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A uniform stability principle for dual lattices

MARTIN VODIČKA

PAVOL ZLATOŠ

Abstract: We prove a highly uniform stability or almost-near theorem for dual
lattices of lattices L ⊆ Rn . More precisely, we show that, for a vector x from the
linear span of a lattice L ⊆ Rn , subject to λ1(L) ≥ λ > 0, to be ε-close to some
vector from the dual lattice L′ of L , it is enough that the inner products u x are
δ -close (with δ < 1/3) to some integers for all vectors u ∈ L satisfying ‖u‖ ≤ r ,
where r > 0 depends on n , λ , δ and ε , only. This generalizes an analogous result
proved for integral lattices in Mačaj and Zlatoš [17]. The proof is nonconstructive,
using the ultraproduct construction and a small amount of nonstandard analysis.
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Informally, a property of objects of a certain kind can be said to be “stable” if objects
“almost satisfying” this property are already “close” to objects having the property. For
that reason results establishing such a stability are frequently referred to as “almost-near”
principles or theorems. By making precise the vague notions “almost satisfying” and
“close” various rigorous notions of stability can be obtained. The study of stability
of functional equations originates from a question about the stability of additive
functions R→ R and, more generally, of homomorphisms G→ H between metrizable
topological groups, asked by Ulam, cf Mauldin [16] and Ulam [20, 21]. Since that time
Ulam’s type of stability, modified in various ways, was studied for various (systems
of) functional equations; see, eg, Rassias [18] and Székelyhidi [19]. A systematic and
general approach to this topic in the realm of compact Hausdorff topological spaces,
using nonstandard analysis, was developed by Anderson [1]. The study of stability of
the homomorphy property with respect to the compact-open topology was commenced
by the second of the present authors in [22], [23], and [24]. The survey article by
Boualem and Brouzet [4] reflects some recent developments.

In the present paper we will prove the stability result for dual lattices stated in the
Abstract and formulated in a more detailed way in Theorem 5.2, as well as some closely
related results. Typically, such an “almost-near” result would be formulated in a weaker
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2 M Vodička and P Zlatoš

form, stemming from the following intuitive statement: every vector x from the linear
span of a lattice L ⊆ Rn , behaving almost like a vector from the dual lattice L′ of L
in the sense that all its inner products u x = u1x1 + . . . + unxn with vectors u from
a “sufficiently big” subset of L are “sufficiently close” to some integer, is already
“arbitrarily close” to a vector y ∈ L′ . This vague formulation can be made precise as
follows:

Let L ⊆ Rn be a lattice. Then, for each ε > 0, there exist δ > 0 and r > 0 such that
for every x ∈ span(L), satisfying |u x|Z ≤ δ for all u ∈ L, ‖u‖ ≤ r , there is y ∈ L′

such that ‖x− y‖ ≤ ε.

Here span(L) denotes the linear subspace of Rn generated by L ,

|a|Z = min
c∈Z
|a− c| = min

(
a− bac, dae − a

)
denotes the distance of the real number a from the set of all integers Z (with bac,
dae being the lower and upper integer part of a, respectively), and ‖x‖ =

√
x x is the

Euclidian norm induced by the usual inner (scalar) product x y on Rn .

Such a formulation, however, naturally raises the question how the parameters δ and r
depend on the parameters n and ε and some properties of the lattice L . Our Theorem 5.2
is a stronger and more uniform result in the sense that it partly answers this question: one
can pick any δ ∈ (0, 1/3), then r can be chosen depending on n, ε, δ and, additionally,
the Minkowski first successive minimum λ1(L). On the other hand, as the proof of this
result uses the ultraproduct construction, it only establishes existence of such r without
any estimate of its size.

Theorem 5.2 generalizes an analogous result proved in Mačaj and Zlatoš [17] for
integral lattices, replacing the condition L ⊆ Zn by introducing an additional parameter
λ > 0 and requiring λ1(L) ≥ λ. The result in [17] was obtained as a byproduct
of a stability result for characters of countable Abelian groups the proof of which
used Pontryagin-van Kampen duality between discrete and compact groups and the
ultraproduct construction. Our present result is based on an intuitively appealing
almost-near result (Theorem 4.4) formulated in terms of nonstandard analysis which
is linked to its standard counterpart (Theorem 5.2) via the ultraproduct construction
applied to a sequence of lattices. As a consequence, Pontryagin-van Kampen duality
is eliminated from the proof. Additionally, the passage from stability of characters to
stability of dual lattices in [17] naturally led to a formulation in terms of the pair of
mutually dual norms ‖x‖1 = |x1|+ . . .+ |xn| and ‖x‖∞ = max

(
|x1| , . . . , |xn|

)
. In our

present work, starting right away from lattices, the (equivalent) formulation in terms of
the (selfdual) Euclidian norm ‖x‖ = ‖x‖2 seems more natural.
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A uniform stability principle for dual lattices 3

1 Lattices and dual lattices

We assume some basic knowledge of lattices or, more generally, of “geometry of
numbers”. The readers can consult, eg, Cassels [5], Gruber and Lekkerkerker [8] or
Lagarias [12]; however, for convenience we list here the definitions of most notions we
use and some facts we build on.

A subgroup L of the additive group Rn , where n ≥ 1, is called a lattice if it is discrete,
ie there is λ > 0 such that ‖x− y‖ ≥ λ for any distinct vectors x, y ∈ L. Rn is
alternatively viewed as a vector space or an affine space and its elements as vectors
or points, respectively. The dimension of the linear space span(X) generated by a set
X ⊆ Rn is called the rank of X ie rank(X) = dim span(X). A full rank lattice is a lattice
of rank equal the dimension of the ambient space Rn . A body is a nonempty bounded
connected set C ⊆ Rn which equals the closure of its interior. A body C is called
centrally symmetric if −x ∈ C for any x ∈ C ; it is called convex if ax + (1− a)y ∈ C
for any x, y ∈ C and a ∈ [0, 1]. An example of a centrally symmetric convex body is
the Euclidian unit ball B = {x ∈ Rn : ‖x‖ ≤ 1}. The Minkowski successive minima of
L (with respect to the unit ball B) are defined by

λk(L) = inf{λ ∈ R : λ > 0, rank(L ∩ λB) ≥ k}

for 1 ≤ k ≤ rank(L). In particular, λ1(L) = inf{‖x‖ : 0 6= x ∈ L}. The covering
radius of L is defined by

µ(L) = inf{r ∈ R : r > 0, span(L) ⊆ L + rB} .

In all these cases the infima are in fact minima.

A basis of a lattice L ⊆ Rn is an ordered m-tuple β = (v1, . . . , vm) of linearly
independent vectors from L which generate L as a group, ie

L = grp(v1, . . . , vm) = {c1v1 + . . .+ cmvm : c1, . . . , cm ∈ Z} .

