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Abstract: It is shown that the extremum value theorem for spaces of two–dimensional
vector–valued functions in an approximate format admits a proof in the sense of
Bishop’s constructive mathematics. The proof is based on an explicit construction
of functions that build an approximation to the original function space.
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1 Introduction

The classical extremum value theorem is stated as follows:

Theorem 1.1 Let f be a continuous function on a compact interval [a, b]. Then, there
exist real numbers x, y ∈ [a, b] such that f (x) = sup f and f (y) = inf f .

This theorem can be generalized to compact metric spaces including function spaces.
Consider, for example, the following optimization problem:

inf
v

J[v] = ϑ (x(t1)) +

t1∫
t0

L (x(t), v(x(t)), t) dt,

such that ẋ(t) = f (x(t), v(x(t)), t) , x(t0) = x0,

(1)

where J is the cost functional, the variable t denotes time, x is called state and an element
of some compact normed space X , also called state space, and function v is called
control law. The function ϑ is called endpoint penalty and L is the Lagrangian, also
called running cost. Such an optimization problem is, for example, addressed in optimal
control. To solve (1) means to find a control law v∗(x) such that J[v∗] = infv J[v]. For
example, in case of robot navigation on a plane, we might look for the optimal ground
speed vector as a function of the robot position.
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2 Pavel Osinenko and Stefan Streif

From the standpoint of constructive mathematics by Bishop, Theorem 1.1 does not hold.
Even though the numbers sup f and inf y may exist constructively, they might not be
attained. This means that there is no way to construct the numbers x and y as in the
statement of Theorem 1.1. In case of (1), the optimal control law may exist classically,
but might not be computable.

In this work, we address this problem and prove the extremum value theorem in an
approximate format constructively.1 As the underlying metric space, we take spaces of
functions from an arbitrarily dimensioned Euclidean space to the plane. The theorem is
stated as follows:

Theorem 1.2 Let F be the space of all uniformly Lipschitz and uniformly bounded
functions from a closed hypercube H̄(b,K) ⊂ Rn to the plane R2 , and let J be a
uniformly continuous functional from F to R. Then, for any k ∈ N, there exists an
f ∗ ∈ F such that J[ f ∗]− 1

k ≤ inf J .

The constructive notions used to prove this theorem are discussed in detail in Section 2.
Relaxing the statement of the theorem and considering approximate extrema can be
justified for practical applications such as planar robot navigation. The key aspect of
the proof of the main result is showing that, under certain conditions, the function space
in question admits a finite approximation.

2 Preliminaries

For the proof of Theorem 1.2, we require certain notions from constructive mathematics
and basic lemmas. For a comprehensive description, the reader may refer to Bishop and
Bridges [3], Bridges and Richman [5], Bridges and Vita [6], Ye [13] and Schwichten-
berg [10]. First, we address the basics and recall briefly the notions of real numbers and
sets in Section 2.1. After that, we discuss Euclidean spaces in Section 2.2. Finally, in
Section 2.3, the constructive notions of functions and functionals are provided.

1A result extending [3, Theorem 5.6] for functions that map to Rn using the Axiom of
Countable Choice was suggested by an anonymous referee. In the current work, the Axiom
of Countable Choice is not required and constructions of approximating functions are done
explicitly
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A constructive version of the extremum value theorem for spaces of vector–valued functions 3

2.1 Basics

Bishop’s constructive mathematics uses the notion of an operation which is an algorithm
that produces a unique result in a finite number of steps for each input in its domain.
For example, a real number x is a regular Cauchy sequence of rational numbers in the
sense that

∀n,m ∈ N.|x(n)− x(m)| ≤ 1
n

+
1
m

where x(n) is an operation that produces the nth rational approximation to x . Notice
that ∀n.|x(n)− x| ≤ 2

n which means that a Cauchy sequence of rationals converges to
the real it represents with 2n being the modulus of convergence. Convergence moduli
for a sum and product of real numbers are easily defined. A Cauchy sequence of reals
is also provided with a modulus of convergence.

