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Abstract: Two new hierarchies of Banach spaces Tk(d, θ) and T(Ak
d, θ), k any

positive integer, are constructed using barriers in high dimensional Ellentuck spaces
[10] following the classical framework under which a Tsirelson type norm is defined
from a barrier in the Ellentuck space [3]. The following structural properties of
these spaces are proved. Each of these spaces contains arbitrarily large copies of
`n
∞ , with the bound constant for all n . For each fixed pair d and θ , the spaces

Tk(d, θ) and T(Ak
d, θ), k ≥ 1, are `p -saturated, forming natural extensions of the

`p space, where p satisfies dθ = d1/p . Moreover, the Tk(d, θ) spaces form a strict
hierarchy over the `p space: For any j < k , the space Tj(d, θ) embeds isometrically
into Tk(d, θ) as a subspace which is non-isomorphic to Tk(d, θ). The analogous
result for the spaces T(Ak

d, θ) is open.
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1 Introduction

Banach space theory is rich with applications of fronts and barriers within the framework
of the Ellentuck space (see for example Diestel [9], Odell [23], and Argyros and
Todorcevic [3, Part B]). Infinite-dimensional Ramsey theory is a branch of Ramsey
Theory initiated by Nash-Williams in the course of developing his theory of better-
quasi-ordered sets in the early 1960’s. This theory introduced the notions of fronts and
barriers that turned out to be important in the context of Tsirelson type norms. During
the 1970’s, Nash-Williams’ theory was reformulated and strengthened by the work of
Silver [26], Galvin and Prikry [17], Louveau [21] and Mathias [22], culminating in
Ellentuck’s work in [15] introducing topological Ramsey theory on what is now called
the Ellentuck space.
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Building on seminal work of Carlson and Simpson in [7], Todorcevic distilled key
properties of the Ellentuck space into four axioms which guarantee that a topological
space satisfies infinite-dimensional Ramsey theory analogously to Ellentuck [15] (see
[27, Chapter 5]). These abstractions of the Ellentuck space are called topological
Ramsey spaces. In particular, Todorcevic has shown that the theory of fronts and
barriers in the Ellentuck space extends to the context of general topological Ramsey
spaces. This general theory has already found applications finding exact initial segments
of the Tukey structure of ultrafilters in Raghavan and Todorcevic[24], Dobrinen and
Todorcevic [13, 14], Dobrinen, Mijares and Trujillo [12], and Dobrinen [10]. In this
context, the second author constructed a new hierarchy of topological Ramsey spaces in
[10] and [11] which form dense subsets of the Boolean algebras P(ωα)/Finα , for α
any countable ordinal. Those constructions were motivated by the following.

The Boolean algebra P(ω)/Fin, the Ellentuck space, and Ramsey ultrafilters are closely
connected. A Ramsey ultrafilter is the strongest type of ultrafilter, satisfying the
following partition relation: For each partition of the pairs of natural numbers into
two pieces, there is a member of the ultrafilter such that all pairsets coming from that
member are in the same piece of the partition. Ramsey ultrafilters can be constructed via
standard methods using P(ω)/Fin and the Continuum Hypothesis or other set-theoretic
techniques such as forcing. The Boolean algebra P(ω2)/Fin2 is the next step in
complexity above P(ω)/Fin. This Boolean algebra can be used to generate an ultrafilter
U2 on base set ω × ω satisfying a weaker partition relation: For each partition of the
pairsets on ω into five or more pieces, there is a member of U2 such that the pairsets on
that member are all contained in four pieces of the partition. Moreover, the projection of
U2 to the first copy of ω recovers a Ramsey ultrafilter. In Blass, Dobrinen and Raghavan
[6], many aspects of the ultrafilter U2 were investigated, but the exact structure of the
Tukey, equivalently cofinal, types below U2 remained open. The topological Ramsey
space E2 and more generally the spaces Ek , k ≥ 2, were constructed to produce dense
subsets of P(ωk)/Fink which form topological Ramsey spaces, thus setting the stage
for finding the exact structure of the cofinal types of all ultrafilters Tukey reducible to
the ultrafilter generated by P(ωk)/Fink in [10].

Once constructed, it became clear that these new spaces are the natural generalizations
of the Ellentuck space to higher dimensions, and hence are called high-dimensional
Ellentuck spaces. This, in conjunction with the multitude of results on Banach spaces
constructed using barriers on the original Ellentuck space, led the second author to infer
that the general theory of barriers on these high-dimensional Ellentuck spaces would be
a natural starting point for answering the following question.
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Question 1.1 What Banach spaces can be constructed by extending Tsirelson’s
construction method by using barriers in general topological Ramsey spaces?

The work in this paper is a first step toward the broader goal of finding structural
properties of Tsirelson analogues using infinite dimensional barriers on high and infinite
dimensional Ellentuck spaces. The second author’s motivation was the hope that this
approach can shed new light on distortion problems. The constructions presented in
this paper have as their starting point Tsirelson’s groundbreaking example of a reflexive
Banach space T with an unconditional basis not containing c0 or `p with 1 ≤ p <∞
Tsirelson [28]. The idea of Tsirelson’s construction became apparent after Figiel and
Johnson [16] showed that the norm of the dual of the Tsirelson space satisfies the
following equation:

(1)
∥∥∥∑

n
anen

∥∥∥ = max

{
supn |an| ,

1
2

sup
m∑

i=1

∥∥∥Ei

(∑
n

anen

)∥∥∥}

where the sup is taken over all sequences (Ei)m
i=1 of successive finite subsets of integers

with the property that m ≤ min(E1) and Ei
(∑

n anen
)

=
∑

n∈Ei
anen .

The first systematic abstract study of Tsirelson’s construction was achieved by Argyros
and Deliyanni [1]. Their construction starts with a real number 0 < θ < 1 and an
arbitrary family F of finite subsets of N that is the downwards closure of a barrier in
Ellentuck space. Then, one defines the Tsirelson type space T(F , θ) as the completion
of c00(N) with the implicitly given norm (1) replacing 1/2 by θ and using sequences
(Ei)m

i=1 of finite subsets of positive integers which are F -admissible, ie there is some
{k1, k2, . . . , km} ∈ F such that k1 ≤ min(E1) ≤ max(E1) < k2 ≤ · · · < km ≤
min(Em) ≤ max(Em).

It became customary in the literature to identify Tsirelson’s original space with its
dual. So, in the above notation, Tsirelson’s original space is denoted by T(S, 1/2),
where S = {F ⊂ N : |F| ≤ min(F)} is the Schreier family. In addition to S , the low
complexity hierarchy {Ad}∞d=1 with

Ad := {F ⊂ N : |F| ≤ d}

is noteworthy in the realm of Tsirelson type spaces. In fact, Bellenot proved in [4] the
following remarkable theorem:
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Theorem 1.2 (Bellenot [4]) If dθ > 1, then for every x ∈ T(Ad, θ),

1
2d
‖x‖p ≤ ‖x‖T(Ad,θ) ≤ ‖x‖p ,

where dθ = d1/p and ‖·‖p denotes the `p -norm.

We refer the reader to the work of Casazza and Shura [8] and Lopez-Abad and
Manoussakis [20] for a systematic study of Tsirelson’s space and Tsirelson type spaces.

There are three non-trivial directions in which this construction may be extended using
high-dimensional Ellentuck spaces, two of which are considered in this paper. We
construct two new hierarchies of Banach spaces extending the low complexity hierarchy
on the Ellentuck space to the low complexity hierarchy on the finite dimensional
Ellentuck spaces. This produces various structured extensions of the `p spaces.

In Section 2 we review the finite-dimensional Ellentuck spaces constructed by Dobrinen
in [10], introducing new notation and representations more suitable to the context of
this paper. Our new Banach spaces Tk(d, θ) and T(Ak

d, θ) are constructed in Section 3,
using finite rank barriers on the k-dimensional Ellentuck spaces. These spaces may
be thought of as structured generalizations of `p , where dθ = d1/p , as they extend the
construction of the Tsirelson type space T1(d, θ), which by Bellenot’s Theorem 1.2 is
exactly `p .

We prove the following structural results about the spaces Tk(d, θ). They contain
arbitrarily large copies of `n

∞ , where the bound is fixed for all n (Section 4), and that
there are many natural block subspaces isomorphic to `p (Section 5). Moreover, they
are `p -saturated (Section 6). The spaces Tk(d, θ) are not isomorphic to each other
(Section 7), but for each j < k , there are subspaces of Tk(d, θ) which are isometric to
Tj(d, θ) (Section 8). Thus, for fixed d, θ , the spaces Tk(d, θ), k ≥ 1, form a natural
hierarchy in complexity over `p , where dθ = d1/p .

The second class of spaces we consider involves the most stringent definition of norm.
These spaces, T(Ak

d, θ), are constructed in 3 using admissible sets which are required to
be separated by sets which are finite approximations to members of the Ek . The norms
on these spaces are thus bounded by the norms on the Tk(d, θ) spaces. In Section 9, the
spaces T(Ak

d, θ) are shown to have the same properties as the as shown for Tk(d, θ), the
only exception being that we do not know whether T(A j

d, θ) embeds as an isometric
subspace of T(Ak

d, θ) for j < k . The paper concludes with open problems for further
research into the properties of these spaces.

Acknowledgement. Dobrinen was partially supported by National Science Foundation
Grants DMS-1301665 and DMS-1600781
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2 High Dimensional Ellentuck Spaces

In [10], the second author constructed a new hierarchy (Ek)2≤k<ω of topological Ramsey
spaces which generalize the Ellentuck space in a natural manner. In this section, we
reproduce the construction, though with slightly different notation more suited to the
context of Banach spaces.

Recall that the Ellentuck space [15] is the triple ([ω]ω,⊆, r), where the finitization map
r : ω × [ω]ω → [ω]<ω is defined as follows: for each X ∈ [ω]ω and n < ω , r(n,X) is
the set of the least n elements of X . Usually r(n,X) is denoted by rn(X). We shall let
E1 denote the Ellentuck space.

We now begin the process of defining the high dimensional Ellentuck spaces Ek , k ≥ 2.
The presentation here is slightly different than, but equivalent to, the one in [10]. We
have chosen to do so in order to simplify the construction of the Banach spaces. In
logic, the set of natural numbers {0, 1, 2, . . . } is denoted by the symbol ω . In keeping
with the logic influence in [10], we shall use this notation. We start by defining a
well-ordering on the collection of all non-decreasing sequences of members of ω which
forms the backbone for the structure of the members in the spaces.

Definition 2.1 For k ≥ 2, denote by ω6 ↓≤k the collection of all non-decreasing
sequences of members of ω of length less than or equal to k .

Definition 2.2 (The well-order <lex ) Let (s1, . . . , si) and (t1, . . . , tj), with i, j ≥ 1,
be in ω6 ↓≤k . We say that (s1, . . . , si) is lexicographically below (t1, . . . , tj), written
(s1, . . . , si) <lex (t1, . . . , tj), if and only if there is a non-negative integer m with the
following properties:

(i) m ≤ i and m ≤ j;

(ii) for every positive integer n ≤ m, sn = tn ; and

(iii) either sm+1 < tm+1 , or m = i and m < j.

This is just a generalization of the way the alphabetical order of words is based on the
alphabetical order of their component letters.

Example 2.3 Consider the sequences (1, 2), (2), and (2, 2) in ω6 ↓≤2 . Following the
preceding definition we have (1, 2) <lex (2) <lex (2, 2). We conclude that (1, 2) <lex (2)
by setting m = 0 in Definition 2.2; similarly, (2) <lex (2, 2) follows by setting m = 1,
as any proper initial segment of a sequence is lexicographically below that sequence.
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Definition 2.4 (The well-ordered set (ω6 ↓≤k,≺)) Set the empty sequence () to be the
≺-minimum element of ω6 ↓≤k ; so, for all nonempty sequences s in ω6 ↓≤k , we have
() ≺ s. In general, given (s1, . . . , si) and (t1, . . . , tj) in ω6 ↓≤k with i, j ≥ 1, define
(s1, . . . , si) ≺ (t1, . . . , tj) if and only if either

(1) si < tj , or

(2) si = tj and (s1, . . . , si) <lex (t1, . . . , tj).