Obviously, in such a case rank(L) = m. In the proof of the fact that every lattice has a
basis the following elementary lemma, to which we will refer shortly, plays a key role.

Lemma 1.1 Let L ⊆ Rn be a lattice of rank m and (v1, . . . , vk), with k < m, be an
ordered k-tuple of linearly independent vectors from L which can be extended to a
basis of L . Denote V = span(v1, . . . , vk) and assume that the vector vk+1 ∈ L r V has
a minimal (Euclidian) distance to the linear subspace V from among all the vectors
in L r V . Then the (k + 1)-tuple (v1, . . . , vk, vk+1) either is already a basis of L (if
k + 1 = m) or it can be extended to a basis of L (if k + 1 < m).
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4 M Vodička and P Zlatoš

We will use the following consequence of the fact that every lattice has a basis.

Lemma 1.2 Let L ⊆ Rn be a lattice. Then a k-tuple of vectors v1, . . . , vk ∈ L
is linearly independent if and only if, for any integers c1, . . . , ck ∈ Z, the equality
c1v1 + . . .+ ckvk = 0 implies c1 = . . . = ck = 0.

A basis (v1, . . . , vm) of a lattice L is Minkowski reduced if, for each k ≤ m, vk is the
shortest vector from L such that the k-tuple (v1, . . . , vk) can be extended to a basis of
L . It is known that every lattice has a Minkowski reduced basis.

For any subset S ⊆ Rn we denote by

AnnZ(S) = {x ∈ Rn : ∀ u ∈ S : u x ∈ Z}

the integral annihilator of S . Obviously, AnnZ(S) is a subgroup of Rn for every
S ⊆ Rn ; however, even for a lattice L ⊆ Rn , the integral annihilator AnnZ(L) need
not be a lattice unless rank(L) = n. The dual lattice of L (also called the polar or
reciprocal lattice) is defined as the intersection

L′ = AnnZ(L) ∩ span(L) .

Then L′ is a lattice in Rn of the same rank as L and there is an obvious duality relation
L′′ = L . The Minkowski successive minima of the original lattice L and its dual lattice
L′ are related through a bound due to Banaszczyk [2]. Similarly, the covering radius of
the dual lattice L′ can be estimated in terms of the first Minkowski minimum of L; see
Lagarias, Lenstra and Schnorr [13] or Lagarias [12]. Actually, in the quoted papers these
results were stated and proved for full rank lattices, ie only in case m = n. However,
introducing an orthonormal basis in the linear subspace span(L) and replacing any
vector x ∈ span(L) by its coordinates with respect to it, they can be readily generalized
as follows.

Lemma 1.3 Let L ⊆ Rn be a lattice of rank m. Then

λk(L)λm−k+1
(
L′
)
≤ m for each k ≤ m,

λ1(L)µ
(
L′
)
≤ 1

2
m3/2.and

2 Ultraproducts of lattices

In order to keep our presentation self-contained, we give a brief account of the
ultraproduct construction and some notions of nonstandard analysis here. Nonetheless,
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the readers are strongly advised to consult some more detailed exposition such as those
in Chang-Keisler [6], Davis [7] and Henson [10].

A nonempty system D of subsets of a set I is a called a filter on I if ∅ /∈ D, D is
closed with respect to intersections, and, for any X ∈ D, Y ⊆ I , the inclusion X ⊆ Y
implies Y ∈ D. A filter D on I is called an ultrafilter if for any X ⊆ I either X ∈ D
or I r X ∈ D. Ultrafilters of the form D = {X ⊆ I : j ∈ X}, where j ∈ I , are called
principal. As a consequence of the axiom of choice, every filter on I is contained in
some ultrafilter; in particular, nonprincipal ultrafilters exist on every infinite set I .

Given a set I and a family of first order structures (Ai)i∈I of some first order language
Λ, we can form their direct product

∏
i∈I Ai with basic operations and relations defined

componentwise. If, additionally, D is a filter on I , then

α ≡D β ⇐⇒ {i ∈ I : α(i) = β(i)} ∈ D

defines an equivalence relation on
∏

Ai . Denoting by α/D the coset of a function
α ∈

∏
Ai with respect to ≡D , the quotient

B =
∏

Ai

/
D =

∏
Ai

/
≡D ,

naturally becomes a Λ-structure once we define

f B(α1/D, . . . , αp/D) = β/D ,

where β(i) = f Ai(α1(i), . . . , αp(i)), for any p-ary functional symbol f , and

(α1/D, . . . , αp/D) ∈ RB ⇐⇒ {i ∈ I : (α1(i), . . . , αp(i)) ∈ RAi} ∈ D

for any p-ary relational symbol R. Then B is called the filtered or reduced product of
the family (Ai) with respect to the filter D. If Ai = A is the same structure for each
i ∈ I , then the reduced product

AI/D =
∏

Ai

/
D

is called the filtered or reduced power of the Λ-structure A. If D is an ultrafilter, then
we speak of ultraproducts and ultrapowers.

The following property of ultraproducts is of fundamental importance.

Lemma 2.1 (Łos Theorem) Let (Ai)i∈I be a family of structures of some first order
language Λ, D be an ultrafilter on the index set I , Φ(x1, . . . , xp) be a Λ-formula and
α1, . . . , αp ∈

∏
Ai . Then the statement Φ(α1/D, . . . , αp/D) holds in the ultraproduct∏

Ai
/

D if and only if

{i ∈ I : Φ(α1(i), . . . , αp(i)) holds in Ai} ∈ D .
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6 M Vodička and P Zlatoš

As a consequence, the canonical embedding of any Λ-structure A into its ultrapower
∗A = AI

/
D is elementary. More precisely, identifying every element a ∈ A with the

coset ā/D of the constant function ā(i) = a, we have

Φ(a1, . . . , ap) holds in A ⇐⇒ Φ(a1, . . . , ap) holds in ∗A

for every Λ-formula Φ(x1, . . . , xn) and any a1, . . . , ap ∈ A. This equivalence will be
referred to as the transfer principle.

The above accounts almost directly apply to many-sorted structures, like modules over
rings or vector spaces over fields as well (see Henson [10]). In particular, if (Vi)i∈I

is a family of vector spaces over a field F , then the ultraproduct
∏

Vi
/

D becomes a
vector space over the ultrapower ∗F = FI

/
D, which is a field elementarily extending F .

Similarly, if (Gi)i∈I is a family of Abelian groups, viewed as modules over the ring of
integers Z, then the ultraproduct

∏
Gi
/

D becomes not only an Abelian group, but also
a module over the ring of hyperintegers ∗Z = ZI

/
D elementarily extending the ring Z.

And, what is of crucial importance, the Łos Theorem is still true for formulas in the
corresponding two-sorted language.