A set is a pair of operations: ∈ determines that a given object is a member of the set,
and = determines whenever two given set members are equal. Existence and universal
quantifiers are interpreted as follows: ∃x ∈ A.ϕ[x] means that an operation has been
derived that constructs an instance x along with a proof of x ∈ A, and a proof of the
logical formula ϕ[x] as witnesses; ∀x ∈ A.ϕ[x] means that an operation has been
derived that proves ϕ[x] for any x provided with a witness for x ∈ A. A set A is called
inhabited if there exists an x ∈ A. A finite set is a set that admits a bijection to the set
{1, 2, . . . , n} for some n ∈ N which means that all its elements are enumerable.

2.2 Euclidean space

The Euclidean space Rn is a normed space with the norm ‖x‖ ,
(∑n

i=1 (xi)2) 1
2 where

xi is the ith coordinate of x. The metric is defined as ‖x− y‖ for any x, y ∈ Rn . We
will use the notions of a ball and hypercube in which we focus solely on rational centers,
radii and side lengths. A (rational) closed ball B̄(b,K) in Rn with a radius K ∈ Q,
K > 0 centered at b ∈ Qn is the set {x : x ∈ Rn ∧ ‖x− b‖ ≤ K}. For a (rational)
closed hypercube centered at b ∈ Qn with a side length 2K ∈ Q, K > 0, we will use
the notation H̄(b,K).

A regular mesh on Rn with a step δ ∈ Q is the set of points

{(k1iδ, . . . , kniδ) : ∀j = 1, . . . , n.kji ∈ Z}i .

For example, a regular mesh on R with a step 1 is the set of points

{. . . ,−3,−2,−1, 0, 1, 2, 3, . . . } .
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4 Pavel Osinenko and Stefan Streif

We will also consider regular meshes on closed balls and hypercubes. Due to Lemma
4.1 from Beeson [2, page 8], we can decide whether x = y or x 6= y for arbitrary
algebraic numbers x, y. Notice that a closed ball is given by an expression that contains
a polynomial of several variables and a radical. This allows deciding whether a given
point belongs to the given closed ball (or hypercube) provided that the point possesses
solely rational (or, in general, algebraic) coordinates. Consequently, distances between
closed balls, hypercubes, their unions and boundaries, are algebraic numbers since
their computation involves only finite products, sums and radicals of algebraic numbers.
Further, we may define a regular mesh on a closed ball, respectively hypercube, as a
finite set that is the intersection of the ball, respectively hypercube, with the regular
mesh on the entire Euclidean space. The following lemma helps locate an arbitrary
point in a closed hypercube:

Lemma 2.1 Let P = {pi}i be a regular mesh on a closed hypercube H̄(0,K) ⊂ Rn

with a step δ ≤ K , and x ∈ H̄(0,K). Then, there exists a closed hypercube H̄( pi, δ),
pi ∈ P such that x ∈ H̄( pi, δ).

Proof Since x is a tuple of n real numbers (x1, . . . , xn), we may assume that mth ratio-
nal approximation to x is a tuple of rational numbers x(m) := (x1(n · m), . . . , xn(n · m)).
Indeed, for any m′ ∈ N, ‖x(m) − x(m′)‖ ≤

√
n maxi |xi(n · m) − xi(n · m′)| ≤√

n
( 1

n·m + 1
n·m′

)
≤ 1

m + 1
m′ since |xi(n·m)−xi(n·m′)| ≤ 1

n·m + 1
n·m′ for all i ∈ {1, . . . , n}.

Let m := d 4
δ e, then ‖x(m) − x‖ ≤ δ

2 . Compute all distances ||x(m) − pi||, pi ∈ P.
Since they are algebraic numbers, we can decide whether ||x(m)− pi|| < δ

2 . If this is
the case for some pi , then x ∈ H̄( pi, δ). If there are more than one such balls, we pick
the one with the smallest index. If ||x(m)− pj|| = δ

2 for some indices j = j1, . . . , jL ,
then we pick the smallest such j and conclude that x ∈ B̄( pj, δ).

Remark Constructively, we cannot decide x ≤ 0 ∨ x ≥ 0 for an arbitrary real number
x . Consequently, we cannot decide whether a point in a Euclidean space belongs to a
given set. However, we can compare a real number with a non–trivial interval. In the
lemma above, we generalize this result and use the fact that the hypercubes H̄( pi, δ)
overlap.

