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An Algebraic Weak Factorisation System on 01-Substitution
Sets: A Constructive Proof

ANDREW SWAN

Abstract: We will construct an algebraic weak factorisation system on the category
of 01-substitution sets such that the R-algebras are precisely the Kan fibrations
together with a choice of Kan filling operation. The proof is based on Garner’s
small object argument for algebraic weak factorisation systems. In order to ensure
the proof is valid constructively, rather than applying the general small object
argument, we give a direct proof based on the same ideas. We use the resulting awfs
and the notion of path object to explain why the J -computation rule is absent from
the original cubical set model. We will define an alternative path object, which can
be used to implement the J -computation rule in cubical sets.
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1 Introduction

1.1 Aims

Pitts showed in [12] and [13], following earlier work by Staton, that the category of
cubical sets is equivalent to a category based on nominal sets, called the category of
01-substitution sets, or 01Sub.

We will construct an algebraic weak factorisation system on 01Sub such that the R-
algebras are precisely the Kan fibrations together with a choice of Kan filling operation.
It will be algebraically free in the sense used by Garner in [7]. However rather than
applying the result in [7], we will give a direct construction based on the same ideas.
The construction is also similar to Kan completion, as referred to in Bezem, Coquand
and Huber [3]. This approach has three main advantages.

Firstly, this allows us to ensure that the proof holds in a constructive setting (such as the
set theory CZF), whereas it is not clear whether the proof in [7] is valid constructively.
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2 Andrew Swan

Secondly, it allows us to see explicitly the objects involved in the construction, which
may be useful if one wanted to use the ideas here in computer implementations.

Thirdly, we will see that the proof uses only countable colimits, not requiring the
full cocompleteness of 01Sub. Although 01Sub is cocomplete, this property should
make it easier to apply the proof in other contexts. For example, if one were to define
“01-substitution assemblies” by analogy with Stekelenburg’s recent work on simplicial
assemblies in [16] this may be useful.

We will use the awfs to give an explanation why the J -computation rule is absent
in the original Bezem-Coquand-Huber cubical set model in [3], by showing that a
certain map cannot be proved constructively to be a left map in the awfs. We will show
however, that with a more sophisticated definition one can construct stable path objects
in 01-substitution sets. In a future paper, the author will show how these new path
objects can be understood via Riehl’s notion of algebraic model structure (from [15])
and give a more complete proof that this gives a model of type theory including the
computational rule for identity. These ideas (via an earlier version of this paper and
direct communication with the author), together with some rephrasing and simplification
have already been used by Cohen, Coquand, Huber and Mörtberg to implement identity
types in a new variant of cubical sets (see [6, Section 9.1]).

1.2 Cubical Sets and 01-Substitution Sets

Cubical sets were developed by Bezem, Coquand and Huber in [3] (and described in
more detail in Huber [9]) as a constructive model of homotopy type theory, inspired by
the simplicial set model due to Voevodsky and other homotopical models.

In this paper we will work over this category, 01Sub of 01-substitution sets, using
the notation and definitions of open box and Kan fibration that appear in Pitts [12].
For a good introduction to nominal sets, on which 01-substitution sets are based, see
Pitts [11].

We recall the following definitions from [11]. Let A be a set (which we will refer
to as the set of names). Write Perm(A) for the group of finite permutations (that is,
permutations π such that π(a) = a for all but finitely many a ∈ A). Recall that a
Perm(A)-set is a set X , together with an action of Perm(A) on X (or equivalently a
presheaf over Perm(A) when viewed as a one object category in the usual way).
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Definition 1.1 (Pitts, Gabbay)

(1) Let X be a Perm(A)-set (writing · for the action) and let x ∈ X . We say A ⊆ A
is a support for x if whenever π(a) = a for all a ∈ A, also π · x = x .

(2) Let X be a Perm(A)-set and x ∈ X . We say x is equivariant if π · x = x for all
π ∈ Perm(A), (or equivalently if ∅ is a support for x).

