→ D∗(R3), L∗(x, ∂) =
∂

∂x1
+ i

∂

∂x2
− 2i(x1 + ix2)

∂

∂x3

is regular by the following reasoning (also due to Lewy [23]). First, we verify that
L(x, ∂) = −L∗(x, ∂). Next, we observe that the mapping (x1, x2, x3) 7→

(
x1 + ix2, x3 +

i(x2
1 + x2

2)
)

is an embedding of R3 into C2 , which converts R3 into the boundary of
the domain D = {Im(z2) > |z1|2}. Thus every solution ϕ ∈ D(R3) of L(x, ∂)ϕ = 0
can be extended holomorphically into D. Thus ϕ = 0 by the unique continuation
for holomorphic functions. Consequently, L∗(x, ∂) is surjective on D∗(R3), ie the
equation L∗(x, ∂)U = T has a solution for U in D∗(R3) for every choice of T also in
D∗(R3). By contrast, recall that the Lewy operator L∗(x, ∂)�D(R3), L∗(x, ∂)�E(R3)
and L∗(x, ∂)�D′(R3) are non-surjective and the equation L∗(x, ∂)U = T might fail to
have solutions U in D′(R3) even for some test-functions T ∈ D(R3) ([23]).

With different arguments (due to Oberguggenberger [30, Remark 20(c), page 18]) we
show that the Lewy operator L∗(x, ∂): D∗(Ω) 7→ D∗(Ω) is regular for an arbitrary
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open set Ω of R3 (not only for Ω = R3 ): we apply the Fourier transform F3 —
relative to the variable x3 —to L(x, ∂)ϕ(x1, x2, x3) = 0. The result is (− ∂

∂x1
− i ∂

∂x2
+

2(x1 + ix2)z3)ψ(x1, x2, z3) = 0, where ψ(x1, x2, z3) = F3(ϕ) is an entire function
in z3 (for any fixed (x1, x2) ∈ R2 such that (x1, x2, x3) ∈ Ω for some x3 ∈ R).
Next, we let x1 + ix2 = z2 and the result is

(
∂
∂z2

+ 2z2z3
)
ψ(z2, z3) = 0. The

latter implies that the function z2 7→ ψ(z2, 0) is analytic and thus (having a compact
support) vanishes identically in the variable z2 . On the other hand, by differentiating(
∂
∂z2

+ 2z2z3
)
ψ(z2, z3) = 0 consecutively and letting z3 = 0, we get ∂k

∂z3
ψ(z2, 0) = 0 for

all z2 and all k ∈ N0 . Thus, ψ = 0 (since, again, z3 7→ ψ(z2, z3) is analytic). The latter
implies ϕ = 0 proving that L∗(x, ∂) is regular. Consequently, L∗(x, ∂) is surjective on
D∗(Ω), ie the equation L∗(x, ∂)U = T has a solution for U in D∗(Ω) for every choice
of T also in D∗(Ω) and any open Ω. By contrast, L∗(x, ∂) �D′(Ω) is not necessarily
surjective (see above).

Examples 11.5 (Non-Regular Operators) Here are several examples of linear partial
differential operators with smooth coefficients which are non-regular:

(1) Let ψ ∈ D(Ω). Then the operator P∗(x, ∂): D∗(Ω) 7→ D∗(Ω), P∗(x, ∂) = ψ∂α

is non-regular, because P(x, ∂)ϕ = (−1)|α|∂α(ψϕ) and thus P(x, ∂)ϕ = 0 for
every ϕ ∈ D(Ω), ϕ 6= 0, with supp(ϕ) ∩ supp(ψ) = ∅.

(2) The operator P∗(x, ∂) : D∗(R2) 7→ D∗(R2), P∗(x, ∂) = x1
∂
∂x2
− x2

∂
∂x1

is non-
regular, because P(x, ∂) = −P∗(x, ∂) and P(x, ∂)ϕ(x2

1 + x2
2) = 0 for every

ϕ ∈ D(R), ϕ 6= 0.
(3) For an example of a non-injective fourth order elliptic operator P(x, ∂): D(R3) 7→
D(R3) with smooth (but non-analytic) coefficients, we refer to (Hörmander [14],
Theorem 13.6.15). Its dual P∗(x, ∂): D∗(R3) 7→ D∗(R3) gives another example
for a non-regular operator.