Let B̄(0,K) ⊂ Rn be a closed ball centered at the origin, and P = {pi}i be its mesh
with a step δ . Let h denote the side length of closed hypercubes H̄i( pi, h) such that

‖∂B̄(0,K)− ∂ ∪i H̄i( pi, h)‖ =
δ

2
.

Here, ∂ denotes the boundary of a set. We call the algebraic number hδ := min {δ, h}
the characteristic step of the mesh P = {pi}i .
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Clearly, the union of the closed hypercubes H̄i( pi, hδ) contains the closed ball B̄(0,K)
and all closed hypercubes with adjacent centers have non–trivial intersections. The
following shows that an arbitrary point can also be located inside a closed ball and is
thus a direct consequence of Lemma 2.1:

Lemma 2.2 Let P = {pi}i be a regular mesh on a closed ball B̄(0,K) ⊂ Rn with a step
δ . Let hδ denote its characteristic step. Suppose that x is an arbitrary point in B̄(0,K).
Then, there exists a closed ball B̄( pi,

√
nhδ), pi ∈ P such that x ∈ B̄( pi,

√
nhδ).

2.3 Functions and functionals

Let X denote a closed ball or hypercube in Rn . A uniformly continuous (vector–valued)
function from X to a Rm is a pair consisting of an operation x 7→ f (x), x ∈ X and an
operation ω : Q→ Q called modulus of (uniform) continuity such that

∀ε ∈ Q.∀x, y ∈ X.‖x− y‖ ≤ ω(ε) =⇒ ‖ f (x)− f (y)‖ ≤ ε.

Notice that there is no restriction in considering ω and ε as rational numbers since
they are dense in the reals. If there exists a rational number L such that ∀x, y ∈
X.‖ f (x)− f (y)‖ ≤ L‖x− y‖, then the function f is Lipschitz continuous. We denote
the normed space of all uniformly continuous vector–valued functions from X to Rm by
C(X,Rm). The corresponding norm is defined as ‖ f‖ , supx∈X‖ f (x)‖, which exists
constructively since X is a compact set and every f is uniformly continuous. In the
current work, we focus on subsets of C(X,Rm), m = 2 of all Lipschitz–continuous
functions that have a common bound and a common Lipschitz constant. In justifying
this assumption, we may claim that in a concrete application, the physical signals
are limited in magnitude and rate of change. For example, consider the problem of
optimal robot navigation on a plane. The vector of the robot’s speed can be considered
as a function of its position. The maximal magnitude of this vector is the maximal
speed that the robot can achieve. The rate of change of the vector may be limited
by the physical capabilities of the steering mechanisms. In order to evaluate separate
control strategies, we require a performance mark. To this end, we use the notion of a
uniformly continuous functional on some function space F ⊆ C(X,Rm), which is a
pair consisting of an operation f 7→ F[ f ] ∈ R, f ∈ F and a modulus of continuity α
satisfying

∀ε ∈ Q.∀f , g ∈ F .‖ f − g‖ ≤ α(ε) =⇒ |F[ f ]− F[g]| ≤ ε.

Journal of Logic & Analysis 10:4 (2018)
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3 Proof of the main theorem

In this section, we prove Theorem 1.2. Let us recall its statement:

Let F be the space of all uniformly Lipschitz and uniformly bounded functions from
a closed hypercube X ⊂ Rn to the plane R2 , and let J be a uniformly continuous
functional from F to R. Then, for any k ∈ N, there exists an f ∗ ∈ F such that
J[ f ∗]− 1

k ≤ inf J .

Proof The proof is organized into two parts. In the first, and the crucial, part, it is
shown that the function space F is totally bounded. It is done by choosing a regular
mesh on the target plane. It is then shown that any function from the said function space
can be approximated by a piece-wise function which does not violate the Lipschitz
constant. To this end, the Brehm’s extension theorem is used [4]. Provided that the
points in question possess solely rational coordinates, its proof is within the Bishop’s
constructive mathematics. This is verified in the appendix. Finally, to achieve the
required approximation precision, the step of the regular mesh needs to be chosen
with special care. The second part is simpler and shows existence of the approximate
extrema. The details are given below.