Notation. Since ≺ well-orders ω6 ↓≤k in order-type ω , we fix the notation of letting
~sm denote the m-th member of (ω6 ↓≤k,≺). Let ω6 ↓k denote the collection of all non-
decreasing sequences of length k of members of ω . Note that ≺ also well-orders ω6 ↓k

in order type ω . Fix the notation of letting ~un denote the n-th member of (ω6 ↓k,≺). For
s, t ∈ ω6 ↓≤k , we say that s is an initial segment of t and write s @ t if s = (s1, . . . , si),
t = (t1, . . . , tj), i < j, and for all m ≤ i, sm = tm . Recall the concatenation operation:
given sequences s = (s1, . . . , si) and t = (t1, . . . , tj), s_t denotes the concatenation of
s and t , which is the sequence (s1, . . . , si, t1, . . . , tj) of length i + j. As is standard, for
a natural number n, s_n denotes the sequence (s1, . . . , si, n).

Definition 2.5 (The spaces (Ek,≤, r), k ≥ 2, Dobrinen [10]) An Ek -tree is a function
X̂ from ω6 ↓≤k into ω6 ↓≤k that preserves the well-order ≺ and initial segments @. For
X̂ an Ek -tree, let X denote the restriction of X̂ to ω6 ↓k . The space Ek is defined to be
the collection of all X such that X̂ is an Ek -tree. We identify X with its range and
usually will write X = {v1, v2, . . .}, where v1 = X(~u1) ≺ v2 = X(~u2) ≺ · · · . The
partial ordering on Ek is defined to be simply inclusion; that is, given X, Y ∈ Ek , X ≤ Y
if and only if (the range of) X is a subset of (the range of) Y . For each n < ω , the n-th
restriction function rn on Ek is defined by rn(X) = {v1, v2, . . . , vn} that is, the ≺-least
n members of X . When necessary for clarity, we write rk

n(X) to highlight that X is a
member of Ek . We set

ARk
n := {rn(X) : X ∈ Ek}

ARk := {rn(X) : n < ω,X ∈ Ek}and

to denote the set of all n-th approximations to members of Ek , and the set of all finite
approximations to members of Ek , respectively.

Remark Let s ∈ ω6 ↓≤k and denote its length by |s|. Since X̂ preserves initial segments,
it follows that |X̂(s)| = |s|. Thus, Ek is the space of all functions X from ω6 ↓k into ω6 ↓k

which induce an Ek -tree. Notice that the identity function is identified with ω6 ↓k and
therefore ω6 ↓k is regarded as a member of Ek . It is of course the maximal member of Ek :
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every X ∈ Ek satisfies X ≤ ω6 ↓k . Notice also that ω6 ↓≤k is an Ek -tree, and this tree is
induced by ω6 ↓k . The set ω6 ↓k is the prototype for all members of Ek in the sense that
every member X of Ek will be a subset of ω6 ↓k which has the same structure as ω6 ↓k ,
according to the interaction between the two orders ≺ and @. Definition 2.5 essentially
is generalizing the key points about the structure, according to ≺ and @, of the identity
function on ω6 ↓≤k .

The family of all non-empty finite subsets of ω6 ↓k will be denoted by FIN(ω6 ↓k). Clearly,
ARk ⊂ FIN(ω6 ↓k). If E ∈ FIN(ω6 ↓k), then we denote the minimal and maximal elements
of E with respect to ≺ by min≺(E) and max≺(E), respectively.

Example 2.6 (The space E2 ) The members of E2 look like ω many copies of the
Ellentuck space. The well-order (ω6 ↓≤2,≺) begins as follows:

() ≺ (0) ≺ (0, 0) ≺ (0, 1) ≺ (1) ≺ (1, 1) ≺ (0, 2) ≺ (1, 2) ≺ (2) ≺ (2, 2) ≺ · · ·

The tree structure of ω6 ↓≤2 , under lexicographic order, looks like ω copies of ω ,
and has order type the countable ordinal ω · ω . Here, we picture the finite tree
{~sm : 1 ≤ m ≤ 21}, which indicates how the rest of the tree ω6 ↓≤2 is formed. This is
exactly the tree formed by taking all initial segments of the set {~un : 1 ≤ n ≤ 15}.

()

(4)

(4,
4)

(3)

(3,
4)

(3,
3)

(2)

(2,
4)

(2,
3)

(2,
2)

(1)

(1,
4)

(1,
3)

(1,
2)

(1,
1)

(0)

(0,
4)

(0,
3)

(0,
2)

(0,
1)

(0,
0)

Figure 1: Initial structure of ω6 ↓≤2 .

Next we present the specifics of the structure of the space E3 .

Example 2.7 (The space E3 ) The well-order (ω6 ↓≤3,≺) begins as follows:

() ≺ (0) ≺ (0, 0) ≺ (0, 0, 0) ≺ (0, 0, 1) ≺ (0, 1) ≺ (0, 1, 1) ≺ (1)

≺ (1, 1) ≺ (1, 1, 1) ≺ (0, 0, 2) ≺ (0, 1, 2) ≺ (0, 2) ≺ (0, 2, 2)

≺ (1, 1, 2) ≺ (1, 2) ≺ (1, 2, 2) ≺ (2) ≺ (2, 2) ≺ (2, 2, 2) ≺ (0, 0, 3) ≺ · · ·
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The set ω6 ↓≤3 is a tree of height three with each non-maximal node branching into
ω many nodes. The maximal nodes in the following figure are technically the set
{~un : 1 ≤ n ≤ 20}, which indicates the structure of ω6 ↓≤3 .

()

(3)

(3, 3)

(3,
3,3

)

(2)

(2, 3)

(2,
3,3

)

(2, 2)

(2,
2,3

)

(2,
2,2

)

(1)

(1, 3)

(1,
3,3

)

(1, 2)

(1,
2,3

)

(1,
2,2

)

(1, 1)

(1,
1,3

)

(1,
1,2

)

(1,
1,1

)

(0)

(0, 3)

(0,
3,3

)

(0, 2)

(0,
2,3

)

(0,
2,2

)

(0, 1)

(0,
1,3

)

(0,
1,2

)

(0,
1,1

)

(0, 0)

(0,
0,3

)

(0,
0,2

)

(0,
0,1

)

(0,
0,0

)

Figure 2: Initial structure of ω6 ↓≤3 .

2.1 Upper Triangular Representation

We now present an alternative and very useful way to visualize elements of E2 . This
turned out to be fundamental to developing more intuition and to understanding the
Banach spaces that we define in the following section. We refer to it as the upper
triangular representation of ω6 ↓2 :

Figure 3: Upper triangular representation of ω6 ↓2 .

The well-order (ω6 ↓2,≺) begins as follows: (0, 0) ≺ (0, 1) ≺ (1, 1) ≺ (0, 2) ≺ (1, 2) ≺
(2, 2) ≺ · · · . In comparison with the tree representation shown in Figure 1, the upper
triangular representation makes it simpler to visualize this well-order: starting at (0, 0)
we move from top to bottom throughout each column, and then to the right to the next
column.
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The following figure shows the initial part of an E2 -tree X̂ . The highlighted pieces
represent the restriction of X̂ to ω6 ↓2 .

Figure 4: Initial part of an E2 -tree.

Under the identification discussed after Definition 2.5, we have that

X = {(2, 4), (2, 6), (6, 6), (2, 8), (6, 8), (9, 9), (2, 10), . . .}

is an element of E2 . Using the upper triangular representation of ω6 ↓2 we can visualize
r10(X):

Figure 5: r10(X) for a typical X ∈ E2 .

2.2 Special Maximal Elements of Ek

There are special elements in Ek that are useful for describing the structure of some
subspaces of the Banach spaces that we define in the following section. Given v ∈ ω6 ↓k
we want to construct a special Xmax

v ∈ Ek that has v as its first element and that is
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maximal in the sense that every other Y ∈ E2 with v as its ≺-minimum member is a
subset of X .

For example, if v = (0, 4) ∈ ω6 ↓2 , then a finite approximation of Xmax
v ∈ E2 looks like

this:

Figure 6: A finite approximation of Xmax
(0,4) ∈ E2 .

Now let us illustrate this with k = 3 and v = (0, 2, 7). Since we want v as the first
element of Xmax

v , we identify it with (0, 0, 0) and then we choose the next elements as
small as possible following Definition 2.5:

() ≺ (0) ≺ (0, 2) ≺ (0, 2, 7) ≺ (0, 2, 8) ≺ (0, 8) ≺ (0, 8, 8) ≺ (8)

≺ (8, 8) ≺ (8, 8, 8) ≺ (0, 2, 9) ≺ (0, 8, 9) ≺ (0, 9) ≺ (0, 9, 9)

≺ (8, 8, 9) ≺ (8, 9) ≺ (8, 9, 9) ≺ (9) ≺ (9, 9) ≺ (9, 9, 9) ≺ (0, 2, 10) ≺ · · ·

Therefore, under the identification discussed after Definition 2.5, we have:

Xmax
v = {(0, 2, 7), (0, 2, 8), (0, 8, 8), (8, 8, 8), (0, 2, 9), . . .}

In general, for any k ≥ 2, Xmax
v is constructed as follows.

Definition 2.8 Let k ≥ 2 be given and suppose v = (n1, n2, . . . , nk). First we define
the Ek -tree X̂v that will determine Xmax

v . X̂v must be a function from ω6 ↓≤k to ω6 ↓≤k

Journal of Logic & Analysis 10:5 (2018)
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satisfying Definition 2.5 and such that X̂v(0, 0, . . . , 0) = v. So, for m, j ∈ N+, j ≤ k ,
define the following auxiliary functions: fj(0) := nj and fj(m) := nk + m. Then, for
t = (m1,m2, . . . ,ml) ∈ ω6 ↓≤k set X̂v(t) := ( f1(m1), f2(m2), . . . , fl(ml)). Finally, define
Xmax

v to be the restriction of X̂v to ω6 ↓k .

It is routine to check that:

Lemma 2.9 Let v = (n1, . . . , nk). Then X̂v is an Ek -tree, and w = (m1, . . . ,mk) ∈ ω6 ↓k
belongs to Xmax

v if and only if either m1 > nk or else there is 1 ≤ i ≤ k such that
(m1,m2, . . . ,mi) = (n1, n2, . . . , ni), and if i < k then mi+1 > nk .

We use this lemma to prove that Xmax
v contains all elements of ARk that have v as

initial value.

Proposition 2.10 Let E ∈ ARk and v = min≺(E). Then E ⊂ Xmax
v .

Proof Let E ∈ ARk with v = min≺(E). Then there exists an Ek -tree X̂ such that
X̂(0, . . . , 0) = (n1, . . . , nk) = v and E = rj(X) for some j. If E has more than
one member, then its second element is X̂(0, . . . , 0, 1) = (n1, . . . , nk−1, n′k), for some
n′k > nk . By Lemma 2.9, X̂(0, . . . , 0, 1) ∈ Xmax

v .

Suppose that w = (p1, . . . , pk) is any member of E besides v. We will show that
w ∈ Xmax

v . Let (m1, . . . ,mk) ∈ ω6 ↓k be the sequence such that w = X̂(m1, . . . ,mk).
Suppose first that m1 > 0. Then

(0, . . . , 0, 1) ≺ (m1) ≺ (m1,m2, . . . ,mk).

Applying X̂ and recalling that X̂ preserves ≺ and @, we conclude that

(n1, . . . , nk−1, n′k) ≺ (p1) ≺ (p1, p2, . . . , pk).

Comparing the first two elements we see that either p1 > n′k or else p1 = n′k
and p1 > n1 . In both cases, p1 ≥ n′k > nk , which, by Lemma 2.9, gives that
(p1, p2, . . . , pk) = w ∈ Xmax

v .

Suppose now that m1 = · · · = mi = 0 and mi+1 > 0, where i + 1 ≤ k . Then

(0, . . . , 0, 1) ≺ (m1, . . . ,mi,mi+1) = (0, . . . , 0,mi+1) ≺ (0, . . . , 0,mi+1, . . . ,mk).