(3) Let X and Y be Perm(A)-sets. A function f : X → Y is equivariant if it is a
morphism in the category of Perm(A) sets, or equivalently if it is equivariant as an
element of the exponential YX in the category of Perm(A) sets, which is described
explicitly as the set of functions X to Y with action given by conjugation.

(4) A nominal set is a Perm(A)-set X , such that for every x ∈ X , there exists a finite
set A ⊆ A such that A is a support for x .

(5) Let X and Y be nominal sets and let x ∈ X and y ∈ Y . We say x is fresh for y
and write x#y if there exist finite sets A,B ⊆ A such that A is a support for x , B
is a support for y and A ∩ B = ∅.

(6) Let X and Y be nominal sets. The separated product, X ∗ Y , of X and Y is the
nominal set with elements (x, y) where x ∈ X , y ∈ Y and x#y (with the action
defined componentwise).

(7) Let X be a nominal set. We define an equivalence relation ∼ on A×X , referred to
as α-equivalence as follows. (a, x) ∼ (a′, x′) if and only there exists a′′ fresh for
a, x, a′, x′ such that (a′′ a) · x = (a′′ a′) · x′ (where (a b) is the finite permutation
swapping a and b and fixing all other names). The quotient A× X/ ∼ can be
viewed in a natural way as a nominal set [A]X , referred to as the name abstraction
on X . We write 〈a〉x for the equivalence class of (a, x).

The lemma below is a variant of standard results in nominal sets as in [11, Chapter
4]. It allows us to easily construct morphisms F : W → Y when W ⊆ [A]X for some
nominal sets X and Y by the following heuristic. We assume we have been given some
finite list of names. We then define F(〈a〉x) when a is fresh for the given names, to get
a partial function on the preimage of W in A× X . This can be done without worrying
whether or not F respects α-equivalence (a priori). We then check that a is fresh for
F(〈a〉x). We then check or note by inspection that F is equivariant modulo the names
we were given (ie the given list of names is a support for F ). We then apply the lemma
to get a well defined morphism, that in particular necessarily respects α-equivalence by
well definedness.

Lemma 1.2 Let Z be a subobject of A× X (ie an equivariant subset) and write Z′ for
the image of Z under the projection A× X → [A]X . Let Y be another nominal set and
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F : Z ⇁ Y a partial function with finite support (under the action given by conjugation)
such that for any a#F , if (a, x) ∈ Z , then F(a, x) ↓ and a#F(a, x). Then F extends
uniquely to a function F̄ : Z′ → Y . Furthermore, F̄ is constructed equivariantly, in the
following sense: for any π ∈ Perm(A), π · F = π · F .

Proof This is a slight generalisation of Pitts [11, Theorem 4.15] and the same proof
works here.

We will also use the following corollary.

Corollary 1.3 Let Z and Z′ be the same as in Lemma 1.2. Let W be another nominal
set, and let F : W × Z ⇁ Y be a partial function with finite support A ⊆ A such that
for any (a, x) ∈ Z and w ∈ W , if a#F and a#w then F(a, x) ↓ and a#F(w, (a, x)). Then
F extends uniquely to a map F̄ : W × Z′ → Y and A is a support for F̄ .

Proof For each w ∈ W , we have a partial function F(w,−) : Z ⇁ Y . Furthermore,
if B is a finite support for w, then A ∪ B is a finite support for F(w,−). Applying
Lemma 1.2 gives us a function F̄w : Z′ → Y . We then define F : W × Z′ → Y by
F̄(w, z) := F̄w(z).

We now recall from [12] and [13] Pitts’ definition of 01-substitution sets and his
translation of the Bezem-Coquand-Huber definitions of open box and Kan fibration.

Definition 1.4 (Pitts) Let X be a nominal set. A 01-substitution operation on X is a
morphism s : X × A× 2→ X in nominal sets, satisfying the following axioms. We
write x(a := i) for s(x, a, i). For any x ∈ X , a, a′ ∈ A and i, i′ ∈ 2,

(1) a # x(a := i)

(2) if a # x , then x(a := i) = x

(3) if a 6= a′ , then x(a := i)(a′ := i′) = x(a′ := i′)(a := i)

We say that a nominal set equipped with a 01-substitution operation is a 01-substitution
set. 01-substitution sets form a category 01Sub, where morphisms are morphisms in
nominal sets that also preserve the 01-substitution operation.