Part 1

Let L and K be the uniform Lipschitz constant and uniform bound for F respectively,
and let X0 = {xi}N

i=1 be a finite sequence of unequal points in X . Without loss of
generality, we may assume that all the points (x1, . . . , xN) possess solely rational
coordinates. We want to show that the subset

Θ := {( f (x1), . . . , f (xN)) : f ∈ F}

of R2×N with the metric

‖( f (x1), . . . , f (xN))− (g(x1), . . . , g(xN))‖Θ :=
N∑

i=1

‖ f (xi)− g(xi)‖

is totally bounded in the following sense: for any k ∈ N, there exists a finite set {θi}i
of unequal elements of Θ such that for any θ ∈ Θ, there exists a θj ∈ {θi} such
that ‖θ − θj‖Θ ≤ 1

k . To this end, let P = {pi}i be a regular mesh on the closed ball
B̄(0,K) ⊂ R2 with a step δ and characteristic step hδ . Let f be an arbitrary function in
the space F . Fix an arbitrary l ∈ N. We construct an approximating function ψ : X →
R2 such that ∀x, y ∈ X.‖ψ(x)− ψ(y)‖ ≤ L‖x− y‖ and ∀xi ∈ X0.‖ f (xi)− ψ(xi)‖ ≤ 1

lN .
First, the image of ψ on X0 is constructed inductively. By Lemma 2.2, there exists a
closed ball B̄( pj1 ,

√
2hδ), pj1 ∈ P that contains f (x1). We set ψ(x1) := pj1 . Assume

Journal of Logic & Analysis 10:4 (2018)
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that f (x2) ∈ B̄( pj2 , r1), pj2 ∈ P, r1 :=
√

2hδ . We pick a point p′j2 closest to pj2 such
that

‖pj1 − p′j2‖ ≤ L‖x1 − x2‖

which, by setting ψ(x1) := p′j2 , satisfies the Lipschitz condition for ψ . At this step,
we may take a closed ball B̄( p′j2 , r2) that contains B̄( pj2 , r1), and in turn f (x2), with a
radius r2 that is larger than r1 by a value that depends only on the choice of the initial
mesh step δ . Since the total number of steps is fixed by N , setting δ sufficiently small
ensures that all ψ(X0) are within 1

lN from the respective f (X0) while preserving the
Lipschitz constant. Now, we need to extend ψ to the whole X . First, we may assume
that L = 1 without loss of generality since, otherwise, we can scale the X accordingly.
If n > 2, we project the points of X onto R2 . Denote this projection by π2 . Notice that
π2 has a Lipschitz constant equal to one and, clearly, it projects points with rational
coordinates onto points with rational coordinates. Then, we apply Theorem 4.1 from
Section 4 to extend π2 ◦ ψ onto the entire X . Precomposing the resulting function with
the projection onto the ball B̄(0,K) ensures that it belongs to the space F . If n ≤ 2,
the extension theorem applies directly and no projection onto the two–dimensional
subspace is required. Let us denote the resulting function by ψ .

So far, we showed how to construct an arbitrarily close approximation to f ∈ F .
Since each such an approximating function is uniquely defined by its values at finitely
many points X0 , and since the distances between the approximating function values
at each two points of X0 have fixed bounds, there are finitely many such functions.
Further, since f was arbitrary, it follows that Θ is totally bounded. By the constructive
Arzela–Ascoli’s lemma (Bishop and Bridges [3, page 100]), the function space F is
totally bounded as well. Next, we find an approximate extremum of J .