Applying X̂ we obtain

(n1, . . . , nk−1, n′k) ≺ (n1, . . . , ni, pi+1) ≺ (n1, . . . , ni, pi+1, . . . , pk).

Arguing as before, we conclude that pi+1 ≥ n′k > nk , and then Lemma 2.9 yields that
w ∈ Xmax

v .

Journal of Logic & Analysis 10:5 (2018)
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Corollary 2.11 If w ∈ Xmax
v , then Xmax

w ⊆ Xmax
v . In particular, if E ∈ ARk and

min≺(E) ∈ Xmax
v , then E ⊂ Xmax

v .

Notice that the only elements in X̂v that are ≺-smaller than v are the initial segments
of v.

Corollary 2.12 If s ≺ v and s ∈ ran(X̂v) then s @ v.

3 The Banach Spaces Tk(d, θ) and T(Ak
d, θ)

3.1 Preliminary Definitions

Set N := {0, 1, . . .} and N+ := N\{0}. For the rest of this paper, fix d, k ∈ N+, k ≥ 2
and θ ∈ R with 0 < θ < 1. Given E,F ∈ FIN(ω6 ↓k), we write E < F (respectively
E ≤ F ) to denote that max≺(E) ≺ min≺(F) (respectively max≺(E) � min≺(F)), and
in this case we say that E and F are successive. Similarly, for v ∈ ω6 ↓k , we write v < E
(respectively v ≤ E) whenever {v} < E (respectively {v} ≤ E).

By c00(ω6 ↓k) we denote the vector space of all functions x : ω6 ↓k → R such that the set
supp (x) := {v ∈ ω6 ↓k : x(v) 6= 0} is finite. Usually we write xv instead of x(v). We can
extend the orders defined above to vectors x, y ∈ c00(ω6 ↓k): x < y (respectively x ≤ y)
iff supp (x) < supp (y) (respectively supp (x) ≤ supp (y)).

From the notation in Section 2 we have that ω6 ↓k = {~u1,~u2, . . .}. Denote by (e~un)∞n=1
the canonical basis of c00(ω6 ↓k). To simplify notation, we will usually write en instead
of e~un . So, if x ∈ c00(ω6 ↓k), then x =

∑∞
n=1 x~une~un =

∑m
n=1 x~une~un for some m ∈ N+ .

Using the above convention, we will write x =
∑∞

n=1 xnen =
∑m

n=1 xnen . If E ∈ ARk ,
we put Ex :=

∑
v∈E xvev .

3.2 Construction of Tk(d, θ) and T(Ak
d, θ)

The Banach spaces that we introduce in this section have their roots (as all subsequent
constructions, including Bellenot [4], Schlumprecht[25], Argyros and Deliyanni [1],
Gowers and Maurey [19] and Argyros and Deliyanni [2]) in Tsirelson’s fundamental
discovery in [28] of a reflexive Banach space T with an unconditional basis not
containing c0 or `p with 1 ≤ p <∞.
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Recall that in the construction of the Banach spaces T(S, θ) and T(Ad, θ), the norm is
determined using sequences of the form

v1 ≤ E1 < v2 ≤ E2 < · · · < vm ≤ Em,

where m ≤ d and each set Ei is some finite set of natural numbers. How one extends
this method for constructing norms to high dimensional Ellentuck spaces depends on
how one conceives of the sets {v1, . . . , vm} and Ei , 1 ≤ i ≤ m. The set {v1, . . . , vm}
may be thought of either as simply a set of cardinality m, or as an initial segment of a
member of the barrier of rank d on the Ellentuck space. Likewise, one may think of the
sets Ei as simply finite sets, or as finite initial segments of members of the Ellentuck
space. Thus, there are four natural ways to generalize the norm construction to the
k-dimensional Ellentuck space, Ek , or for topological Ramsey spaces in general. Fixing
d and letting m ≤ d , we may (a) let {v1, . . . , vm} range over all m-sized subsets of
ω6 ↓k , or we may (b) restrict to those {v1, . . . , vm} which are in ARk

m . Likewise we may
(i) simply let the sets Ei range over all finite subsets of ω6 ↓k , or (ii) we may restrict
the Ei to only range over members of ARk . Combination (a) and (i) yields the space
T(Ad, θ), so nothing new is gained by that approach. Combining (a) and (ii), we define
the new space Tk(d, θ). The space T(Ak

d, θ) is constructed using (b) and (ii). This is
the most restrictive of the possible constructions. The space constructed using (b) and
(i) was considered by the third author in his dissertation [18].

Recalling the fact that (ω6 ↓k,≺) is a linear order with order type exactly that of the
natural numbers, the classical notion of barrier on the natural numbers transfers to
(ω6 ↓k,≺). We say that a subset B of FIN(ω6 ↓k) is a barrier on ω6 ↓k if (a) for each infinite
subset Y ⊆ ω6 ↓k , there is some E ∈ B which is an initial segment (in the ≺ ordering) of
Y , and (b) for each pair E 6= F in B , E 6⊆ F . Given a barrier B on (ω6 ↓k,≺), the set

C1(B) = {F ⊆ FIN(ω6 ↓k) : (∃E ∈ B) F ⊆ E}

is a compact family on ω6 ↓k . Notice that [ω6 ↓k]d is the barrier of rank d on (ω6 ↓k,≺), and
that C1([ω6 ↓k]d) = [ω6 ↓k]≤d .

The notion of barrier for abstract topological Ramsey spaces appears in Chapter 5 of
Todorcevic [27]. For high dimensional Ellentuck spaces, the notion of barrier reduces
to the following.

Definition 3.1 A family B ⊂ ARk is a barrier on Ek if

(a) For every Y ≤ X there exists n such that rn(Y) ∈ B ; and

(b) E 6⊆ F , for all E 6= F in B .
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The barrier on Ek of rank d is exactly ARk
d , the set of all d-th approximations to

members of Ek . Barriers of infinite rank are defined recursively in a manner similarly
to barriers of infinite rank on the natural numbers. However, as the precise definition
takes several paragraphs and as infinite rank barriers are not used in this paper, we omit
their definition here.

Notation: Given a barrier B on Ek , let

C(B) = {F ∈ ARk : (∃E ∈ B) F ⊆ E}.

This is the analogue for Ek of a compact family determined by a barrier on the natural
numbers, and we call C(B) a compact family on Ek . Notice that C(ARk

d) =
⋃

m≤dAR
k
m ,

which we denote as Ak
d .

Definition 3.2 Let F be a compact family on ω6 ↓k or on Ek . We say that (Ei)m
i=1 ⊂ AR

k

is F -admissible if and only if there exists {v1, v2, . . . , vm} ∈ F such that v1 ≤ E1 <

v2 ≤ E2 < · · · < vm ≤ Em .

For x =
∑∞

n=1 xnen ∈ c00(ω6 ↓k) and j ∈ N, we define a non-decreasing sequence of
norms on c00(ω6 ↓k) as follows:

|x|F0 := max
n∈N+

|xn|

|x|Fj+1 := max

{
|x|Fj , θmax

{
m∑

i=1

|Eix|Fj : 1 ≤ m ≤ d, (Ei)m
i=1 F-admissible

}}

For fixed x ∈ c00(ω6 ↓k), the sequence (|x|Fj )j∈N is bounded above by the `1(ω6 ↓k)-norm
of x . Therefore, we can set

‖x‖F := sup
j∈N
|x|Fj .

We write ‖·‖Tk(d,θ) to denote the norm obtained using F = C1([ω6 ↓k]d), the compact
family determined by the rank d barrier on (ω6 ↓k,≺), and write ‖·‖T(Ak

d,θ) to denote

the norm obtained using F = C(ARk
d). Clearly ‖·‖Tk(d,θ) and ‖·‖T(Ak

d,θ) are norms on

c00(ω6 ↓k).

Definition 3.3 The completion of c00(ω6 ↓k) with respect to the norm ‖·‖Tk(d,θ) is
denoted by (Tk(d, θ), ‖·‖). Likewise, the completion of c00(ω6 ↓k) with respect to the
norm ‖·‖T(Ak

d,θ) is denoted by (T(Ak
d, θ), ‖·‖).
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Notice that when k = 1, T1(d, θ) is the space Bellenot considered [4].

For v ∈ ω6 ↓k and x ∈ Tk(d, θ) we also write v < x whenever v < supp (x). From the
preceding definition we have the following:

Proposition 3.4 If F is a compact family on ω6 ↓k or on Ek , x ∈ c00(ω6 ↓k) and
|supp (x)| = n, then |x|Fn = |x|Fn+1 = · · ·

Therefore, we conclude that for every x ∈ c00(ω6 ↓k) we have

‖x‖F = max
j∈N
|x|Fj .

Also, note that the formulas defining |x|Fj do not depend on the signs of x , so the unit
basis of c00(ω6 ↓k) is a 1-unconditional basic sequence, and by definition the unit basis
generates Tk(d, θ) and T(Ak

d, θ). Therefore we have the following:

Proposition 3.5 (en)∞n=1 is a 1-unconditional basis of Tk(d, θ) and of T(Ak
d, θ).

Proposition 3.6 For x =
∑∞

n=1 xnen ∈ Tk(d, θ) it follows that

‖x‖Tk(d,θ) =

max

{
‖x‖∞ , θ sup

{
m∑

i=1

‖Eix‖Tk(d,θ) : 1 ≤ m ≤ d, (Ei)m
i=1 d-admissible

}}
,

where ‖x‖∞ := supn∈N+ |xn|. Likewise for T(Ak
d, θ).

4 Subspaces of Tk(d, θ) isomorphic to `N
∞

The Banach space Tk(d, θ) “lives” in ω6 ↓k , at the top of ω6 ↓≤k . We will see that it’s
structure is determined by subspaces indexed by elements in the lower branches. Let
s ∈ ω6 ↓≤k . The tree generated by s and the Banach space associated to it are given by

τ k[s] :=
{

v ∈ ω6 ↓k : s v v
}

Tk[s] := span{ev : v ∈ τ k[s]},and

respectively. In this section, let N ∈ N+ and s1, . . . , sN ∈ ω6 ↓≤k be such that
|s1| = · · · = |sN | < k and s1 ≺ · · · ≺ sN . The following is a very useful result.
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Corollary 4.1 If v ∈ ω6 ↓k satisfies sN ≺ v, then there is at most one i ≤ N such that
Xmax

v ∩ τ k[si] 6= ∅.

Proof Suppose that v = (n1, n2, . . . , nk) and let w = (m1,m2, . . . ,mk) ∈ Xmax
v . It

follows from Lemma 2.9 that either m1 > nk or that there is 0 < i < k such that
(m1, . . . ,mi) = (n1, . . . , ni) and mi+1 > nk .

If m1 > nk , w does not belong to any τ k[si] because nk is greater than any coordinate
of the si ’s and as a result, none of the si ’s can be an initial segment of w. Hence it
follows from the other option of w that the only way an si is an initial segment of w is
if si is also an initial segment of v. Since all the si ’s have the same length, at most one
of them is an initial segment of v and the result follows.

It is useful to have an analogous result to the preceding corollary but related to
approximations E ∈ ARk instead of special maximal elements of Ek :

Lemma 4.2 Suppose E ∈ ARk and set v := min≺(E). If s ≺ v and s @ v, then
E ∩ τ k[s] 6= ∅.

We will study the Banach space structure of the subspaces of Tk(d, θ) of the form
Z := Tk[s1] ⊕ Tk[s2] ⊕ · · · ⊕ Tk[sN]. Since (e~un)∞n=1 is 1-unconditional, we can
decompose Z as F ⊕ C , where

F = span{ev ∈ Z : v ∈ ω6 ↓k, v � sN} and

C = span{ev ∈ Z : v ∈ ω6 ↓k, sN ≺ v}.
(2)

By setting k = 2,N = 4, s1 = (4), s2 = (6), s3 = (8), and s4 = (10), the following
figure shows the elements of ω6 ↓2 used to generate the subspaces F (dashed outline) and
C (thicker outline) in which we decompose the subspace T2[(4)]⊕ T2[(6)]⊕ T2[(8)]⊕
T2[(10)]:
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Figure 7: Elements of ω6 ↓2 used to generate T2[(4)]⊕ T2[(6)]⊕ T2[(8)]⊕ T2[(10)].