From now on I = {1, 2, 3, . . . } denotes the set of all positive integers and D is some
fixed nonprincipal ultrafilter on I . We form the ordered field of hyperreal numbers as
the ultrapower ∗R = RI

/
D of the ordered field R. Then

F∗R = {x ∈ ∗R : ∃ r ∈ R, r > 0: |x| < r}
I∗R = {x ∈ ∗R : ∀ r ∈ R, r > 0: |x| < r}.and

denote the sets of all finite hyperreals and of all infinitesimals, respectively. It can be
easily verified that F∗R is a subring of ∗R and I∗R is an ideal in F∗R. Hyperreal
numbers not belonging to F∗R are called infinite. For x ∈ ∗R we sometimes write
|x| <∞ instead of x ∈ F∗R, and x ∼ ∞ instead of x /∈ F∗R. Two hyperreals x , y are
said to be infinitesimally close, in notation x ≈ y, if x− y ∈ I∗R. Moreover, for each
x ∈ F∗R, there is a unique real number ◦x ∈ R, called the standard part of x , such that
x ≈ ◦x . As a consequence, F∗R/I∗R ∼= R as ordered fields.

A hyperreal number x = α/D, where α : I → R, is finite if and only if there is a
positive r ∈ R such that {i ∈ I : |α(i)| < r} ∈ D; this is equivalent to the convergence
of the sequence α to ◦x with respect to the filter D. In particular, x is infinitesimal if
and only if ◦x = 0, ie if and only if the sequence α converges to 0 with respect to D.
As D necessarily extends the Frechet filter, limi→∞ α(i) = a ∈ R in the usual sense
implies ◦x = a, ie x ≈ a.

The standard part map has the following homomorphy properties with respect to the
field operations:

◦(x + y) = ◦x + ◦y and ◦(x y) = ◦x ◦y
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for any x, y ∈ F∗R, and if additionally x 6≈ 0, then also ◦
(
x−1
)

=
(◦x)−1 .

Along with the equivalence relation of infinitesimal nearness ≈, we introduce the
relation of Archimedean equivalence ∼ or order equality on ∗R as follows:

x ∼ 0 ⇔ x = 0 , and x ∼ y ⇔ 0 6≈ x
y
∈ F∗R for x, y 6= 0 .

When x ∼ y we say that x and y are of the same (Archimedean) order. We also say that
x is of smaller order than y, or that y is of bigger order than x, in symbols x� y, if
y 6= 0 and x

y ≈ 0. Obviously, for x, y 6= 0, x ∼ y is equivalent to: neither x� y nor
y� x .

According to the transfer principle, we can identify, for any finite integer n ≥ 1, the
vector space (∗R)n over the field ∗R and the ultrapower ∗(Rn) = (Rn)I

/
D, so that the

notation ∗Rn is unambiguous. More generally, for any subset S ⊆ Rn we identify the
ultrapower ∗S = SI

/
D with the subset

{(α1/D, . . . , αn/D) ∈ ∗Rn : {i ∈ I : (α1(i), . . . , αn(i)) ∈ S} ∈ D}

of ∗Rn . The inner product on Rn extends to the inner product on ∗Rn , preserving all its
first order properties. In order to distinguish the linear spans with respect to the fields
R and ∗R, respectively, we introduce the internal linear span of a set X ⊆ ∗Rn which,
due to the fact that the ambient vector space ∗Rn has finite internal dimension n, can be
described as follows:

∗span(X) = {a1x1 + . . .+ anxn : x1, . . . , xn ∈ X, a1, . . . , an ∈ ∗R}

We also distinguish the lattice or subgroup, ie the Z-submodule grp(v1, . . . , vm) of Rn

generated by vectors v1, . . . , vm ∈ Rn , and the internal lattice internally generated by
vectors v1, . . . , vm ∈ ∗Rn , ie the ∗Z-submodule

∗grp(v1, . . . , vm) = {c1v1 + . . .+ cmvm : c1, . . . , cm ∈ ∗Z}

of ∗Rn .

Similarly as in ∗R, vectors from F∗Rn are called finite and vectors from I∗Rn are called
infinitesimal. Obviously

F∗Rn = {x ∈ ∗Rn : ‖x‖ <∞}
I∗Rn = {x ∈ ∗Rn : ‖x‖ ≈ 0}.and

Both F∗Rn and I∗Rn are vector spaces over the field R and even modules over the
ring F∗R, but not over the field ∗R. Vectors x, y ∈ ∗Rn are said to be infinitesimally
close, in notation x ≈ y, if x − y ∈ I∗Rn , ie if ‖x− y‖ ≈ 0. The standard part of a
vector x = (x1, . . . , xn) ∈ F∗Rn is the vector ◦x =

(◦x1, . . . ,
◦xn
)

; obviously, ◦x is the
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8 M Vodička and P Zlatoš

unique vector in Rn infinitesimally close to x . Then F∗Rn/I∗Rn ∼= Rn as vector spaces
over R.

Though the ultraproduct construction can be applied to any family of lattices Li ⊆ Rni ,
it is sufficient for our purpose to deal with lattices situated in the same ambient vector
space Rn with n ≥ 1 fixed. Given a sequence (Li)i∈I of lattices Li ⊆ Rn we can form
the ultraproduct

∏
Li
/

D and identify it with the subset

L = {(α1/D, . . . , αn/D) ∈ ∗Rn : {i ∈ I : (α1(i), . . . , αn(i)) ∈ Li} ∈ D}

of the vector space ∗Rn over ∗R. Then L is an internal discrete additive subgroup of
∗Rn , ie it is a module over the ring of hyperintegers ∗Z and there is a positive λ ∈ ∗R
such that ‖x− y‖ ≥ λ for any distinct x, y ∈ L; however, it should be noticed that λ
may well be infinitesimal. Moreover, as D is an ultrafilter, there is m ≤ n and a set
J ∈ D such that rank(Li) = m for each i ∈ J . We write rank(L) = m and refer to L as
an internal lattice in ∗Rn of rank m. Then we can assume, without loss of generality,
that rank(Li) = m for each i ∈ I . The Minkowski successive minima and covering
radius of such an internal lattice L can be defined in two ways which are equivalent by
the transfer principle:

λk(L) =
(
λk(Li)

)
i∈I

/
D = min{λ ∈ ∗R : λ > 0, rank(L ∩ λ ∗B) ≥ k},

µ(L) =
(
µ(Li)

)
i∈I

/
D = min{r ∈ ∗R : r > 0, ∗span(L) ⊆ L + r ∗B}and

for k ≤ m. Then λ1(L) ≤ . . . ≤ λm(L) and µ(L) are positive hyperreal numbers, hence
they can be both infinitesimals as well as infinite. Additionally, we put

rank0(L) = #{k : 1 ≤ k ≤ m, λk(L) ≈ 0}
rankf(L) = #{k : 1 ≤ k ≤ m, λk(L) <∞} ,and

where # H denotes the number of elements of a finite set H . Note that rank0(L) = 0 if
λ1(L) 6≈ 0, as well as rankf(L) = 0 if λ1(L) /∈ F∗R. Obviously, if rank0(L) > 0, then
it is the biggest k ≤ m such that λk(L) ≈ 0; similarly, if rankf(L) > 0, then it is the
biggest k ≤ m such that λk(L) <∞.