Note that the name abstraction [A]X of a 01-substitution set X can be viewed itself as
a 01-substitution set in a canonical way.

We now give the definitions of open box and Kan fibration.
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Definition 1.5 (Pitts)

(1) Let A be a finite subset of A with a ∈ A and let f : X → Y be a morphism
in 01Sub. A 1-open (A, a)-box relative to f is a pair (u, y) with y ∈ Y and
u : (A × 2) \ {(a, 1)} → X satisfying the following. For all (b, i), (b′, i′) ∈
(A× 2) \ {(a, 1)},

(a) b # u(b, i)

(b) u(b, i)(b′ := i′) = u(b′, i′)(b := i)

(c) f (u(b, i)) = y(b := i)

(2) We also define 0-open (A, a)-box relative to f by simply replacing 1 with 0 in
the above definition.

(3) Let (u, y) be a 1-open (A, a)-box relative to f . A filler for (u, y) is x ∈ X such
that

(a) for all (b, i) ∈ (A× 2) \ {(a, 1)}, x(b := i) = u(b, i)

(b) f (x) = y

(4) We similarly define fillers for 0-open boxes.

(5) Let f : X → Y . A Kan filling operator for 1-open boxes is for each 1-open box
(u, y), a choice of filler, f ↑ (u, y) satisfying the following conditions (which we
refer to as uniformity conditions).

(a) For each finite permutation π , ↑ (π(u, y)) = π(↑ (u, y)).

(b) Whenever (u, y) is a 1-open (A, a)-box with c#A and i ∈ 2, we have
↑ ((u, y)(c := i)) = (↑ (u, y))(c := i).

We will sometimes write f ↑ (u, y) just as ↑ (u, y). If u is a box in direction a,
we will write f +(u, y) to mean (f ↑ (u, y))(a := 1).

(6) We similarly define the notion of Kan filling operator ↓ (u, y) for 0-open boxes
(u, y).

(7) We say f is a Kan fibration (or simply fibration) if it admits both Kan filling
operators.

Remark 1.6 Note that the definition of open box includes the case where A = {a},
and so the “box” only consists of one point x ∈ X and an element of Y . This is an
important special case, and essentially says that any path in Y with endpoint f (x) can
be lifted to a path in X with endpoint x .
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Remark 1.7 Note that as a special case of the uniformity conditions we have that
whenever π is a permutation of a finite set A ⊆ A that fixes a ∈ A and u is a 1-open
(A, a)-box we have that if π · u = u then π(↑ u) =↑ u. Hence the uniformity conditions
provide conditions on each filler individually, not just conditions on how the fillers of
different open boxes relate to each other. In classical logic with the axiom of choice,
the existence of uniform Kan filling operators is equivalent to the existence of fillers
satisfying this “symmetry preserving” condition, which is stronger than just requiring
fillers without the condition.

1.2.1 A Note on Nominal Sets in a Constructive Setting

As in Bezem, Coquand and Huber [3] we require the assumption that the set A of names
has decidable equality. Note in particular that for sets with decidable equality, finite
and finitely enumerable subsets coincide (ie, if a subset of A is the image of a function
from a natural number to A, then it is the image of an injection from a natural number
to A) and these are decidable subsets (ie, if A ⊆ A is finite then every element of A
belongs to A or does not). We also assume that A is infinite in the strong sense that for
every finite A ⊆ A there exists a ∈ A such that a /∈ A.

In Pitts [11] heavy use is made of the existence of least finite support. Constructively
this can’t be guaranteed to exist; the proof of Theorem 6.5 provides an example where
the freshness relation is not decidable and hence we cannot show that every element
has least finite support. In fact the intersection of all finite supports can fail to be finite
and can fail to be a support (see Swan [17]). In practice, however, most of the uses of
least finite support in [11] can be viewed as a “notational device” to make definitions
and statements of theorems more concise, and these can be rephrased to work in a
constructive setting (see the work by Choudhury in [5]).