Applying Corollary 4.1 and Lemma 4.2 we have:

Lemma 4.3 Let E ∈ ARk be such that sN ≺ min≺(E). If E[Tk(d, θ)] := span{ew :
w ∈ E}, then either E[Tk(d, θ)] ∩ C = ∅, or there is exactly one i ≤ N such that
E[Tk(d, θ)] ∩ C ⊂ Tk[si].

Proof Suppose that E[Tk(d, θ)]∩C 6= ∅ and set v := min≺(E). Then, by Corollary 4.1,
there is exactly one i ∈ {1, . . . ,N} such that Xmax

v ∩ τ k[si] 6= ∅; consequently, si @ v
and E∩τ k[sj] = ∅ for any j ∈ {1, . . . ,N} , j 6= i. By hypothesis, si � sN ≺ v. Applying
Lemma 4.2 we conclude that E ∩ τ k[si] 6= ∅. Hence, E[Tk(d, θ)] ∩ C ⊂ Tk[si].

This lemma helps us establish the presence of arbitrarily large copies of `N
∞ inside

Tk(d, θ):

Theorem 4.4 Suppose that s1 ≺ s2 ≺ · · · ≺ sN belong to ω6 ↓<k and that |s1| = · · · =
|sN | < k . Let v ∈ ω6 ↓k with sN ≺ v and suppose that x ∈

∑N
i=1⊕Tk[si] satisfies v < x .

If we decompose x as x1 + · · ·+ xN with xi ∈ Tk[si], then

max
1≤i≤N

‖xi‖ ≤ ‖x‖ ≤
θ(d − 1)

1− θ
max

1≤i≤N
‖xi‖ .

In particular, if ‖x1‖ = · · · = ‖xN‖ = 1, span{x1, . . . , xN} is isomorphic to `N
∞ in a

canonical way and the isomorphism constant is independent of N and of the xi ’s.
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Proof Since the basis of Tk(d, θ) is unconditional, max1≤i≤N ‖xi‖ ≤ ‖x‖. We will
check the upper bound. Let m ∈ {1, . . . , d} and (Ei)m

i=1 ⊂ AR
k be an admissible

sequence such that ‖x‖ = θ
∑m

i=1 ‖Eix‖.

Without loss of generality we assume that E1x 6= 0, so that sN ≺ min≺(E2). By Lemma
4.3, when j ≥ 2, we have Ejx = Ejxi for some i ∈ {1, . . . ,N}. Then it follows that
‖Ejx‖ ≤ max1≤i≤N ‖xi‖. Consequently,

‖x‖ ≤ θ ‖E1x‖+ θ(d − 1) max
1≤i≤N

‖xi‖ .

Repeat the argument for E1x. Find m′ ∈ {1, . . . , d} and an admissible sequence
(Fi)m′

i=1 ⊂ AR
k such that ‖E1x‖ = θ

∑m′

i=1 ‖Fi(E1x)‖. We can assume that F1(E1x) 6=
0, and applying Lemma 4.3 once again we conclude that for j ≥ 2, ‖Fj(E1x)‖ ≤
max1≤i≤N ‖xi‖. Then,

‖x‖ ≤ θ
(
θ ‖F1(E1x)‖+ θ(d − 1) max

1≤i≤N
‖xi‖

)
+ θ(d − 1) max

1≤i≤N
‖xi‖ .

Iterating this process we conclude that

‖x‖ ≤
∞∑

n=1

θn(d − 1) max
1≤i≤N

‖xi‖ ≤
θ(d − 1)

1− θ
max

1≤i≤N
‖xi‖ .

Example 4.5 To illustrate the previous theorem, suppose that k = 2, that s1 < s2 <

· · · < sN and that |si| = 1 for every i ≤ N . If we use the upper triangular representation
of ω6 ↓2 , the si ’s represent rows. Theorem 4.4 says that if the xi ’s are supported in
the ith row, but starting after the sN th column, then span{x1, . . . , xN} is isomorphic
to `N

∞ , with isomorphism constant independent of N . The image below illustrates
s1 = 0, s1 = 2, s2 = 3 and s4 = 6 and the shaded horizontal lines represent the support
of the xi ’s.
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Figure 8: Elements of ω6 ↓2 that generate isomorphic copies of `N
∞ .

In particular, each “column” of the upper triangular representation of ω6 ↓2 satisfies this

condition. That is, span{e(i,n) : i ≤ n}
C(θ,d)
≈ `n+1

∞ , where C(d, θ) is the constant from
Theorem 4.4.

5 Block Subspaces of Tk(d, θ) isomorphic to `p

For the rest of this paper suppose that dθ > 1 and let p ∈ (1,∞) be determined by the
equation dθ = d1/p . Bellenot proved that T1(d, θ) is isomorphic to `p (see Theorem
1.2). The same result was then proved by Argyros and Deliyanni in [1] with different
arguments which can be extended to more general cases like ours. In this section we
show that we can find many copies of `p spaces inside Tk(d, θ) for k ≥ 2:

Theorem 5.1 Suppose that (xi)∞i=1 is a normalized block sequence in Tk(d, θ) and that
we can find a sequence (vi)∞i=1 ⊂ ω6 ↓k such that:

(1) v1 ≤ x1 < v2 ≤ x2 < v3 ≤ x3 < v4 ≤ x4 < · · ·
(2) supp (xi) ⊂ Xmax

vi
and vi+1 ∈ Xmax

vi
for every i ≥ 1

Then, (xi) is equivalent to the basis of `p .

Notice that Corollary 2.11 implies that for every j ≥ i, vj ∈ Xmax
vi

and supp
(
xj
)
⊂ Xmax

vi
.

Theorem 5.1 allows us to identify natural subspaces of Tk(d, θ) isomorphic to `p . For
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example, it implies that the top trees of Tk(d, θ) are isomorphic to `p . In section 8 we
will see that the top trees are isometrically isomorphic to T1(d, θ).

Corollary 5.2 If s ∈ ω6 ↓≤k and |s| = k − 1, then Tk[s] is isomorphic to `p .

Proof Suppose that s = (s1, . . . , ck−1). Define v1 = (s1, . . . , ck−1, ck−1), v2 =

(s1, . . . , ck−1, ck−1 + 1), v3 = (s1, . . . , ck−1, ck−1 + 2), · · · and let xi = evi . If follows
from Lemma 2.9 that the (vi)’s and (xi)’s satisfy the hypothesis of Theorem 5.1 and the
result follows.

The “diagonal” subspaces of Tk(d, θ) are also isomorphic to `p spaces. For s =

(s1, . . . , cl) ∈ ω6 ↓≤k with l < k , define

v1 = (s1, . . . , cl, cl, . . . , cl)

v2 = (s1, . . . , cl, cl + 1, . . . , cl + 1)

v3 = (s1, . . . , cl, cl + 2, . . . , cl + 2)
...

...

and xi = evi for i ≥ 1. Then we use Lemma 2.9 to verify that the (vi)’s and (xi)’s
satisfy the hypothesis of Theorem 5.1 and we conclude:

Corollary 5.3 D[s] = span{evi : i ≥ 1} is isomorphic to `p , for every s ∈ ω6 ↓<k .

We prove Theorem 5.1 in two steps. First we prove the lower `p -estimate using
Bellenot’s space T1(d, θ). Then we prove the upper `p -estimate in a more general case.
Denote by (ti) the canonical basis of T1(d, θ). In order to avoid confusion, we will
write ‖·‖1 to denote the norm on T1(d, θ).

Proposition 5.4 Under the same hypotheses of Theorem 5.1, for a finitely supported
z =

∑
i aixi ∈ Tk(d, θ), we have:

1
2d

(∑
i
|ai|p

)1/p
≤
∥∥∥∑

i
aiti
∥∥∥

1
≤
∥∥∥∑

i
aixi

∥∥∥
Tk(d,θ)

Proof Let x =
∑

i aiti ∈ T1(d, θ). Following Bellenot [4], either ‖x‖1 = maxi |ai|, or
there exist m ∈ {1, . . . , d} and E1 < E2 < · · · < Em such that ‖x‖1 =

∑m
j=1 θ ‖Ejx‖1 .

For each j ∈ {1, . . . ,m}, either ‖Ejx‖1 = maxi{|ai| : i ∈ Ej}, or there exist
m′ ∈ {1, . . . , d} and Ej1 < Ej2 < · · · < Ejm′ subsets of Ej such that ‖Ejx‖1 =
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∑m′

l=1 θ ‖Ejlx‖1 . Since the sequence (ai) has only finitely many non-zero terms, this
process ends and x is normed by a tree.

We will prove the result by induction on the height of the tree. If ‖x‖1 = maxi |ai|,
the result follows. Since the basis of Tk(d, θ) is unconditional and the (xi)’s are a
normalized block basis of Tk(d, θ), we have that maxi |ai| ≤ ‖

∑
i aixi‖.

Suppose that the result is proved for elements of T1(d, θ) that are normed by trees of
height less than or equal to h and that x is normed by a tree of height h + 1. Then,
there exist m ∈ {1, . . . , d} and E1 < E2 < · · · < Em such that ‖x‖1 =

∑m
j=1 θ ‖Ejx‖1

and each Ejx is normed by a tree of height less than or equal to h.

We will find a corresponding admissible sequence in ARk . For each j ∈ {1, . . . ,m},
let nj = min(Ej) and define

Fj = {w ∈ Xmax
vnj

: w ≺ vnj+1} ∈ ARk.

Then F1 < F2, · · · < Fm , and we conclude that (Fj) is d-admissible. Moreover we
easily check from the hypothesis of Theorem 5.1 and by Corollary 2.11 that if i ∈ Ej ,
then supp (xi) ⊂ Fj . Hence, using the induction hypothesis and the unconditionality of
the basis of Tk(d, θ) we conclude that

‖Ejx‖1 =

∥∥∥∥∑l∈Ej
altl

∥∥∥∥
1
≤
∥∥∥∥∑l∈Ej

alxl

∥∥∥∥ ≤ ‖Fjz‖ .∥∥∥∑
i
aiti
∥∥∥

1
=

m∑
j=1

θ ‖Ejx‖1 ≤
m∑

j=1

θ ‖Fjz‖ =
∥∥∥∑

i
aixi

∥∥∥ .Therefore,

The result follows now applying Theorem 1.2.

The proof of the upper bound inequality of Theorem 5.1 is harder and we need some
preliminary results.

5.1 Alternative Norm

To establish a upper `p -estimate we will adapt an alternative and useful description of
the norm on T1(d, θ) introduced by Argyros and Deliyanni [1] to our spaces. In that
regard, the following definition plays a key role.

Definition 5.5 Let m ∈ {1, . . . , d}. A sequence (Fi)m
i=1 ⊂ FIN(ω6 ↓k) is called almost

admissible if there exists a d -admissible sequence (En)m
n=1 in ARk such that Fi ⊆ Ei ,

for i ≤ m.
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A standard alternative description of the norm of the space Tk(d, θ), closer to the spirit
of Tsirelson space, is as follows. Let K0 := {±e∗i : i ∈ N+}, and for n ∈ N,

Kn+1 := Kn

⋃
{θ( f1 + · · ·+ fm) : m ≤ d, ( fi)m

i=1 ⊂ Kn} ,

where (supp ( fi))m
i=1 is almost admissible. Then, set K :=

⋃
n∈N Kn . Now, for each

n ∈ N and fixed x ∈ c00(ω6 ↓k), define the following non-decreasing sequence of norms:

|x|∗n := max { f (x) : f ∈ Kn}

Lemma 5.6 For every n ∈ N and x ∈ c00(ω6 ↓k) we have |x|n = |x|∗n .

Proof Clearly, |x|0 = |x|∗0 for every x ∈ c00(ω6 ↓k). So, let n ∈ N+ . Suppose |y|j = |y|∗j
for every j ∈ N, j < n and every y ∈ c00(ω6 ↓k).