Part 2

Since F is totally bounded and J is uniformly continuous, inf J exists. Let α be
the continuity modulus of J and F0 = {f1, . . . , fN} be an α( 1

8k )–approximation to F .
Consider all finitely many {J[ fi](8k)} , i = 1, . . . ,N . Let J[ fj](8k) be the smallest one,
and such that j is the smallest index if there are more than one such indices. Observe
that |J[ fj]− J[ fj](8k)| ≤ 1

4k and ∀f ∈ F .‖ fj − f‖ ≤ α( 1
8k ) =⇒ |J( f )− J[ fj]| ≤ 1

4k
whence J[ fj](8k)− 1

2k ≤ J[ f ](8k). Therefore, J[ fj](8k)− 1
2k ≤ J[ f ] and consequently

J[ fj]− 1
k ≤ J[ f ]. The same holds trivially if ‖ fj − f‖ > α( 1

8k ). Since f is arbitrary,
J[ fj]− 1

k is a lower bound of J and so, in particular, inf J ≥ J[ fj]− 1
k .
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4 Conclusion

In the present work, we addressed the extremum value theorem for spaces of two–
dimensional vector–valued functions on Euclidean spaces from the standpoint of
constructive mathematics. By showing that spaces of uniformly Lipschitz and uni-
formly bounded functions from a closed hypercube to a plane are totally bounded,
an approximate extremum of the respective uniformly continuous functional can be
constructed. The theorem proven may be used for purposes of formal verification in
certain applications such as optimal control.

Appendix

We call a point in a Euclidean space Rn algebraic if its coordinates are solely algebraic
numbers.

A (closed) polyhedron is an inhabited set of points of the Euclidean space satisfying
linear inequalities Ax ≤ b,A ∈ Rn×n, b ∈ Rn×1 . If the entries of A and b are solely
algebraic numbers, then the polyhedron is called algebraic. If a polytope is a union of
solely algebraic polyhedrons, then it is algebraic as well. A polyhedron (respectively,
polytope) P is bounded if there exists a rational number x̄ such that ‖x‖ ≤ x̄ for any x
in P. An n–dimensional simplex is a convex hull of n + 1 affinely independent points.
A triangulation of a bounded algebraic n–dimensional polyhedron P is a finite set
{Ti}i of algebraic simplices whose intersections are at most (n− 1)–dimensional and
such that P = ∪iTi . For example, a triangulation of a two–dimensional polyhedron is a
collection of non–degenerate triangles that may have a common vertex or segment of
an edge, but no two–dimensional intersection.

A motion in the plane R2 is a function f that is a composition of a translation, rotation and
reflection. Clearly, it is distance–preserving in the sense that ‖ f (x)−f (y)‖ = ‖x−y‖ for
any x, y. Translation, rotation and reflection can be described as linear transformations
of the form x 7→ Tx where T is the transformation matrix. A motion can be thus
described by a transformation matrix as well. Notice that a motion is always invertible
since the corresponding transformation matrix is regular. A motion is called algebraic
if the corresponding transformation matrix comprises solely of algebraic entries. For
example,

f (x) =

 √1− 9
25

3
5

−3
5

√
1− 9

25

 x

Journal of Logic & Analysis 10:4 (2018)



A constructive version of the extremum value theorem for spaces of vector–valued functions 9

is an algebraic motion and describes the clockwise rotation by the angle arcsin 3
5 . In

contrast, f (x) = x + π is not an algebraic motion. Any three algebraic points forming
a non–degenerate triangle can be moved by an algebraic motion to new algebraic
points preserving the respective distances (Petrunin and Yashinski [8]). An algebraic
piecewise motion f on a bounded algebraic two–dimensional polyhedron P is a pair of
a triangulation {Ti}i of the polyhedron and a collection of algebraic motions {fi}i such
that f |Ti = fi . For example, folding of a piece of paper without ripping can be considered
as an algebraic piecewise motion if foldings are performed at algebraic points. Notice
that each algebraic piecewise motion has a triangulation and a collection of algebraic
motions as witnesses. Clearly, an algebraic piecewise motion is non–expansive in the
sense that ‖ f (x)− f (y)‖ ≤ ‖x− y‖ for any x, y. The notion of an algebraic piecewise
motion can be directly generalized to algebraic polytopes.