At the same time, we can assume that β1, . . . , βm ∈
∏

Li are functions such that,
for each i ∈ I (or at least for each i from some set J ∈ D), the m-tuple of vectors
β(i) = (β1(i), . . . , βm(i)) is a Minkowski reduced basis of the lattice Li . Then, due to
Łos Theorem (Lemma 2.1), the m-tuple β/D = (v1, . . . , vm), where vk = βk/D for
k ≤ m, is a Minkowski reduced basis of the internal lattice L , ie the vectors v1, . . . , vm

are linearly independent over ∗R and generate L as a ∗Z-module.

Lemma 2.2 Let L ⊆ ∗Rn be an internal lattice of rank m and β = (v1, . . . , vm) be a
Minkowski reduced basis of L . Then the following hold:

Journal of Logic & Analysis 11:2 (2019)
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(a) If, for some k < m, ‖vk‖ � ‖vk+1‖ and V = ∗span{v1, . . . , vk}, then
‖x‖ 6� ‖vk+1‖ for every vector x ∈ L r V .

(b) ‖vk‖ ∼ λk(L) for each k ≤ m.

Proof (a) Assume that, under the assumptions of (a), we have ‖x‖ � ‖vk+1‖ for some
x ∈ L r V . We denote the orthogonal projection of a vector y ∈ ∗Rn to V by yV . Let
z ∈ L r V be a vector such that its the distance z− zV to V is minimal from among all
the vectors y ∈ L r V . Therefore,

‖z− zV‖ ≤ ‖x− xV‖ ≤ ‖x‖ .

As zV ∈ V , there are hyperreals a1, . . . , ak ∈ ∗R such that zV = a1v1 + . . . + akvk .
Denoting by cj = bajc their lower integer parts and z′ = z− c1v1 − . . .− ckvk ∈ L , we
have z− z′ ∈ V , hence ‖z′ − z′V‖ = ‖z− zV‖, so that the vector z′ ∈ L has the same
minimality property as z. Then, according to Lemma 1.1 and the transfer principle, the
(k + 1)-tuple (v1, . . . , vk, z′) can be extended to a basis of L , hence ‖vk+1‖ ≤ ‖z′‖, as
the basis (v1, . . . , vm) is Minkowski reduced. At the same time,

z′V = (a1 − c1)v1 + . . .+ (ak − ck)vk ,

with |aj − cj| < 1 for each j ≤ k . From the triangle inequality we get:∥∥z′
∥∥ ≤ ∥∥z′V

∥∥+
∥∥z′ − z′V

∥∥
= ‖(a1 − c1)v1 + . . .+ (ak − ck)vk‖+ ‖z− zV‖
< ‖v1‖+ . . .+ ‖vk‖+ ‖x‖

Therefore, ‖z′‖ � ‖vk+1‖, hence ‖z′‖ < ‖vk+1‖, which is a contradiction.

(b) Because ‖v1‖ = λ1(L), the statement of (b) is true for k = 1. Assume, toward a
contradiction, that k < m for the biggest index satisfying ‖vk‖ ∼ λk(L). Then

1 ≤ ‖vk‖
λk(L)

<∞ and
λk+1(L)
‖vk+1‖

≈ 0 .

Therefore,
‖vk‖
‖vk+1‖

≤ λk+1(L)
λk(L)

· ‖vk‖
‖vk+1‖

=
‖vk‖
λk(L)

· λk+1(L)
‖vk+1‖

≈ 0 .

Then, according to (a), ‖x‖
‖vk+1‖ 6≈ 0 for every vector x ∈ L r ∗span(v1, . . . , vk). In

particular, λk+1(L)
‖vk+1‖ 6≈ 0.

Remark 1 (b) of Lemma 2.2 follows immediately, by applying the transfer principle,
from the following estimates of the lengths of vectors in any Minkowski reduced basis
(v1, . . . , vm) of a rank m lattice L ⊆ Rn in terms of its Minkowski successive minima:

λk(L) ≤ ‖vk‖ ≤ 2kλk(L)

Journal of Logic & Analysis 11:2 (2019)



10 M Vodička and P Zlatoš

for all k ≤ m (see Lagarias [11]; Mahler [14] has even better upper bounds). Then (a)
could be proved as an easy consequence of (b). However, it is perhaps worthwhile to
notice that, using the internal lattice concept, the purely qualitative estimates (a), (b)
follow already from Lemma 1.1 and the existence of Minkowski reduced bases.

The standard part ◦X of a set X ⊆ ∗Rn consists of the standard parts of all finite vectors
from X ; alternatively, it can be formed by taking the quotient of the set of finite vectors
from X with respect to the equivalence relation of infinitesimal nearness. Identifying
the results of both approaches, we have

◦X =
(
X ∩ F∗Rn)/≈ = {◦x : x ∈ X ∩ F∗Rn} = {y ∈ Rn : ∃ x ∈ X : y ≈ x} .

In particular, for an additive subgroup G ⊆ ∗Rn we denote by

FG = G ∩ F∗Rn and IG = G ∩ I∗Rn

the additive subgroups of ∗Rn formed by the finite and infinitesimal elements in G,
respectively. Then its standard part ◦G is an additive subgroup of Rn which can be
identified with the quotient

◦G = FG/IG .

However, even for an internal lattice L ⊆ ∗Rn , its standard part ◦L is not necessarily
discrete, hence it need not be a lattice in Rn . A more detailed account will follow after
a preliminary lemma.

Lemma 2.3 Let L ⊆ ∗Rn be an internal lattice of rank m and β = (v1, . . . , vm) be a
Minkowski reduced basis of L such that all the vectors in β are infinitesimal. Then
there exist hyperintegers c1, . . . , cm ∈ ∗Z such that all the vectors ckvk are finite but not
infinitesimal and ck divides ck−1 whenever 2 ≤ k ≤ m. For such a choice of c1, . . . , cm

the internal sublattice M = ∗grp(c1v1, . . . , cmvm) ⊆ L contains no infinitesimal vector
except for 0, in other words λ1(M) 6≈ 0.