If |x|n = |x|n−1 , then |x|n = |x|∗n−1 ≤ |x|
∗
n . Suppose |x|n 6= |x|n−1 . Let m ∈ {1, . . . , d}

and (Ei)m
i=1 ⊂ AR

k be an admissible sequence such that |x|n = θ
∑m

i=1 |Eix|n−1 .
Then, |x|n = θ

∑m
i=1 |Eix|∗n−1 = θ

∑m
i=1 fi(Eix) for some ( fi)m

i=1 ⊂ Kn−1 . Define,
for each i ∈ {1, . . . ,m}, a new functional f ′i satisfying f ′i (y) = fi(Eiy) for every
y ∈ c00(ω6 ↓k). This implies that supp

(
f ′i
)

= supp
(

f ′i
)
∩ Ei . Then, ( f ′i )m

i=1 ⊂ Kn−1

with (supp
(

f ′i
)
)m
i=1 almost admissible and f ′i (Eix) = fi(Eix). So

θ
m∑

i=1

fi(Eix) = θ
m∑

i=1

f ′i (Eix) ≤ |Eix|∗n ≤ |x|
∗
n ,

therefore, |x|n ≤ |x|
∗
n .

Now, let f = θ( f1 + · · · + fm) for some m ∈ {1, . . . , d} and ( fi)m
i=1 ⊂ Kn−1 with

(supp ( fi))m
i=1 almost admissible. Then:

f (x) = θ

m∑
i=1

fi(x) ≤ θ
m∑

i=1

|supp ( fi) x|∗n−1 = θ

m∑
i=1

|supp ( fi) x|n−1

Since (supp ( fi))m
i=1 is almost admissible, there exists an admissible sequence (Ei)d

i=1 ⊂
ARk such that supp ( fi) ⊆ Eni , where n1, . . . , nm ∈ {1, . . . ,m} and n1 < · · · < nm .
So

θ
m∑

i=1

|supp ( fi) x|n−1 ≤ θ
m∑

i=1

|Enix|n−1 ≤ |x|n ,

hence, by definition of |·|∗n , we conclude that |x|∗n ≤ |x|n .
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Consequently, an alternative description of the norm on Tk(d, θ) is:

Proposition 5.7 For every x ∈ Tk(d, θ),

‖x‖ = sup { f (x) : f ∈ K} .

5.2 Upper Bound for Theorem 5.1

For m ∈ {1, . . . , d} we say that f1, . . . , fm ∈ K are successive if supp ( f1) < supp ( f2) <
· · · < supp ( fm).

If f ∈ K , then there exists n ∈ N such that f ∈ Kn . The “complexity” of f increases as
n increases. That is to say, for example, that the complexity of f ∈ K1 is less than that
of g ∈ K10 . This is captured in the following definition.

Definition 5.8 Let n ∈ N+ and φ ∈ Kn \ Kn−1 . An analysis of φ is a sequence
(Kl(φ))n

l=0 of subsets of K such that:

(1) Kl(φ) consists of successive elements of Kl and
⋃

f∈Kl(φ) supp ( f ) = supp (φ).

(2) If f ∈ Kl+1(φ), then either f ∈ Kl(φ) or there exist m ∈ {1, . . . , d} and successive
f1, . . . , fm ∈ Kl(φ) with (supp ( fi))m

i=1 almost admissible and f = θ( f1 + · · ·+ fm).

(3) Kn(φ) = {φ}.

Note that, by definition of the sets Kn , each φ ∈ K has an analysis. Moreover, if f1 ∈
Kl(φ) and f2 ∈ Kl+1(φ), then either supp ( f1) ⊆ supp ( f2) or supp ( f1)∩ supp ( f2) = ∅.

Let φ ∈ Kn \ Kn−1 and let (Kl(φ))n
l=0 be a fixed analysis of φ. Suppose (xj)N

j=1 is a
finite block sequence on Tk(d, θ).

Following Argyros and Deliyanni [1], for each j ∈ {1, . . . ,N}, set lj ∈ {0, . . . , n− 1}
as the smallest integer with the property that there exists at most one g ∈ Klj+1(φ) with
supp

(
xj
)
∩ supp (g) 6= ∅.

Then, define the initial part and final part of xj with respect to (Kl(φ))n
l=0 , and denote

them respectively by x′j and x′′j , as follows. Let

{
f ∈ Klj(φ) : supp ( f ) ∩ supp

(
xj
)
6= ∅
}

= { f1, . . . , fm} ,

where f1, . . . , fm are successive. Set
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x′j = (supp ( f1))xj

x′′j = (∪m
i=2 supp ( fi))xj.and

The following is a useful property of the sequence (x′j)
N
j=1 (see [5]). The analogous

property is true for (x′′j )N
j=1 .

Proposition 5.9 For l ∈ {1, . . . , n} and j ∈ {1, . . . ,N}, set

Al(x′j) :=
{

f ∈ Kl(φ) : supp ( f ) ∩ supp
(
x′j
)
6= ∅
}
.

Then, there exists at most one f ∈ Al(x′j) such that supp ( f ) ∩ supp
(
x′i
)
6= ∅ for some

i 6= j.

Proof Let Al(x′j) = { f1, . . . , fm}, where m ≥ 2 and f1, . . . , fm are successive. Obvi-
ously, only supp ( f1) and supp ( fm) could intersect supp

(
x′i
)

for some i 6= j. We will
prove that it is not possible for fm .

Suppose, towards a contradiction, that supp ( fm)∩ supp
(
x′i
)
6= ∅ for some i > j. Given

that m ≥ 2, we must have l ≤ lj . Consequently, there exists g ∈ Klj(φ) such that
supp ( fm) ⊆ supp (g). Since supp (g) ∩ supp

(
xj
)
6= ∅ and supp (g) ∩ supp (xi) 6= ∅

for some i > j, the definition of x′′j implies that supp (g) ∩ supp
(
xj
)
⊆ supp

(
x′′j
)

.
Therefore, supp ( fm) ∩ supp

(
x′j
)

= ∅, a contradiction.

Following Argyros and Todorcevic [3] and Bernues and Deliyanni [5] we now provide
an upper `p -estimate that implies the upper `p -estimate of Theorem 5.1:

Proposition 5.10 Let (xj)N
j=1 be a finite normalized block basis on Tk(d, θ). Denote

by (tn)∞n=1 the canonical basis of T1(d, θ). Then, for any (aj)N
j=1 ⊂ R, we have:∥∥∥∥∥∥

N∑
j=1

ajxj

∥∥∥∥∥∥ ≤ 2
θ

 N∑
j=1

|aj|p
1/p

Proof In order to avoid confusion, we will write ‖·‖1 to denote the norm on T1(d, θ).
By Proposition 5.7 and Theorem 1.2 it suffices to show that for every φ ∈ K ,∣∣∣∣∣∣φ

 N∑
j=1

ajxj

∣∣∣∣∣∣ ≤ 2
θ

∥∥∥∥∥∥
N∑

j=1

ajtj

∥∥∥∥∥∥
1

.
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By unconditionality we can assume that x1, . . . , xN and φ are positive. Suppose
φ ∈ Kn \Kn−1 for some n ∈ N+ , and let (Kl(φ))n

l=0 be an analysis of φ (see Definition
5.8). Next, split each xj into its initial and final part, x′j and x′′j , with respect to
(Kl(φ))n

l=0 .

We will show by induction on l ∈ {0, 1, . . . , n} that for all J ⊆ {1, . . . ,N} and all
f ∈ Kl(φ) we have:

∣∣∣∣∣∣ f
∑

j∈J

ajx′j

∣∣∣∣∣∣ ≤ 1
θ

∥∥∥∥∥∥
∑
j∈J

ajtj

∥∥∥∥∥∥
1

and

∣∣∣∣∣∣ f
∑

j∈J

ajx′′j

∣∣∣∣∣∣ ≤ 1
θ

∥∥∥∥∥∥
∑
j∈J

ajtj

∥∥∥∥∥∥
1

We prove the first inequality given that the other one is analogous. Let J ⊆ {1, . . . ,N}
and set y =

∑
j∈J ajx′j .

If f ∈ K0(φ), then f = e∗i for some i ∈ N+ . We want to prove that

|e∗i (y)| ≤ 1
θ

∥∥∥∑
j∈J

ajtj
∥∥∥

1
.

Suppose that e∗i (y) 6= 0. So, there exists exactly one ji ∈ J such that e∗i (x′ji) 6= 0.
Applying Proposition 5.7 we have

|e∗i (y)| =
∣∣e∗i (ajix

′
ji)
∣∣ ≤ ∥∥ajix

′
ji

∥∥ ≤ |aji | ‖xji‖ ≤
∥∥∥∑

j∈J
ajtj
∥∥∥

1

since the basis of Tk(d, θ) is unconditional, ‖xji‖ = 1, and by definition

max
j∈J
|aj| ≤

∥∥∥∑
j∈J

ajtj
∥∥∥

1
.

Now suppose that the desired inequality holds for any g ∈ Kl(φ). We will prove it
for Kl+1(φ). Let f ∈ Kl+1(φ) be such that f = θ( f1 + · · ·+ fm), where f1, . . . , fm are
successive elements in Kl(φ) with (supp ( fi))m

i=1 almost admissible. Then, 1 ≤ m ≤ d .
Without loss of generality assume that fi(y) 6= 0 for each i ∈ {1, . . . ,m}. Define the
following sets:

I′ :=
{

i ≤ m : ∃j ∈ J with fi(x′j) 6= 0 and supp ( f ) ∩ supp
(
x′j
)
⊆ supp ( fi)

}
J′ :=

{
j ∈ J : ∃i ∈ {1, . . . ,m− 1} such that fi(x′j) 6= 0 and fi+1(x′j) 6= 0

}
Journal of Logic & Analysis 10:5 (2018)
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We claim that |I′|+ |J′| ≤ m. Indeed, if j ∈ J′ , there exists i ∈ {1, . . . ,m− 1} such
that fi(x′j) 6= 0 and fi+1(x′j) 6= 0. From the proof of Proposition 5.9 it follows that
fi+1(x′h) = 0 for every h 6= j, which implies that i + 1 /∈ I′ . Hence, we can define an
injective map from J′ to {1, . . . ,m} \ I′ and we conclude that |I′|+ |J′| ≤ m.

Finally, for each i ∈ I′ , set Di :=
{

j ∈ J : supp ( f ) ∩ supp
(
x′j
)
⊆ supp ( fi)

}
. Notice

that for all i ∈ I′ we have Di ∩ J′ = ∅. Then

f (y) = θ
[∑

i∈I′
fi
(∑

j∈Di
ajx′j
)

+
∑

j∈J′
f (ajx′j)

]
,

and consequently

|f (y)| ≤ θ
[∑

i∈I′

∣∣∣fi (∑
j∈Di

ajx′j
)∣∣∣+

∑
j∈J′

∣∣f (ajx′j)
∣∣] .

However, by the induction hypothesis,

∣∣∣fi (∑
j∈Di

ajx′j
)∣∣∣ ≤ 1

θ

∥∥∥∑
j∈Di

ajtj
∥∥∥

1
.

Moreover, for each j ∈ J′ , we have
∣∣f (ajx′j)

∣∣ ≤ ∥∥ajx′j
∥∥ ≤ ‖ajxj‖ = |aj| = ‖ajtj‖1 .

Hence

|f (y)| ≤ θ
[

1
θ

∑
i∈I′

∥∥∥∑
j∈Di

ajtj
∥∥∥

1
+

1
θ

∑
j∈J′
‖ajtj‖1

]
= θ

[
1
θ

∑
i∈I′

∥∥∥Di

(∑
j∈J

ajtj
)∥∥∥

1
+

1
θ

∑
j∈J′
‖ajtj‖1

]
.