Constructively, we do not have the full power of set operations in a Euclidean space. For
example, if A and B are arbitrary sets in Rn , we cannot decide whether A ∩ B = ∅ or
A∩B is inhabited. In the current work, we are not concerned with arbitrary set operations
and limit ourselves to the class of semi-algebraic sets of the form

{
x :
∨N

i=1
∧Mi

j=1 Eij

}
with Eij being a formula of the type Aijx•bij or ‖ fij(x)‖•‖gij(x)‖ where “•” denotes
“<”,“≤” or “=” and fij(x) and gij(x) are algebraic piecewise motions on algebraic
polytopes. Let us denote this class by AS . For example, an algebraic polytope itself
belongs to AS . Further, the set complement of a set A ∈ AS , denoted by Rn\A, is,
again, a set of the class AS (it can be done by transforming the sign “<”,”≤” or ”=”
in the respective formula). Notice that if fij(x) and gij(x) are algebraic motions, each
‖ fij(x)‖ ≤ ‖gij(x)‖ is equivalent to f 2

ij (x) ≤ g2
ij(x) ∧ fij(x) ≥ 0 ∧ gij(x) ≥ 0 which is a

collection of algebraic inequalities. The same applies if fij(x) and gij(x) are algebraic
piecewise motions by considering the inequalities on the simplices where fij(x) and
gij(x) are both algebraic motions. Working solely with sets of the class AS allows us
to perform the ordinary set operations via solving the respective systems of algebraic
equations and inequalities. A similar strategy of working with semi-algebraic sets
was already used in formal verification of control systems by Platzer [9] based on the
quantifier elimination on real closed fields Tarski [11]. Working in AS will be used in
Section 4 to verify that certain vector–valued functions on finite subsets of R2 admit
non–expansive extensions. It is shown that the Brehm’s extension theorem is valid in
the Bishop’s constructive mathematics provided that the points in question are rational.

Extension theorem

For the proof of Theorem 1.2, we require the following result:

Journal of Logic & Analysis 10:4 (2018)



10 Pavel Osinenko and Stefan Streif

Theorem 4.1 Let {ai}n
i=1 , {bi}n

i=1 be finite subsets of points in R2 with rational
coordinates such that ∀i, j.‖bi − bj‖ ≤ ‖ai − aj‖. Let A be the convex hull of {ai}n

i=1
and X be a closed hypercube containing A. Then, there exists a non–expansive function
f : X → R2 such that ∀i.f (ai) = bi .

This theorem was first addressed by Kirszbraun [7] and Valentine [12], and then revisited
by Brehm [4]. A similar proof can be found in Akopyan and Tarasov [1] and Petrunin
and Yashinski [8, page 21]. In our restricted case, we consider only points with rational
coordinates. In the following, we verify that the proof is constructive using the notions
introduced in Section 2.2.

Proof We first construct an algebraic distance–preserving function h on A with the
required properties by induction on the number of the points. If n = 1, we may take
h(x) := x + (b1 − a1) which is clearly an algebraic motion on the entire space. Suppose
that an algebraic piecewise motion g : A→ R2 , such that ∀i = 1, . . . , n− 1.g(ai) = bi ,
was constructed. Define a set Ω := {x : x ∈ A ∧ ‖an − x‖ < ‖bn − g(x)‖}. Since g is
algebraic, we can decide whether bn = g(an) or bn 6= g(an). In the former case, we
take h to be g. In the latter, Ω is inhabited since an ∈ Ω. We show that if x belongs to
Ω, then so does the line segment between an and x . Take a point y in this line segment.
Then

‖an − y‖+ ‖y− x‖ = ‖an − x‖.

Since x ∈ Ω,
‖an − x‖ ≤ ‖bn − g(x)‖.

The function g is an algebraic piecewise motion which implies

‖g(x)− g(y)‖ ≤ ‖x− y‖.

Therefore,

(2)

‖an − y‖ = ‖an − x‖ − ‖y− x‖
< ‖bn − g(x)‖ − ‖g(x)− g(y)‖
≤ ‖bn − g(y)‖

where the last line follows from the triangle inequality ‖g(x)− g(y)‖ ≤ ‖bn − g(y)‖+

‖bn − g(y)‖. Since ‖an − y‖ < ‖bn − g(y)‖, it follows that y ∈ Ω. We now inspect
how the boundary ∂AΩ := ∂Ω ∩ A is constructed. Let {Ti}i be the triangulation of A
such that g on each triangle is a motion gi . Let cn := g−1

i (an). Notice that cn is an
algebraic point. Since gi is a motion and g|Ti = gi , for any x ∈ Ti , we have

(3) ‖cn − x‖ = ‖bn − g(x)‖.