Proof Let’s start with an arbitrary cm ∈ ∗Z such that cmvm ∈ FL r IL (eg, one
can put cm =

⌈
‖vm‖−1

⌉
guaranteeing that 1 ≤ ‖cmvm‖ < 1 + ‖vm‖ ≈ 1). We

proceed by backward recursion. Assuming that 2 ≤ k ≤ m and ck is already defined,
we put ck−1 = ck if ckvk−1 6≈ 0 (as ‖vk−1‖ ≤ ‖vk‖, ckvk−1 ∈ FL is satisfied
automatically), otherwise we put ck−1 = bck where b ∈ ∗Z is any hyperinteger such
that bckvk−1 ∈ FL r IL (eg, b =

⌈
‖ckvk−1‖−1

⌉
will work). Obviously, ck ∈ ∗Z

divides ck−1 ∈ ∗Z for any 2 ≤ k ≤ m.
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Assume that x ≈ 0, where x = a1c1v1 + . . .+ amcmvm for some a1, . . . , am ∈ ∗Z not
all equal to 0. Let q ≤ m be the biggest index such that aq 6= 0. Then

x′ =
1
cq

x =

q∑
k=1

akck

cq
vk 6= 0

is a vector from the internal lattice L. Moreover, cqx′ = x ≈ 0, while cqvq 6≈ 0,
hence ‖x′‖ � ‖vq‖. Let p ≤ q be the smallest index such that ‖x′‖ � ‖vp‖. Denote
λ = ‖x′‖ if p = 1, or λ = max(‖vp−1‖ , ‖x′‖) if p > 1. Then the hyperball λ ∗B
contains p linearly independent vectors v1, . . . , vp−1, x′ from L , hence λp(L) ≤ λ and,
at the same time, λ� ‖vp‖, contradicting Lemma 2.2 (b).

Proposition 2.4 Let L =
∏

Li
/

D ⊆ ∗Rn be an internal lattice of rank m and ◦L be
its standard part. Then the following hold true:

(a) ◦L is a lattice in Rn if and only if there is a positive λ ∈ R such that the set
{i ∈ I : λ1(Li) ≥ λ} belongs to D. This is equivalent to λ1(L) 6≈ 0 as well as to
rank0(L) = 0.

(b) ◦L is the direct sum of a linear subspace of Rn of dimension rank0(L) and a lattice
in Rn of rank rankf(L)− rank0(L).

(c) ◦L is a lattice of rank q ≤ m if and only if rank0(L) = 0 and rankf(L) = q.

Proof (a) The equivalence of any of the first two conditions to the discreteness of the
group ◦L is obvious. Similarly, any of the obviously equivalent conditions λ1(L) 6≈ 0
and rank0(L) = 0 implies the discreteness of ◦L. Otherwise, there is at least one
nonzero infinitesimal vector v ∈ L . Then one can find a hyperinteger c ∈ ∗Z such that
cv is finite but not infinitesimal. Obviously, its standard part w = ◦(cv) 6= 0 belongs to
◦L, so that span(w) = Rw is a line in Rn . We prove the inclusion Rw ⊆ ◦L. Taking
any x = aw ∈ Rw, with a ∈ R, and putting b = bacc ∈ ∗Z, we have b ≤ ac < b + 1
which, by the virtue of v ≈ 0, implies bv ≈ acv. Hence

x = aw ≈ acv ≈ bv ∈ FL

and x = ◦(bv) ∈ ◦L . It follows that ◦L , containing the line Rw ⊆ Rn , is not discrete.

(b) Let (v1, . . . , vm) be a Minkowski reduced basis of L. Denote p = rank0(L)
and q = rankf(L). According to Lemma 2.2 (b), a vector vk is infinitesimal if
and only if k ≤ p, and it is finite if and only if k ≤ q. For the same reason, if
x ∈ L r ∗grp(v1, . . . , vq) then ‖x‖ 6� vq+1 , hence x /∈ FL . Therefore the standard part
◦L of the internal lattice L coincides with the standard part of its internal sublattice
∗grp(v1, . . . , vq). Due to Lemma 2.3, there are hyperintegers c1, . . . , cp ∈ ∗Z such that
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12 M Vodička and P Zlatoš

ckvk ∈ FL r IL for any k and ck divides ck−1 for k ≥ 2. Then the internal sublattice
M = ∗grp(c1v1, . . . , cpvp) ⊆ L contains no nonzero infinitesimal vector. Let us denote
wk = ◦(ckvk) for k ≤ p, and, additionally, ck = 1, wk = ◦vk = ◦(ckvk) for p < k ≤ q.
As a consequence, ◦L coincides with the sum of the linear subspace span(w1, . . . ,wp)
and the lattice grp(wp+1, . . . ,wq).

The proof of (b) will be complete once we establish the following claim.

Claim The vectors w1, . . . ,wq are linearly independent over R.

Indeed, let b ∈ ∗N be any infinite hypernatural number. Put v′k = b−1vk , c′k = bck for
any k ≤ q. Then all the vectors v′1, . . . , v

′
q are infinitesimal and form a Minkowski

reduced basis of the lattice L′ = {b−1x : x ∈ L}. Now, all the vectors c′kv′k = ckvk ,
where k ≤ q, are finite but not infinitesimal and c′k divides c′k−1 for k ≥ 2. From
Lemma 2.3 we infer that the internal lattice

N = ∗grp(c1v1, . . . , cqvq) = ∗grp
(
c′1v′1, . . . , c

′
qv′q
)

satisfies λ1(N) 6≈ 0. Then, by (a), its standard part ◦N is a lattice in Rn . According
to Lemma 1.2, it suffices to show that a1w1 + . . . + aqwq = 0 implies a1 = . . . =

aq = 0 for any integers a1, . . . , aq ∈ Z. Since the first equality is equivalent to
a1c1v1 + · · ·+ aqcqvq ≈ 0 and the left hand vector belongs to N , which contains no
infinitesimal vector except for 0, we have a1c1v1 + · · ·+ aqcqvq = 0, and the desired
conclusion follows from the linear independence of the vectors c1v1, . . . , cqvq over ∗R.

(c) follows directly from (a) and (b).

The following is a direct consequence of Proposition 2.4(b).

Corollary 2.5 Let L be an internal lattice in ∗Rn . Then its standard part ◦L is a closed
subgroup of the additive group Rn .

3 An “almost-near” result for systems of linear equations

We denote by Fm×n the vector space of all m × n matrices over a field F . Unless
otherwise said, the vector space Fn consists of column vectors. The transpose of a matrix
A is denoted by A> . A matrix A ∈ ∗Rm×n is called finite, in symbols A ∈ F∗Rm×n , if
all its entries aij are finite. Then the matrix ◦A =

(◦aij
)
∈ Rm×n is called the standard
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part of A. The preservation of addition and multiplication by the standard part map on
F∗R extends to finite matrices, ie

◦(A + B) = ◦A + ◦B and ◦(A C) = ◦A ◦C

for any A,B ∈ F∗Rm×n , C ∈ F∗Rn×p .

The following “almost-near” result for solutions of systems of linear equations will be
used in the proof of our first stability Theorem 4.2 in the next section.

Proposition 3.1 Let A ∈ F∗Rm×n be any matrix such that the standard parts of its
rows are linearly independent over R, and let b ∈ F∗Rm . Then, for any x ∈ F∗Rn

satisfying A x ≈ b, there is y ∈ ∗Rn such that y ≈ x and A y = b.