Given that for every i ∈ I′,Di ∩ J′ = ∅ and |I′| + |J′| ≤ m ≤ d , the family
{Di}i∈I′ ∪ {{j}}j∈J′ is d -admissible in AR1 . So, by the definition of ‖·‖1 , we have

|f (y)| ≤ θ
[

1
θ

∑
i∈I′

∥∥∥Di

(∑
j∈J

ajtj
)∥∥∥

1
+

1
θ

∑
j∈J′
‖ajtj‖1

]
≤ 1
θ

∥∥∥∑
j∈J

ajtj
∥∥∥

1
.
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6 Tk(d, θ) is `p-saturated

In this section we prove that every infinite dimensional subspace of Tk(d, θ) has a
subspace isomorphic to `p .

Recall that the subspaces Tk[s] for s ∈ ω6 ↓≤k with |s| < k decompose naturally
into countable sums. Namely, if s = (a1, a2, . . . , al) ∈ ω6 ↓≤k and l < k , then
τ k[s] =

⋃∞
j=al

τ k[s a j], and therefore Tk[s] =
∑∞

j=al
⊕Tk[s a j].

The next lemma tells us that we can find elements v ∈ τ k[s] such that Xmax
v contains

arbitrary tails of the decomposition of τ k[s]. Its proof follows from the definition of the
Ek -tree X̂v that determines Xmax

v (see the paragraph preceding Lemma 2.9).

Lemma 6.1 Let s = (a1, a2, . . . , al) ∈ ω6 ↓≤k with l < k . If m ∈ N with m > al and
v = s a (m,m, . . . ,m) ∈ ω6 ↓k , then Xmax

v ∩ τ k[s] =
⋃∞

j=m τ
k[s a j].

We now present the main result of this section:

Theorem 6.2 Suppose that Z is an infinite dimensional subspace of Tk(d, θ). Then,
there exists Y ⊆ Z isomorphic to `p .

Proof Let Z be an infinite dimensional subspace of Tk(d, θ). After a standard
perturbation argument, we can assume that Z has a normalized block basic sequence
(xn).

We will show that a subsequence of (xn) is isomorphic to `p . From Proposition 5.10 we
have that

∥∥∥∑
n

anxn

∥∥∥ ≤ 2
θ

(∑
n
|an|p

)1/p
.

To obtain the lower bound we will find a subsequence and a projection Q onto a
subspace of the form Tk[s] such that

(
Q
(
xnj

))
has a lower `p -estimate.

To this end, assume that Z ⊂ Tk[s] for some s ∈ ω6 ↓≤k with |s| < k . Decompose
Tk[s] =

∑∞
j=1⊕Tk[sj], where for each j ∈ N+, s @ sj, |sj| = |s| + 1, and sj ≺ sj+1 .

For each j ∈ N+ let Qj : Tk[s]→ Tk[sj] be the projection onto Tk[sj]. Then we have
two cases:

Case 1: ∀j ∈ N+,Qjxn → 0.

Case 2: ∃j0 ∈ N+ such that Qj0xn 6→ 0.
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Let us look at Case 1 first. Let v1 be the first element of τ k[s]. Since there exists
p1 such that supp (x1) ⊂

⋃p1
j=1 τ

k[sj], applying Lemma 6.1 we can find q1 > p1 and
v2 ∈ τ k[s] such that v1 ≤ x1 < v2 and Xmax

v2
∩ τ k[s] =

⋃∞
j=q1

τ k[sj]. Since Qjxn → 0
for 1 ≤ j ≤ q1 we can find n2 > 1 and y2 ∈ Tk[s] such that y2 ≈ xn2 and Qjy2 = 0 for
1 ≤ j ≤ q1 . Then we have

v1 ≤ x1 < v2 < y2 and supp (y2) ⊂ Xmax
v2

.

We now repeat the argument. Since there exists p2 such that supp (y2) ⊂
⋃p2

j=1 τ
k[sj],

applying Lemma 6.1 we can find q2 > p2 and v3 ∈ τ k[s] such that v2 < y2 < v3 and
Xmax

v3
∩ τ k[s] =

⋃∞
j=q2

τ k[sj]. Since Qjxn → 0 for 1 ≤ j ≤ q2 , we can find n3 > n2 and
y3 ∈ Tk[s] such that y3 ≈ xn3 and Qjy3 = 0 for 1 ≤ j ≤ q2 . Then we have

v1 ≤ x1 < v2 < y2 < v3 < y3 and supp (y2) ⊂ Xmax
v2

, supp (y3) ⊂ Xmax
v3

.

Proceeding this way we find a subsequence (xni) and a sequence (yi) such that yi is
close enough to xni . Consequently, span{yi} ≈ span{xni}, and

v1 ≤ x1 < v2 < y2 < v3 < y3 < · · · and supp (yi) ⊂ Xmax
vi

for i > 1.

By Proposition 5.4, there exist C1,C2 ∈ R such that

∥∥∥∑
i
aixni

∥∥∥ ≥ C1

∥∥∥∑
i
aiyni

∥∥∥ ≥ C2

(∑
i
|ai|p

)1/p
.

Let us look at Case 2 now. Find a subsequence (ni) and δ > 0 such that δ ≤ ‖Qj0xni‖ ≤
1.

Let W = span{Qj0xni}. We now apply the argument in Case 1 to the sequence
Qj0xn1 < Qj0xn2 < Qj0xn3 < · · · . That is, first decompose Tk[sj0] =

∑∞
j=1⊕Tk[tj],

where for every j ∈ N+, sj0 @ tj, |tj| = |sj0 |+ 1, tj ≺ tj+1 . Then, look at the two cases
for the sequence

(
Qj0xni

)
. If Case 1 is true,

(
Qj0xni

)
has a subsequence with a lower

`p -estimate, and therefore
(
xni

)
has a subsequence with a lower `p -estimate; and if

Case 2 is true, we can repeat the argument for some tj that has length strictly larger
than the length of sj0 . If Case 1 continues to be false, after a finite number of iterations
of the same argument, the length of tj will be equal to k − 1, and therefore, applying
Corollary 5.2, Tk[tj] would be isomorphic to `p . The result follows.
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7 The spaces Tk(d, θ) are not isomorphic to each other

In this section we prove one of the main results of the paper.

Theorem 7.1 If k1 6= k2 , then Tk1(d, θ) is not isomorphic to Tk2(d, θ).

The proof goes by induction and it shows that when k1 > k2 , Tk1(d, θ) does not embed
in Tk2(d, θ). The idea is that if we had an isomorphic embedding, we would map an
`N
∞ -sequence into an `N

p -sequence for arbitrarily large N ’s. The induction step requires
a stronger and more technical statement that appears in Proposition 7.4 below.

The proof uses the notation of the trees τ k[s] and their Banach spaces Tk[s] (see Section
4). We start with some lemmas. The first one is an easy consequence of the fact that the
basis of Tk(d, θ) is 1-unconditional.

Lemma 7.2 If s ∈ ω6 ↓≤k , and |s| < k , there exist s1 ≺ s2 ≺ s3 ≺ · · · such that |si| =
|s|+ 1 and τ k[s] =

⋃∞
i=1 τ

k[si]. Consequently, we decompose Tk[s] =
∑∞

i=1⊕Tk[si]
and for m ∈ N+ , there is a canonical projection Pm : Tk[s]→

∑m
i=1⊕Tk[si].

Proof If s = (a1, . . . , al), then s1 = (a1, . . . , al, al), s2 = (a1, . . . , al, al + 1), s3 =

(a1, . . . , al, al + 2), · · ·

Lemma 7.3 Let s ∈ ω6 ↓≤k with |s| < k . Let v = min τ k[s]. Then τ k[s] ⊂ Xmax
v .

Proof If s = (a1, . . . , al), then we have that v = (a1, . . . , al, al, . . . , al) and the result
follows from Lemma 2.9.

We are ready to state and prove the main proposition.

Proposition 7.4 Let s ∈ ω6 ↓≤k1 with |s| < k1 and decompose Tk1[s] =
∑∞

i=1⊕Tk1[si]
according to Lemma 7.2. Let M ∈ N+ and t1, . . . , tM ∈ ω6 ↓≤k2 such that |t1| = · · · =
|tM| < k2 . If k1 − |s| > k2 − |t1|, then for every n ∈ N+ ,

∑∞
i=n⊕Tk1[si] does not

embed into Tk2[t1]⊕ · · · ⊕ Tk2[tM].

Proof We proceed by induction. For the base case we assume that k2 − |t1| =

1 < k1 − |s|. By Corollary 5.2, Tk2[ti] is isomorphic to `p , and consequently so is
Tk2[t1] ⊕ · · · ⊕ Tk2[tM]. On the other hand, Theorem 4.4 guarantees that Tk1[s] has
arbitrarily large copies of `N

∞ .
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Suppose now that the result is true for m ∈ N+ and let k2 − |t1| = m + 1 < k1 − |s|.

We will show a simpler case first, when M = 1. Suppose, towards a contradiction, that
there exists n ∈ N+ and an isomorphism

Φ :
∞∑

i=n

⊕Tk1[si]→ Tk2[t1].

Decompose Tk2[t1] =
∑∞

j=1⊕Tk2[rj] according to Lemma 7.2. Find N large enough
and v ∈ ω6 ↓k1 such that sn ≺ sn+1 ≺ · · · ≺ sn+N−1 ≺ v. We will find normalized
x1 ∈ Tk1[sn], x2 ∈ Tk1[sn+1], . . . , xN ∈ Tk1[sn+N−1] such that v < xi for i ≤ N and
we will use Theorem 4.4 to conclude that span{x1, . . . , x} ≈ `N

∞ . Recall that the
isomorphism constant is independent of N and of the xi ’s.

Let v1 be the first element of τ k2[t1], and let x1 ∈ Tk1[sn] be such that ‖x1‖ = 1 and
v < x1 . Find a finitely supported y1 ∈ Tk2[t1] such that y1 ≈ Φ(x1). Applying Lemma
6.1 we can find v2 ∈ τ k2[t1] such that v1 ≤ y1 < v2 and Xmax

v2
∩τ k2[t1] =

⋃∞
j=m1+1 τ

k2[rj]
for some m1 ∈ N.

Since k1 − |sn+1| > k2 − |r1| = m we can apply the induction hypothesis. In particular,
the map

Pm1Φ|Tk1 [sn+1] : Tk1[sn+1]→ Tk2[r1]⊕ · · · ⊕ Tk2[rm1]

is not an isomorphism. As a result, there exists x2 ∈ Tk1[sn+1] such that ‖x2‖ = 1 and
Pm1Φ(x2) ≈ 0. To add the property v < x2 , we decompose Tk1[sn+1] =

∑∞
i=1⊕Tk1[ui]

as in Lemma 7.2 and apply the induction hypothesis to
∑∞

i=p⊕Tk1[ui] for p large
enough.

Now that we have a normalized x2 ∈ Tk1[sn+1] that satisfies v < x2 and PmΦ(x2) ≈ 0,
we find a finitely supported y2 ∈ Tk2[t1] such that y2 ≈ Φ(x2) and Pm1y2 = 0. Notice
that v1 ≤ y1 < v2 < y2 and that Lemma 7.3 gives that supp (y2) ⊂ Xmax

v2
.

We now repeat the argument. Use Lemma 6.1 to find v3 ∈ τ k2[t1] such that y2 < v3

and Xmax
v3
∩ τ k2[t1] =

⋃∞
j=m2+1 τ

k2[rj]. Then we find a normalized x3 ∈ Tk1[sn+2] such
that v < x3 and Pm2Φ(x3) is essentially zero. Finally, we find a finitely supported
y3 ∈ Tk2[t1] such that y3 ≈ Φ(x3) and Pm2y3 = 0.

Proceeding this way, for every i ≤ N , we find normalized xi ∈ Tk1[sn+i−1] with v < xi ,
vi ∈ ω6 ↓k2 , and yi ∈ Tk2[t1] such that yi ≈ Φ(xi) and
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v1 ≤ y1 < v2 < y2 < · · · < vN < yN and vi+1, supp (yi) ⊂ Xmax
vi

.

By Theorem 5.1, (yi)N
i=1 is isomorphic to the canonical basis of `N

p . Hence, Φ maps
`N
∞ isomorphically into `N

p . Since N is arbitrary, this contradicts that Φ is continuous
(see equation 3 below) and we conclude the case M = 1.