In some places we will use the notion of nerve of a metric space. For these we will
assume for convenience the axiom of dependent choice. However, aside from those
places and in particular for the main results, no choice will be required.

1.2.2 The Nerve of a Complete Metric Space

To help us give some non trivial examples of objects of 01Sub later, we will use the
notion from homotopical algebra of nerve. This gives a way to construct 01-substitution
sets from topological spaces.
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For this subsection suppose that A = N. Also, for convenience we will assume the
axiom of dependent choice, since it is often implicitly assumed in Bishop style analysis
that we use here.

Note that [0, 1]N has a canonical metric given by the product metric (see Bishop and
Bridges [4, Chapter 4, definition 1.7]), defined as follows for r, r′ ∈ [0, 1]N .

(1) d(r, r′) :=
∑
n∈N

2−n|r(n)− r′(n)|

Let X be a metric space. Then we define an action on uniformly continuous functions
F : [0, 1]N → X as follows. For π ∈ Perm(A) and r ∈ [0, 1]N :

(2) (π · F)(r) := F(r ◦ π)

We then define the nerve of X , N(X) to be the subobject of the Perm(A) set defined
above consisting of elements that have finite support. Note that this is a nominal set by
definition.

Lemma 1.8 Let A be a finite subset of N. Then for F ∈ N(X), A is a support for F if
and only if for every r, r′ ∈ [0, 1]N if r|A = r′|A then F(r) = F(r′).

Proof Assume first that A is a support for F . We need to show that for r, r′ ∈ [0, 1]N

with r|A = r′|A , we have F(r) = F(r′). Note that it suffices to show that for all ε > 0,
d(F(r),F(r′)) < ε (for instance by [4, Chapter 2, Lemma 2.18]).

For any ε > 0, there exists by uniform continuity of F , δ > 0 such that for all
x, y ∈ [0, 1]N if d(x, y) < δ then d(F(x),F(y)) < ε

2 . Let N be such that 2−N < δ and
such that n < N for all n ∈ A. Define B to be {0, . . . ,N} \ A and let {b1, . . . , bk} be
an enumeration of B, with bi 6= bj for i 6= j.

Then define π to be the composition of transpositions

(3) π := (b1 N + 1)(b2 N + 2) . . . (bk N + k)

and define r′′ ∈ [0, 1]N by

(4) r′′(n) :=

{
r(n) n ≤ N or n > N + k

r′(bi) n = N + i for some 1 ≤ i ≤ k

Then note that r and r′′ agree on the set {0, . . . ,N}, so by the definition of the metric on
[0, 1]N we have that d(r, r′′) ≤ 2−N < δ . Similarly, we have d(r′, r′′ ◦ π) ≤ 2−N < δ .
Further, since π fixes A, which is a support for F , we have

F(r′′ ◦ π) = (π · F)(r′′)

= F(r′′)
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Therefore we have

d(F(r),F(r′)) ≤ d(F(r),F(r′′)) + d(F(r′′ ◦ π),F(r′))

<
ε

2
+
ε

2
= ε

as required.

Finally, the converse is easy to show by noting that if π fixes A then r|A = (r ◦ π)|A for
all r ∈ [0, 1]N .

We now define a substitution operation on N(X) as follows. For each F ∈ N(X), a ∈ N
and i ∈ {0, 1}, we first define r(a := i)(b) for r ∈ [0, 1]N and b ∈ N by

(5) r(a := i)(b) :=

{
r(b) b 6= a

i b = a

We then define F(a := i) by

(6) F(a := i)(r) := F(r(a := i))

One can use Lemma 1.8 to show that this satisfies the axioms for 01-substitution set.

Also note that we can use Lemma 1.8 to prove the following lemma, that we will use
later.