Journal of Logic & Analysis 10:4 (2018)
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Since Ω and Ti belong to AS , we can decide whether the intersection Ω ∩ Ti is
inhabited. Suppose it is inhabited. Consider the line

li := {x : ‖x− an‖ = ‖x− cn‖} .

We have

(4) ∂AΩ ∩ Ti = {x : ‖an − x‖ = ‖bn − g(x)‖ ∧ x ∈ Ti ∧ x ∈ A}

and

(5) li ∩ Ti ∩ A = {x : ‖x− an‖ = ‖x− cn‖ ∧ x ∈ Ti ∧ x ∈ A} .

Matching (4) with (5) using (3), we see that ∂AΩ ∩ Ti is a line segment. Since {Ti}i is
a finite set, ∂AΩ is a finite collection of line segments. Consider a line segment ωi of
∂AΩ. Let τi be the triangle formed by an and ωi . Let hi be an algebraic motion that
maps an to bn and the endpoints of ωi to their respective positions under gi . For x ∈ ωi ,
we have g(x) = gi(x) and so g(x) = hi(x). Let h|τi := hi and h|A\Ω := g. Further, since
∂Ω, ∂AΩ ∈ AS , we can decide whether ∆ := ∂Ω∩ ∂AΩ is inhabited. If this is the case
( for otherwise, we are done), consider the algebraic polytopes Dk, k = 1, . . . ,m formed
by the endpoints of ∆ that lie on ∂Ω∩ A and the line segments from these endpoints to
an . Let λ1 and λ2 denote the said endpoints for some algebraic polytope Dk . Since h
coincides with g on the line segments [an, λ1] and [an, λ2], and, moreover, it acts as
algebraic motions on these line segments, and since g is non–expansive, it follows that:

‖λ1 − an‖ =‖g(λ1)− bn‖
‖λ2 − an‖ =‖g(λ2)− bn‖

‖g(λ1)− g(λ2)‖ ≤‖λ1 − λ2‖

We can construct the required function on Dk as follows. Translate and rotate Dk so
that [an, λ1] coincides with [bn, g(λ1)]. This can be done since the initial and the new
vertices of Dk are algebraic. So far, the line segment [an, λ2] “turned” around bn closer
to [an, λ1]. Draw a line segment from g(λ1) to g(λ2) which is the chord of the circle on
which the point λ2 slid to the new position. Take the middle point of the chord and fold
Dk around the ray going from an to this middle point so that λ2 matches with g(λ2).
The resulting function is thus constructed by translating and rotating the whole Dk and
then reflecting the fragment–to–fold around the said ray which constitutes a piecewise
motion. This motion is clearly algebraic since all the points involved are algebraic. So
far, we constructed an algebraic piecewise motion h : A→ R2 such that ∀i.h(ai) = bi .
To construct a required function f on the whole X , observe that the projection onto
an algebraic polyhedron is non–expansive. In showing this, we use the fact that an
algebraic polyhedron is convex: suppose that x and y are points and r and s are their
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respective projections onto A. Since A is convex, ∀t ∈ [0, 1]. tr + (1− t)s ∈ A whence
‖(1− t)r + ts− x‖ ≥ ‖s− x‖. Differentiating the latter with respect to t yields

0 ≤ d
dt
‖(1− t)r + ts− x‖2

∣∣∣∣
t=0

= 2〈s− r, r − x〉

where 〈•, •〉 denotes the Euclidean inner product. Therefore, 2〈s− r, r − x〉 ≥ 0. The
same holds for 〈r − s, s− y〉. The function γ(t) = ‖(1− t)r + tx− ((1− t)s + ty)‖2

has the derivative with respect to t at zero being equal to 2〈r − s, x− r − y + s〉 which
is non–negative due to the above two inequalities. It follows that γ is an increasing
function and, in particular, γ(1) ≥ γ(0) whence ‖x − y‖ ≥ ‖r − s‖. Therefore, we
complete the construction of f by projecting the points of X onto A.
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