Let M > 1 and suppose, towards a contradiction, that there exists n ∈ N+ and an
isomorphism

Φ :
∞∑

i=n

⊕Tk1[si]→ Tk2[t1]⊕ Tk2[t2]⊕ · · · ⊕ Tk2[tM].

For each j ∈ N+ let Qj :
∑M

i=1 Tk2[ti]→ Tk2[tj] be the canonical projection. Decompose
Tk2[tj] =

∑∞
i=1 Tk2[r j

i ] as in Lemma 7.2 and for each m ∈ N+ , let P j
m : Tk2[tj] →∑m

i=1 Tk2[r j
i ] be the canonical projection onto the first m blocks.

The proof is similar to the case M = 1. Find N large enough and v ∈ ω6 ↓k1 such that
sn ≺ sn+1 ≺ · · · ≺ sn+N−1 ≺ v. Find x1 ∈ Tk1[sn] such that ‖x1‖ = 1 and v < x1 and
find a finitely supported y1 ∈ Tk2[t1]⊕ · · · ⊕ Tk2[tM] such that y1 ≈ Φ(x1).

For each j ≤ M , let v j
1 = min≺(τ k2[tj]). Use Lemma 6.1 to find v j

2 ∈ τ k2[tj] such
that Qj(y1) < v j

2 and Xmax
v2
∩ τ k2[tj] =

⋃∞
i=m j

1+1 τ
k2[r j

i ] for some m j
1 ∈ N. Let

P1 =
∑M

j=1 P j
m j

1
be the projection onto the first blocks of each of the Tk2[tj]’s.

Since k1 − |sn+1| > k2 − |r1| = m we can apply the induction hypothesis. In particular,
the map P1Φ|Tk1 [sn+1] is not an isomorphism and we can find x2 ∈ Tk2[sn+1] such that
‖x2‖ = 1 and P1Φ(x2) ≈ 0. Arguing as in the case M = 1, we can also assume that
v < x2 . We then find a finitely supported y2 ∈

∑M
j=1⊕Tk2[tj] such that y2 ≈ Φ(x2) and

P1y2 = 0.

Proceeding this way, for every i ≤ N , we find normalized xi ∈ Tk1[sn+i−1] with v < xi

and yi ∈
∑M

j=1⊕Tk2[tj] such that yi ≈ Φ(xi). Moreover, for every j ≤ M , we can find
v j

i ∈ ω6 ↓k2 such that

v j
1 ≤ Qj(y1) < v j

2 < Qj(y2) < · · · < v j
N < Qj(yN) and v j

i+1, supp
(
Qj(yi)

)
⊂ Xmax

v j
i
.
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By Theorem 5.1, there exists C1 > 0 independent of N such that for every j ≤ M ,

1
C1

(
N∑

i=1

‖Qj(yi)‖p

) 1
p

≤

∥∥∥∥∥
N∑

i=1

Qj(yi)

∥∥∥∥∥ ≤ C1

(
N∑

i=1

‖Qj(yi)‖p

) 1
p

.

Using the triangle inequality for yi =
∑M

j=1 Qj(yi), Holder’s inequality
(∑N

i=1 |ai| ≤

N1/q
(∑N

i=1 |ai|p
)1/p

, 1
p + 1

q = 1
)

, Theorem 5.1, and the fact that the projections Qj

are contractive, we get

N∑
i=1

‖yi‖ ≤
N∑

i=1

M∑
j=1

‖Qj(yi)‖ ≤ N1/q
M∑

j=1

(
N∑

i=1

‖Qj(yi)‖p

)1/p

≤ C1N1/q
M∑

j=1

∥∥∥∥∥
N∑

i=1

Qj(yi)

∥∥∥∥∥ ≤ C1N1/q
M∑

j=1

∥∥∥∥∥
N∑

i=1

yi

∥∥∥∥∥
= C1N1/qM

∥∥∥∥∥
N∑

i=1

yi

∥∥∥∥∥ ≈ C1N1/qM

∥∥∥∥∥Φ

(
N∑

i=1

xi

)∥∥∥∥∥
≤ C1N1/qM‖Φ‖

∥∥∥∥∥
N∑

i=1

xi

∥∥∥∥∥ .(3)

Since N is arbitrary,
∑N

i=1 ‖yi‖ is of order N , and ‖
∑N

i=1 xi‖ stays bounded, we see
that Φ cannot be bounded, contradicting our assumption.

8 Tk(d, θ) embeds isometrically into Tk+1(d, θ)

For fixed d and θ , the spaces Tk(d, θ), k ≥ 1, form a natural hierarchy in complexity
over `p . In this section we prove that when j < k , the Banach space Tj(d, θ) embeds
isomorphically into Tk(d, θ). The basis for these results is the special feature that
the j-dimensional Ellentuck space Ej embeds into the k-dimensional Ellentuck space
Ek in many different ways. First, (ω6 ↓≤ j,≺) embeds into (ω6 ↓≤k,≺) as a trace above
any given fixed stem of length k − j in ω6 ↓≤k . Second, (ω6 ↓≤ j,≺) also embeds into
(ω6 ↓≤k,≺) as the projection of each member in ω6 ↓≤k to its first j coordinates. There are
many other ways to embed (ω6 ↓≤ j,≺) into (ω6 ↓≤k,≺), and each of these embeddings
will induce an embedding of Tj(d, θ) into Tk(d, θ), as these embeddings preserve both
the tree structure and the ≺ order. This is implicit in the constructions of the spaces
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Ek in Dobrinen [10] and explicit in the recursive construction of the finite and infinite
dimensional Ellentuck spaces in Dobrinen [11].

The following notation will be useful. Let Φ : ω6 ↓k → ω6 ↓k+1 be defined by Φ(v) =

(0)_v, where _ is the concatenation operation. One can easily check that Φ preserves
≺ and @. We can naturally extend the definition of Φ to the finitely supported vectors
of Tk(d, θ) by Φ

(∑
i aievi

)
=
∑

i aieΦ(vi).

Lemma 8.1 Let E ∈ ARk and suppose that v = min≺ E . Then there exists F ∈
ARk+1 such that φ(E) ⊂ F , min≺(Φ(E)) = min≺(F) and max≺(Φ(E)) = max≺(F).

Proof Let v = min≺(E). Proposition 2.10 says that every w ∈ E belongs to Xmax
v .

Since Φ adds a 0 at the beginning of each sequence, the characterization of Lemma
2.9 implies that for every w ∈ E , Φ(w) belongs to Xmax

Φ(v) . Then the initial segment of
Xmax

Φ(v) defined by F = {s ∈ Xmax
Φ(v) : s � max≺Φ(E)} satisfies all the conditions of the

lemma.

Corollary 8.2 Let x ∈ Tk(d, θ) be finitely supported. Then ‖Φ(x)‖Tk+1(d,θ) ≥
‖x‖Tk(d,θ) .

Proof We use induction over the length of the support of x. If |supp (x) | = 1 the
two norms are equal. Then we assume that the result is true for all vectors of Tk(d, θ)
that have fewer than n elements in their support and we take x ∈ Tk(d, θ) with
|supp (x) | = n.

If ‖x‖Tk(d,θ) = ‖x‖c0 , the result is obviously true. If ‖x‖Tk(d,θ) > ‖x‖c0 , there exist
E1, . . . ,Ed ∈ ARk such that E1 � E2 � · · · � Ed and ‖x‖ = θ

∑d
i=1 ‖Eix‖Tk(d,θ).

Notice that this implies that |supp (Eix) | < n for every i ≤ d .

By Lemma 8.1, there are F1, . . . ,Fd ∈ ARk+1 such that F1 � F2 � · · · � Fd and
Φ(Ei) ⊂ Fi for i ≤ d . Since

‖Eix‖Tk(d,θ) ≤ ‖Φ(Eix)‖Tk+1(d,θ) = ‖Φ(Ei)Φ(x)‖Tk+1(d,θ) ≤ ‖FiΦ(x)‖Tk+1(d,θ)

we conclude that

‖x‖Tk(d,θ) = θ
d∑

i=1

‖Eix‖Tk(d,θ) ≤ θ
d∑

i=1

‖FiΦ(x)‖Tk+1(d,θ) ≤ ‖Φ(x)‖Tk+1(d,θ).

To prove the reverse inequality, the following notation will be useful. For n ∈ ω , let
trn : ω6 ↓≤k+1 → ω6 ↓≤k be defined by trn(n1, n2, . . . , ni) = (n2, . . . , ni) if n1 = n and
trn(n1, n2, . . . , ni) = ∅ if n1 6= n. If E ⊂ ω6 ↓k+1 , trn(E) = {trn(v) : v ∈ E, trn(v) 6= ∅}.
Notice that trn(E) = ∅ if for every v ∈ E , trn(v) = ∅.
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Lemma 8.3 Let x =
∑N

i=1 aievi ∈ Tk+1(d, θ). Given F1 � · · · � Fm , m ≤ d an
admissible sequence for Tk+1(d, θ), there is an admissible sequence E1 � · · · � Em for
Tk(d, θ) such that each Ei = tr0(Fi) and Φ(Eix) = Fiy.

Proof We will prove that if F ∈ ARk+1 and FΦ(x) 6= 0, then E = tr0(F) ∈ ARk and
Φ(Ex) = FΦ(x). The rest of the lemma follows easily from this.

Let F ∈ ARk+1 with FΦ(x) 6= 0. Then there exists an Ek+1 -tree X̂ such that
F is an initial segment of X . Since FΦ(x) 6= 0, the first element of F is of the
form (0, n2, . . . , nk+1) for some n2 ≤ · · · ≤ nk+1 . Define Ŷ : ω6 ↓≤k → ω6 ↓≤k by
Ŷ(v) = tr0

(
X̂
(
(0)_v

))
. Since X̂ preserves ≺ and @, it follows that Ŷ preserves

those orders as well and hence Ŷ is an Ek -tree. Since Ŷ preserves ≺, it follows that
E = tr0(F) is an initial segment of Y (ie, E ∈ ARk ). Since (0)_v ∈ F iff v ∈ E , we
have

FΦ(x) =
∑

(0)_vi∈F

aieΦ(vi) =
∑
vi∈E

aieΦ(vi) = Φ

(∑
vi∈E

aiei

)
= Φ(Ex).

To complete the proof of the Lemma, suppose that F1 � · · · � Fm , m ≤ d is an
admissible sequence with Ei = tr0(Fi) 6= ∅ for i ≤ m. Let i < j, v ∈ Ei and
w ∈ Ej . Then (0)_v ∈ Fi and (0)_w ∈ Fj , which implies that (0)_v ≺ (0)_w. And
from here we conclude that v ≺ w. Since the elements are arbitrary we have that
E1 � · · · � Em .

Corollary 8.4 Let x ∈ Tk(d, θ) be finitely supported. Then ‖Φ(x)‖Tk+1(d,θ) ≤
‖x‖Tk(d,θ) .

Proof We use induction over the length of the support of x. If |supp (x) | = 1 the
two norms are equal. Then we assume that the result is true for all vectors of Tk(d, θ)
that have fewer than n elements in their support and we take x ∈ Tk(d, θ) with
|supp (x) | = n.

If ‖Φ(x)‖Tk+1(d,θ) = ‖Φ(x)‖c0 , the result is obviously true. If ‖Φ(x)‖Tk+1(d,θ) >

‖Φ(x)‖c0 , there exist F1, . . . ,Fm ∈ ARk+1 , m ≤ d , such that F1 � · · · � Fm and
‖Φ(x)‖Tk+1(d,θ) = θ

∑m
i=1 ‖FiΦ(x)‖Tk+1(d,θ). Notice that this implies that for i ≤ m,

|supp (FiΦ(x)) | < n. Moreover, we can assume that FiΦ(x) 6= 0.