12 Standardization of a nonstandard result

Using Hamel bases, we show that the space of generalized distributions Ê(Ω) introduced
in (Todorov [37, §2]) can be embedded as a C-vector subspace intoD∗(Ω) (Example 7.6).
Because Ê(Ω) was defined in the framework of nonstandard analysis (Robinson [33]),
we look upon D∗(Ω) as a standardization of Ê(Ω). Actually, our article itself can be
viewed as a standardization of the article [37], because the surjectivity of the regular
operators was first proved in [37] in the framework of L(Ê(Ω)), while the main result of
this article (Theorem 8.4) holds within L(D∗(Ω)). Thus, by replacing Ê(Ω) by D∗(Ω),
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our result about the regular operators becomes accessible even for readers without
background in nonstandard analysis.

Example 12.1 (The Space Ê(Ω)) Let ∗E(Ω) be the nonstandard extension of E(Ω) =

C∞(Ω) in a c+ –saturated ultra-power nonstandard model with set of individuals R
(Example 7.13 applied for κ = c = cardR). Let Ê(Ω) = ∗E(Ω)/JD(Ω) be the space of
generalized distributions, where

JD(Ω) =
{

f ∈ ∗E(Ω) : (∀ϕ ∈ D(Ω))
( ∫

Ω
f (x) ∗ϕ(x) dx = 0

)}
and ∗ϕ is the nonstandard extension of ϕ.

Recall that ∗E(Ω) is a differential ring and σE(Ω) = {∗ϕ : ϕ ∈ E(Ω)} is a differential
subring of ∗E(Ω). For our purpose we shall treat ∗E(Ω) as a differential module over
E(Ω) under the product ϕf = ∗ϕ · f , where ϕ ∈ E(Ω) and f ∈ ∗E(Ω). Here the dot in
∗ϕ · f stands for the point-wise product in ∗E(Ω). Consequently, ∗E(Ω) is a differential
vector space over C as well, since C ⊂ E(Ω). We have (trivially) card Ê(Ω) ≤ c+ ,
since dim(∗E(Ω)) = card(∗E(Ω)) = c+ (Example 7.13 applied for κ = c = cardR).

We observe that JD(Ω) is a differential E(Ω)–submodule of ∗E(Ω) and also a differential
C-vector subspace of ∗E(Ω) with the property σE(Ω)∩ JD(Ω) = {0}. Thus the mapping
f 7→ ∗f + JD(Ω) is a E(Ω)–module embedding as well as a C-vector space embedding
of E(Ω) into Ê(Ω). Among other things, this embedding implies card Ê(Ω) ≥ c

and thus dim Ê(Ω) = card Ê(Ω) due to the formula card Ê(Ω) = max{dim Ê(Ω), c}
(Lemma 3.3). The inequality c ≤ dim Ê(Ω) ≤ c+ implies that either dim Ê(Ω) = c,
or dim Ê(Ω) = c+ . In either case Ê(Ω) can be embedded as a C-vector subspace of
D∗(Ω) by Lemma 3.9, since dimD∗(Ω) = c+ (Example 7.6).

Standardizations of nonstandard results are fascinating and often dramatic events in
mathematics:

• The most famous example of standardization is certainly the creation of the
modern Calculus, which standardizes the old Leibniz–Newton–Euler Infinitesimal
Calculus. Getting rid of infinitesimals and replacing them with limits can be
described as nothing less than a real drama, or even revolution in mathematics
(Hall and Todorov [10]). The drama took several decades and it resulted—as
side products—in the rigorous theory of real numbers used today, set theory and
mathematical logic. For those interested in the history of infinitesimals in the
context of the Reformation, Counter–Reformation and English Civil War, we
refer to the excellent book by Alexander [1].
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• A more recent example of a standardization of a nonstandard result comes from
the Bernstein–Robinson [3] solution of the open Invariant Subspace Problem
for polynomially–compact operators on Hilbert space. Here the drama was not
missing either. Paul Halmos [11]—in the role of Editor/Referee—decided to
delay the acceptance of Bernstein-Robinson’s manuscript for almost a year, and
meanwhile to translate (after sweating on it, by his own words) the submitted
manuscript into the language of standard analysis, in an almost line–by–line
correspondence to the original. Eventually, Halmos published his translation side
by side with Bernstein–Robinson’s article in the same issue of the Pacific Journal
of Mathematics. Halmos’s pseudo-standardization of the Bernstein–Robinson
solution (of an open until then problem in mathematics) considerably deflected the
expected impact of one of the first and perhaps the most spectacular application
of the newly-born Nonstandard Analysis. Bitter feelings about this episode
are still lingering in the nonstandard community. The real standardization of
Bernstein–Robinson’s solution came almost a decade later from Lomonosov [26]
in the framework of a more advanced and general operator theory.
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