Note that the vector y, being infinitesimally close to the finite vector x , is necessarily
finite as well.

Proof The assumptions on A imply that its rows are linearly independent over ∗R.
Indeed, the coefficients of any nontrivial linear dependency over ∗R among the rows
of A can be scaled so that all of them are finite and at least one of them is 1; taking
standard parts would yield a nontrivial linear dependency over R among the rows
of ◦A. The assumptions also guarantee that m ≤ n and both the systems A ξ = b,
◦A ξ = ◦b indeed have solutions (in ∗Rn , Rn , respectively), because the internal rank of
A over ∗R, as well as the rank of ◦A over R are both equal to m. We denote by V the
orthocomplement of the internal linear subspace Ker A = {ξ ∈ ∗Rn : A ξ = 0} in ∗Rn .

Let x ∈ F∗Rn satisfy A x ≈ b and take y ∈ ∗Rn to be the orthogonal projection of x
to the affine subspace {ξ ∈ ∗Rn : A ξ = b} of ∗Rn , which means that A y = b and
x− y ∈ V . It suffices to prove that x ≈ y.

The product A A> is a finite, symmetric, positive semi-definite m × m matrix over
∗R. As noted in the first paragraph of Bernstein [3, Section 5.6], this product has
rank m over ∗R, so 0 is not an eigenvalue of A A> . (See also [3, Theorem 5.6.2(i)].)
Let e1 ≥ · · · ≥ em > 0 be the eigenvalues of A A>, which must all be finite since
A A> is a finite matrix, and let di =

√
ei for i = 1, . . . ,m. Let D be the m × n

matrix with di in position (i, i) for i ≤ m and 0 in all remaining positions. Then
[3, Theorem 5.6.3] yields that there exist orthogonal matrices P,Q over ∗R such that
A = PDQ> . (This is the singular value decomposition of A; see eg [3, Sections 5.6
and 9.11] and Han and Neumann [9, Section 5.6].) Then, because the standard part
map preserves sums, products and the transpose of finite matrices, the matrices ◦P, ◦Q
are also orthogonal, and ◦A = ◦P ◦D ◦Q> . Further ◦e1, . . . ,

◦em are the eigenvalues

Journal of Logic & Analysis 11:2 (2019)



14 M Vodička and P Zlatoš

of ◦A ◦AT and ◦di =
√◦ei for i = 1, . . . ,m. As ◦D is a diagonal matrix with the

diagonal formed by the elements ◦d1 ≥ . . . ≥ ◦dm ≥ 0, we see that ◦A = ◦P ◦D ◦Q>

is the singular value decomposition of ◦A. It follows that ◦D has rank m, and hence
◦dm > 0. Since A Q = P D, denoting by u1, . . . , um and v1, . . . , vn the columns of
the matrices P and Q, respectively, we have A vi = diui for i ≤ m and A vi = 0 for
m < i ≤ n. Thus the columns v1, . . . , vm span V while the columns vm+1, . . . , vn span
Ker A. Then, using the fact that the vectors u1, . . . , um and v1, . . . , vn form orthonormal
bases of the internal inner product spaces ∗Rm and ∗Rn , respectively, we have, for any
vector v = c1v1 + . . .+ cmvm ∈ V ,

‖A v‖ = ‖c1 A v1 + . . .+ cm A vm‖ = ‖c1d1u1 + . . .+ cmdmum‖

=
√

c2
1d2

1 + . . .+ c2
md2

m ≥ dm

√
c2

1 + . . .+ c2
m = dm ‖v‖ .

In particular, since x− y ∈ V and A x ≈ b = A y,

dm ‖x− y‖ ≤ ‖A(x− y)‖ = ‖A x− b‖ ≈ 0 ,

implying ‖x− y‖ ≈ 0, ie x ≈ y.

4 The “almost-near” theorems for dual lattices
nonstandard formulation

Given an internal lattice L =
∏

Li
/

D in ∗Rn , its internal integral annihilator can be
defined as the ultraproduct of the integral annihilators of the particular lattices Li ⊆ Rn

or, equivalently, as the annihilator of L with respect to the set of hyperintegers ∗Z.
Then the Łos Theorem (Lemma 2.1) assures that both the objects coincide, ie

Ann∗Z(L) = {u ∈ ∗Rn : ∀ x ∈ L : ux ∈ ∗Z} =
∏

AnnZ(Li)
/

D .

Similarly, we have a two-fold definition of the internal dual of the internal lattice L:

L′ = Ann∗Z(L) ∩ ∗span(L) =
∏

L′i
/

D

Using the transfer principle, Lemma 1.3 implies the following transference relations
between the successive minima of an internal lattice L ⊆ ∗Rn and the successive minima
and the covering radius, respectively, of its internal dual lattice.

Lemma 4.1 Let L ⊆ Rn be an internal lattice of rank m. Then

λk(L)λm−k+1
(
L′
)
<∞ for each k ≤ m

λ1(L)µ
(
L′
)
<∞.and
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Remark 2 The preceding relations follow already from considerably weaker estimates
than those in Lemma 1.3, namely λk(L)λm−k+1

(
L′
)
≤ m! (due to Mahler [15]) and the

almost obvious observation µ
(
L′
)
≤ 1

2 mλm
(
L′
)

, which jointly imply:

λ1(L)µ
(
L′
)
≤ 1

2
m m!

Even weaker estimates λk(L)λm−k+1
(
L′
)
≤ (m!)2 (see Gruber and Lekkerkerker [8,

page 125]) are still sufficient (cf Remark 1).

As first we prove an infinitesimal version of the “almost-near” result for integral
annihilators of internal lattices.

Theorem 4.2 Let L ⊆ ∗Rn be an internal lattice. Then for each x ∈ F∗Rn , such that
|u x|Z ≈ 0 for every finite u ∈ L , there is y ∈ Ann∗Z(L) such that y ≈ x .

Proof Let β = (v1, . . . , vm) be a Minkowski reduced basis of L , and 0 ≤ p ≤ q ≤ m
be natural numbers such that v1, . . . , vp are all the infinitesimal vectors in β and
v1, . . . , vq are all the finite vectors in β . Recalling Proposition 2.4 (b) and its proof,
there are hyperintegers c1, . . . , cp ∈ ∗Z such that the vectors c1v1, . . . , cpvp ∈ L are
finite and noninfinitesimal and each finite vector u ∈ L is infinitesimally close to a
vector of the form

(a1c1v1 + . . .+ apcpvp) + (ap+1vp+1 + . . .+ aqvq) ,

where a1, . . . , ap ∈ R and ap+1, . . . , aq ∈ Z.