By Lemma 8.3, there are E1, . . . ,Em ∈ ARk such that E1 � · · · � Em and FiΦ(Ei) =

Φ(Eix). By the induction hypothesis, ‖Φ(Eix)‖Tk+1(d,θ) ≤ ‖Eix‖Tk(d,θ) . Then
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‖Φ(x)‖Tk+1(d,θ) = θ

m∑
i=1

‖FiΦ(x)‖Tk+1(d,θ) ≤ θ
m∑

i=1

‖Eix‖Tk(d,θ) ≤ ‖x‖Tk(d,θ).

Combining the previous corollaries, we obtain the following result:

Theorem 8.5 Φ : Tk(d, θ)→ Tk+1(d, θ) is an isometric isomorphism.

Iterating this theorem, and using the notation of the beginning of Section 4 we describe
isometrically all subspaces of Tk(d, θ) of the form Tk[s] for s ∈ ω6 ↓≤k and |s| < k .

Corollary 8.6 Suppose that s ∈ ω6 ↓≤k with |s| < k . Then Tk[s] ⊂ Tk(d, θ) is
isometrically isomorphic to Tk−|s|(d, θ).

Remark Another way of embedding Tk(d, θ) into Tk+1(d, θ) is by sending each
member s = (s1, . . . , sk) ∈ ω6 ↓k to Ψ(s) = (s1, . . . , sk, sk) ∈ ω6 ↓k+1 . One can check
that Ψ maps Tk(d, θ) isometrically into Tk+1(d, θ). In fact, for each k1 < k2 , there are
infinitely many different ways of embedding Ek1 into Ek2 , and each one of these copies
of Tk1(d, θ) isometrically embeds into Tk2(d, θ).

9 The Banach space T(Ak
d, θ)

In this section, we investigate the most complex of the natural constructions of
Banach spaces using the Tsirelson methods on the high dimensional Ellentuck spaces.
These spaces, T(Ak

d, θ), were constructed in Section 3 using admissible sets with
the order of the Ei ’s determined by elements of Ak

d =
⋃

m≤dAR
k
m as follows: let

m ∈ {1, 2, . . . , d}. We say that (Ei)m
i=1 ⊂ AR

k is Ak
d -admissible if and only if there

exists {v1, v2, . . . , vm} ∈ Ak
d such that v1 ≤ E1 < v2 ≤ E2 < · · · < vm ≤ Em . (Recall

Definition 3.2.)
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Figure 9: An A2
7 -admissible sequence.

Recall Definition 3.3 of the norm ‖·‖T(Ak
d,θ) and Propositions 3.4 - 3.6.

The Banach space T(Ak
d, θ) shares many properties with the Banach space Tk(d, θ),

their proofs being very similar. In this section we indicate what parts of the proofs
from previous sections for Tk(d, θ) apply also to T(Ak

d, θ), and we provide the proofs
that are different. In particular we have the following: (1) For k ≥ 2, T(Ak

d, θ) has
arbitrarily large copies of `n

∞ with uniform isomorphism constant. (2) T(Ak
d, θ) is

`p -saturated. (3) If j 6= k , then T(Aj
d, θ) and T(Ak

d, θ) are not isomorphic. We do not
know if T(A j

d, θ) embeds into T(Ak
d, θ) for j < k .

We start with the results of Section 4. For s ∈ ω6 ↓<k , define T[Ak
d, s] = span{ev : v ∈

τ k[s]}. Since Corollary 4.1, Lemma 4.2, and Lemma 4.3 depend only on properties of
ARk , and since these are the results used in the proof of Theorem 4.4, we obtain the
following result:

Theorem 9.1 Suppose that s1 ≺ s2 ≺ · · · ≺ sN belong to ω6 ↓<k and that |s1| = · · · =
|sN | < k . Let v ∈ ω6 ↓k with sN ≺ v and suppose that x ∈

∑N
i=1⊕T[Ak

d, si] satisfies
v < x . If we decompose x as x1 + · · ·+ xN with xi ∈ T[Ak

d, si], then

max
1≤i≤N

‖xi‖ ≤ ‖x‖ ≤
θ(d − 1)

1− θ
max

1≤i≤N
‖xi‖ .

In particular, if ‖x1‖ = · · · = ‖xN‖ = 1, span{x1, . . . , xN} is isomorphic to `N
∞ in a

canonical way and the isomorphism constant is independent of N and of the xi ’s.
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We now move to the results of Section 5. The main result is the same but the proof for
the lower `p -estimate is different.

Theorem 9.2 Suppose that (xi)∞i=1 is a normalized block sequence in T(Ak
d, θ) and

that we can find a sequence (vi)∞i=1 ⊂ ω6 ↓k such that:

(1) v1 ≤ x1 < v2 ≤ x2 < v3 ≤ x3 < v4 ≤ x4 < · · ·
(2) supp (xi) ⊂ Xmax

vi
and vi+1 ∈ Xmax

vi
for every i ≥ 1

Then (xi) is equivalent to the basis of `p .

We start with the upper `p -estimate. The construction of the Alternative Norm (see
Subsection 5.1) is almost identical. The main difference is the definition of almost
admissible sequences.

Definition 9.3 Let m ∈ {1, . . . , d}. A sequence (Fi)m
i=1 ⊂ FIN(ω6 ↓k) is called Ak

d -
almost admissible if there exists an Ak

d -admissible sequence (En)d
n=1 such that Fi ⊆ Eni ,

where n1, . . . , nm ∈ {1, . . . , d} are such that n1 < n2 < · · · < nm .

This results in an alternative/dual description of the norm of T(Ak
d, θ). The sets Kn are

smaller than the corresponding sets for Tk(d, θ), but the proofs are identical, resulting
in the upper `p -estimate identical to Proposition 5.10.

The lower `p -estimate is harder, because we have fewer admissible sequences than
in Tk(d, θ). We need to have enough “room” to find Ak

d -admissible sequences, since
we need to place the sets between an element of Ak

d . To do so, we will prove a lower
`p -estimate for the sequences (x2n) and (x2n−1). Since the closed span of (x2n) and
(x2n+1) are complemented in the closed span of (xn), the general result follows. We
will obtain the estimate for (x2n). The other case is similar.

We start with the following lemma.

Lemma 9.4 Suppose that (qi)∞i=1 ⊂ N is such that q1 < q2 < · · · . Then, there exists
X = {w1,w2, . . .} ∈ Ek such that for every i ∈ N+,max(wi) = qi and wi is a sequence
all of whose terms are in the set {q1, q2, . . .}.

Proof Following Definition 2.5 we will construct inductively an Ek -tree X̂ that
determines X . Recall that for fixed k ≥ 2, the first k members of (ω6 ↓≤k,≺) are ~s0 = (),
~s1 = (0), and in general, for 1 ≤ k′ ≤ k , ~sk′ is the sequence of 0’s of length k′ . Begin
by setting X̂(~s0) := (), and for each 1 ≤ k′ ≤ k , set X̂(~sk′) to be the sequence of length
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k′ with all entries being q1 . Note that ~u0 is the sequence of 0’s of length k , and that
max(X̂(~u0)) = q0 .

Suppose we have defined X̂(~sm′) for all m′ ≤ m so that whenever ~sm′ = ~uj for some j,
then max(X̂(~uj)) = qj . Define X̂(~sm+1) based on the following cases:

Case 1: |~sm+1| = |~sm| + 1. Letting (n1, . . . , n|~sm|) denote X̂(~sm), set X̂(~sm+1) :=
(n1, . . . , n|~sm|, n|~sm|).

Case 2: |~sm| = k . Let j be the index such that ~sm = ~uj . By the induction hypoth-
esis, max(X̂(~sm)) = qj . Take m′ to be the index such that ~sm′ @ ~sm+1 with
|~sm′ | = |~sm+1| − 1. Then X̂ is already defined on ~sm′ , so define X̂(~sm+1) :=
X̂(~sm′)

_
qj+1 .

Lemma 9.5 Assume that all the hypotheses of Theorem 9.2 are satisfied. If m ∈
{1, . . . , d} and E1 < E2 < · · · < Em are finite subsets of N+ , then there exists an
Ak

d -admissible sequence (Fi)m
i=1 ⊂ AR

k such that

Ei ⊂
{

j ∈ N+ : supp
(
x2j
)
⊆ Fi

}
.

Proof For i ∈ {1, . . . ,m}, set ni := min(Ei). It is helpful to keep the following
picture in mind throughout this proof:

· · · ≤ x2(ni−1) < v2ni−1 ≤ x2ni−1 < v2ni ≤ x2ni < · · · ≤ x2(ni+1−1) < · · · .

Set qi := max(v2ni−1). By hypothesis (1) of Theorem 9.2, it follows that q1 < q2 <

· · · < qm . Applying Lemma 9.4, we can find {w1,w2, . . . ,wm} in ARk
d such that

max(wi) = qi and all the terms of wi are in {q1, q2, . . . , qm}. Consequently,

(4) · · · ≤ x2(ni−1) < wi ≺ v2ni ≤ x2ni < · · · .

By hypothesis, Xmax
v2ni

contains the support of xj for any j ≥ 2ni . Hence we define

(5) Fi = {w ∈ Xmax
v2ni

: w ≺ v2ni+1}

as the initial segment of Xmax
v2ni

up to (but not including) v2ni+1 . By construction,
Fi ∈ ARk , min≺(Fi) = v2ni , and Fi contains the supports of

x2ni , x2(ni+1), x2(ni+2), . . . , x2(ni+1−1).

Thus, from equation (4) and (5), we have:

w1 ≺ v2n1 ≤ F1 < w2 ≺ v2n2 ≤ F2 < · · · ≤ Fm−1 < wm ≺ v2nm ≤ Fm

and we conclude that F1,F2, . . . ,Fm ∈ ARk is the desiredAk
d -admissible sequence.
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With this, the proof of Proposition 5.4 applies and we obtain the lower `p -estimate for
the normalized block sequence (x2n). A similar argument gives a lower `p -estimate
for the normalized block sequence (x2n−1) and we conclude the sketch of the proof of
Theorem 9.2.

Since Theorems 9.1 and 9.2 hold for T(Ak
d, θ), we have all the elements to show that

the different T(Ak
d, θ)’s are not isomorphic to each other. The proof of Theorem 7.1

applies and we obtain the following:

Theorem 9.6 If k1 6= k2 , then T(Ak1
d , θ) is not isomorphic to T(Ak2

d , θ).

10 Further Directions

In this paper, we considered two different methods for constructing norms on high
dimensional Ellentuck spaces. One required both the admissible sets and their endpoints
to be finite approximations to members of Ek , and the other only required the admissible
sets to be finite approximations. Theorems 7.1 and 8.5 show that this latter norm
construction produces a hierarchy of Banach spaces Tk(d, θ) which embed isometrically
as subspaces into Banach spaces constructed from higher order Ellentuck spaces.

Question 10.1 For fixed d and θ and k1 < k2 , does T(Ak1
d , θ) embed as an isometric

subspace of T(Ak2
d , θ)?

Preliminary analysis shows that if we let d′ be sufficiently greater than d , we can show
that the norm on T(Ak1

d , θ) is bounded by the norm on the trace subspace above (0) in
T(Ak2

d′ , θ), where d′ is computed from d in a straightforward manner using methods
from Dobrinen [10]. However, we have not checked whether or not this produces and
isometric subspace.

Question 10.2 For fixed d, θ, k how different are Tk(d, θ) and T(Ak
d, θ)? Are they

isomorphic to each other? Does one of them embed into the other?

We finish with some questions about the behaviors of norms over certain sequences of
these spaces.

Question 10.3 What is the behavior of the norms on Tk(B, θ), constructed using
barriers B on (ω6 ↓k,≺) of infinite rank?
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Finally, we ask about Banach spaces constructed on infinite dimensional Ellentuck
spaces from Dobrinen [11].

Question 10.4 What new properties of the sequence of Banach spaces emerge as we
construct Tα(d, θ), where α is any countable ordinal and Eα is the α-dimensional
Ellentuck space?

We also ask this question for the spaces built using F = C(B), where B is a barrier on
Eα .

As the spaces Tk(d, θ) and T(Ak
d, θ) were shown to extend the `p space into natural

hierarchies, it will be interesting to see what properties emerge in these classes of new
Banach spaces.
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