Form the matrix with columns c1v1, . . . , cpvp, vp+1, . . . , vq , and denote by A ∈ F∗Rq×n

its transpose. Then x ∈ F∗Rn satisfies the condition |u x|Z ≈ 0 for each finite u ∈ L
if and only if ckvk x ≈ 0 for k ≤ p and |vk x|Z ≈ 0 for p < k ≤ q. Assume that u
satisfies this condition and put b =

(
0, . . . , 0, ◦(vp+1x), . . . , ◦(vqx)

)> . Then b ∈ Zq

and x satisfies A x ≈ b. By virtue of Proposition 3.1, there is y ∈ F∗Rn such that
y ≈ x and A y = b. Then, however, vk y = bk = 0 for k ≤ p, and vk y = bk ∈ Z for
p < k ≤ q. If q = m, we are done. Otherwise there exists a sequence of integers
q = q0 < q1 < . . . < qt = m, such that

‖vqs−1‖ � ‖vk‖ ∼ ‖vqs‖

for all s, k satisfying 1 ≤ s ≤ t , qs−1 < k ≤ qs .

We are going to construct a sequence of vectors y(0) = y, y(1), . . . , y(t) ∈ F∗Rn , such
that y(s) ≈ x and vk y(s) ∈ ∗Z for any s ≤ t , k ≤ qs . Then v y(t) ∈ ∗Z for every v ∈ L ,
as required. This will be achieved by an inductive argument. Obviously it is enough to
prove the following:
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16 M Vodička and P Zlatoš

Claim Let 0 ≤ s < t and z ∈ F∗Rn be a vector such that vk z ∈ ∗Z for any k ≤ qs .
Then there is z′ ∈ F∗Rn such that z′ ≈ z and vk z′ ∈ ∗Z for any k ≤ qs+1 .

Let us denote q′ = qs , q′′ = qs+1 , d = q′′ − q′ > 0, and form the internal lattice
M = ∗grp(v1, . . . , vq′′) ⊆ L, as well as the internal linear subspace V = ∗span(M) =
∗span(v1, . . . , vq′′) ⊆ ∗Rn . According to Lemma 2.2 (b) and Lemma 4.1 we know that

‖vk‖ ∼ λk(M) and λk(M)λq′′−k+1
(
M′
)
<∞

whenever q′ < k ≤ q′′ . Putting both the relations together, for k = q′ + 1 we get∥∥vq′+1
∥∥ λd

(
M′
)
<∞ .

Since the vectors vk , for q < k ≤ m, are infinite, we see that λd
(
M′
)
≈ 0. Thus there

are vectors w1, . . . ,wd ∈ M′ , linearly independent over ∗R such that ‖wj‖ ≤ λd
(
M′
)

for j ≤ d ; in particular, all the vectors wj are infinitesimal.

We will search for the vector z′ in the form

z′ = z + α1w1 + . . .+ αdwd

with unknown coefficients α1, . . . , αd ∈ F∗R. This will guarantee that z′ ≈ z.

As ‖vk‖ �
∥∥vq′+1

∥∥, for any k ≤ q′ , j ≤ d , we have ‖vk‖ �
∥∥vq′+1

∥∥ and

|vk wj| ≤ ‖vk‖ ‖wj‖ ≤
‖vk‖∥∥vq′+1

∥∥ ∥∥vq′+1
∥∥ λd

(
M′
)
≈ 0 .

At the same time, vk wj ∈ ∗Z, hence vk wj = 0, and

vk z′ = vk z +

d∑
j=1

αjvk wj = vk z ∈ ∗Z ,

regardless of the choice of α1, . . . αd . Moreover, denoting by h : ∗Rn → ∗Rd the
∗R-linear mapping given by h(ξ) = (ξ w1, . . . , ξ wd)> for ξ ∈ ∗Rn , we can conclude
that the vectors v1, . . . , vq′ form a basis of the linear subspace V ∩Ker h ⊆ ∗Rn . Indeed,
as the vectors w1, . . . ,wd are linearly independent, Ker h has dimension n− d and it
equals the direct sum of the orthocomplement V⊥ with dimension n−q′′ and V ∩Ker h.
Then the latter necessarily has dimension (n− d)− (n− q′′) = q′ .

On the other hand, for q′ < k ≤ q′′ , j ≤ d , we still have ‖vk‖ ∼
∥∥vq′+1

∥∥ and

|vk wj| ≤ ‖vk‖ ‖wj‖ ≤
‖vk‖∥∥vq′+1

∥∥ ∥∥vq′+1
∥∥ λd

(
M′
)
<∞ ,

hence each vk wj is a finite integer, and h(vk) ∈ Zd for any k . Since the vectors
v1, . . . , vq′ , vq′+1, . . . , vq′′ are linearly independent over ∗R and the first q′ from
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among them form a basis of V ∩ Kerψ , the vectors h(vq′+1), . . . , h(vq′′) are linearly
independent over ∗R as well. Then the matrix B = (bij) ∈ ∗Rd×d with entries
bij = vq′+i wj ∈ Z satisfies 0 6≈ det B ∈ Z. It follows that B is strongly regular and
B−1 is finite. Thus denoting by ω = (ω1, . . . , ωd)> ∈ F∗Rd the vector with coordinates
ωj = vq′+i z− bvq′+i zc (ie, the fractional parts of the inner products vq′+i z), for i ≤ d ,
the system B η = −ω has a unique solution α = (α1, . . . , αd)> = −B−1 ω ∈ F∗Rd ,
which means that

d∑
j=1

vq′+i wj αj = −ωi

for each i ≤ d . Taking any q′ < k ≤ q′′ and putting i = k − q′ , the following
computation

vk z′ = vk z +
d∑

j=1

αjvq′+i wj = vk z +
d∑

j=1

bijαj

= vq′+i z− ωi = bvq′+i zc ∈ ∗Z

concludes the proof of the claim, hence of the theorem.

Corollary 4.3 Let L ⊆ ∗Rn be an internal lattice. Then:

◦(Ann∗Z L) = AnnZ
(◦L)

In other words, the standard part of the internal integral annihilator Ann∗Z L of L equals
the integral annihilator of the standard part ◦L of L .

Proof The inclusion AnnZ(◦L) ⊆ ◦(Ann∗Z L) is a direct consequence of the last
theorem. Indeed, if x ∈ AnnZ(◦L) then x ◦u ∈ Z for every finite u ∈ L. Then
|x u|Z ≈ 0 for any such u, and by Theorem 4.2 there is y ∈ Ann∗Z(L) such that y ≈ x ,
hence x ∈ ◦(Ann∗Z L).

The reversed inclusion ◦(Ann∗Z L) ⊆ AnnZ(◦L) is easy. It suffices to show that
◦x ∈ AnnZ

(◦L) for each finite x ∈ Ann∗Z(L). Taking any finite u ∈ L, the inner
product u x is finite and belongs to ∗Z, hence

◦u ◦x = ◦(u x) = u x ∈ Z ,

so that ◦x ∈ AnnZ
(◦L) as required.

The following is the nonstandard formulation of the “almost-near” result for dual
lattices.
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Theorem 4.4 Let L ⊆ ∗Rn be an internal lattice. Then for each finite vector
x ∈ ∗span(L), such that |u x|Z ≈ 0 for every finite u ∈ L, there is y ∈ L′ such that
y ≈ x .

Proof Let V = ∗span(L) ⊆ ∗Rn and zV denote the orthogonal projection of any
z ∈ ∗Rn to V . Then ‖zV‖ ≤ ‖z‖ for any z. According to Theorem 4.2, under the above
assumptions there is y ∈ Ann∗Z(L) such that y ≈ x. Then v yV = v y ∈ ∗Z for every
v ∈ L , ie yV ∈ L′ . As xV = x and z 7→ zV is a linear map,

‖x− yV‖ = ‖xV − yV‖ = ‖(x− y)V‖ ≤ ‖x− y‖ ≈ 0 ,

hence yV ≈ x .

The last stability theorem is equivalent to the inclusion
(◦L)′ ⊆ ◦(L′) for internal

lattices L ⊆ ∗Rn . In view of Corollary 4.3 the reader might expect the reversed inclusion
◦(L′) ⊆ (◦L)′ to be satisfied (and even easy to prove). However, as shown by the
following example, this is not true in general.

Example 4.5 Let c ∈ R be positive and d ∈ ∗R be positive and infinite. Consider the
full rank internal lattice

L = c ∗Z× d ∗Z = {(ac, bd)> : a, b ∈ ∗Z}

in ∗R2 . Then, as easily seen, its standard part is a rank 1 lattice ◦L = cZ × {0} in
R2 , while its internal dual is the full rank internal lattice L′ = c−1∗Z× d−1∗Z in ∗R2 .
Then

(◦L)′ = c−1Z × {0} is a rank 1 lattice in R2 while ◦
(
L′
)

= c−1Z × R is not
even a lattice.

5 The “almost-near” theorem for dual lattices
standard formulation

Here we prove Theorem 5.2, which is our main stability result for dual lattices. It is the
standard equivalent of Theorem 4.4. In its proof we will need the following nonstandard
lemma.

Lemma 5.1 Let L ⊆ ∗Rn be an internal lattice and G ⊆ L be any additive subgroup
of L. Further, let δ < 1

3 be a positive real number and x ∈ ∗Rn be a vector such that
|u x|∗Z ≤ δ for every u ∈ G. Then |u x|∗Z ≈ 0 for every u ∈ G.
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Proof As the mapping u 7→ u x is an additive group homomorphism L → ∗R, the
image G x = {u x : u ∈ G} of the subgroup G ⊆ L under this map must be a subgroup
of ∗R. However, as 0 < δ < 1

3 is a (standard) real number, ∗Z + I∗R is the biggest
subgroup of ∗R satisfying the inclusion ∗Z + I∗R ⊆ ∗Z + ∗[−δ, δ].

Recall that B = {x ∈ Rn : ‖x‖ ≤ 1} denotes the (Euclidian) unit ball in Rn .

Theorem 5.2 Let n ≥ 1 be an integer and δ < 1
3 , ε, λ be positive reals. Then there

exists a real number r > 0, depending just on n, δ , ε and λ, such that every lattice
L ⊆ Rn , subject to λ1(L) ≥ λ, satisfies the following condition:

For any x ∈ span(L) such that |u x|Z ≤ δ for all u ∈ L ∩ rB, there is
y ∈ L′ such that ‖x− y‖ ≤ ε.

Proof Assume that the conclusion of the theorem fails for some fixed quadruple of
admissible parameters n, δ , ε, λ. This is to say that for each real number r > 0 there
is a lattice Lr ⊆ Rn , satisfying λ1(Lr) ≥ λ, and xr ∈ span(L) such that |u xr|Z ≤ δ

for every u ∈ Lr ∩ rB, however ‖xr − y‖ > ε for any y ∈ L′ ; ie, (xr + εB) ∩ L′r = ∅.
In particular, this is true for values of r from the set I = {1, 2, 3, . . . } of all positive
integers.

Let D be any nonprincipal ultrafilter on the set I . Form the ultraproduct L =
∏

r∈I Lr
/

D,
the vector x = (xr)r∈I

/
D ∈ L , and the infinite positive hyperinteger ρ = (1, 2, 3, . . . )/D.

Then, by the virtue of the Łos Theorem (Lemma 2.1), L ⊆ ∗Rn is an internal lattice
satisfying λ1(L) ≥ λ. For the same reason we have (i) x ∈ ∗span(L), (ii) |u x|∗Z ≤ δ

for every u ∈ L ∩ ρ ∗B, and (iii) (x + ε ∗B) ∩ L′ = ∅. Because FL = L ∩ F∗Rn is a
subgroup of L and FL ⊆ L ∩ ρ ∗B, Lemma 5.1 together with (ii) imply that |u x|∗Z ≈ 0
for every u ∈ FL .

As a consequence of Lemma 4.1, the covering radius µ = µ
(
L′
)

is a finite positive
hyperreal. (In fact, by Lemma 1.3 and the Łos Theorem, µ ≤ n3/2/(2λ).) Thus there is
z ∈ L′ such that ‖x− z‖ ≤ µ. Then x− z ∈ ∗span(L) and u (x− z)− u x = −u z ∈ ∗Z,
hence |u (x− z)|∗Z = |u x|∗Z for any u ∈ L . At the same time,

(x− z + ε ∗B) ∩ L′ = (x + ε ∗B) ∩ L′ = ∅ .

We can conclude, that x′ = x− z ∈ ∗span(L) is a finite vector satisfying |u x′|∗Z ≈ 0
for every finite u ∈ L, and ‖x′ − y‖ > ε for any y ∈ L′ . This, however, contradicts
Theorem 4.4.
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Final remark Theorems 4.2 and 4.4 are robust in the sense that they do not explicitly
involve any norm on Rn in their formulation. Moreover,

F∗Rn = {x ∈ ∗Rn : ‖x‖ <∞} and I∗Rn = {x ∈ ∗Rn : ‖x‖ ≈ 0}

for any norm ‖x‖ on Rn and not just for the Euclidian one. As a consequence,
Theorem 5.2 remains true even if B denotes any centrally symmetric convex body in
Rn , λ1(L) is replaced by the first Minkowski successive minimum

λ1(C,L) = min{s ∈ R : s > 0, L ∩ s C 6= {0}}

of L with respect to another centrally symmetric convex body C ⊆ Rn , and ‖x‖ is an
arbitrary norm on Rn (possibly without any direct relation either to B or to C).
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[14] K Mahler, Über die Annäherung algebraischer Zahlen durch periodische Algorithmen,
Acta Math. 68 (1937) 109–144
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