Lemma 1.9

(1) For any a ∈ N there is a correspondence between F ∈ N(X) such that {a} is a
support for F and uniformly continuous functions [0, 1]→ X .

(2) Such an F corresponds to a constant function [0, 1] → X if and only if ∅ is a
support for F .

Proposition 1.10 Let X be a complete metric space. Then the unique map N(X)→ 1
is a fibration. (We say that N(X) is fibrant.)

Proof We are given an open box u : A × 2 \ (a, 1) for some finite set A ⊆ N and
a ∈ A and we need to construct a filler in such a way that this can be done uniformly.

For each (b, i) ∈ A× 2, define Xb,i ⊆ [0, 1]A by

(7) Ub,i := {r ∈ [0, 1]A | r(b) = i}
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Note that we can easily view u as a uniformly continuous function

(8) ū :
⋃

(b,i)∈A×2\(a,1)

Ub,i × [0, 1]N\A → X

Note that one can piecewise linearly define a uniformly continuous retraction, τ
from a dense subset D of [0, 1]A to

⋃
(b,i)∈A×2\(a,1) Ub,i . We then define a function

τ ′ : D × [0, 1]N\A →
⋃

(b,i)∈A × 2\(a,1) Ub,i × [0, 1]N\A by “passing through [0, 1]N\A

unchanged.” Then the composition ū ◦ τ ′ is a uniform continuous function from a dense
subset of [0, 1]N to a complete metric space. Under these conditions one can extend
ū ◦ τ to a uniformly continuous function [0, 1]N → X (for example, see Bishop and
Bridges [4, Chapter 4, Lemma 3.7]).

To ensure the uniformity conditions for the Kan filling operator, note that we can construct
piecewise linearly for each finite A ⊆ N and a ∈ A, dense subsets UA ⊆ [0, 1]A and
retractions τA : DA →

⋃
(b,i)∈A×2\(a,1) Ub,i with the following symmetry property. Let

π ∈ Perm(A) and write π̄ for the function [0, 1]πA → [0, 1]A induced by composition.
Then DπA = π̄−1(DA) and τπA = π̄−1◦τA◦π̄ . If we use retractions with these symmetry
conditions in the proof above we ensure the uniformity conditions are satisfied.

Remark 1.11 When we try to define a function on [0, 1]N piecewise linearly, the best
we can do constructively in general is to define the function on a dense subset. This
is why we work with dense subsets of [0, 1]N in the proof of Proposition 1.10, and
why we need the extra assumption of completeness of X . See [10], where Palmgren
discusses a similar issue for a related property called the path joining property. In fact
the path joining property follows from the fibrancy of the nerve of a metric space, so
we cannot show the nerve of {x ∈ [−1, 1] | x ≤ 0 ∨ x ≥ 0} is fibrant constructively.
This is because by [10, Proposition 2.3] the path joining property for that space implies
LLPO, the lesser limited principle of omniscience, which states that for all α : N→ 2,
if α is 1 at most once, then either α(2i) = 0 for all i, or α(2i + 1) = 0 for all i. (Hence
also we cannot show that this space is complete without assuming LLPO).

As in [10], another approach that promises to be better behaved for more general results
is to use formal topologies instead of metric spaces. In this paper all the examples we
use will be complete metric spaces.

1.3 Algebraic Weak Factorisation Systems

Weak factorisation systems are widely used in homotopical algebra, and are defined as
follows.

Journal of Logic & Analysis 8:1 (2016)
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(1) Let C be a category, and let i : U → V and f : X → Y be morphisms in C. We
say i has the left lifting property with respect to f , and f has the right lifting
property with respect to i and write i t f to mean that for every commutative
square of the following form,

(9)

U //

i
��

X

f
��

V // Y

there exists a diagonal map j : V → X making two commutative triangles.

(2) Let M be a class of morphisms. We define the following classes.

Mt := {f | (∃i ∈M) i t f}
tM := {i | (∃f ∈M) i t f}

(3) For classes M and N we write M t N to mean that for all i ∈M and for all
f ∈ N we have i t f .

(4) A weak factorisation system is two classes of maps L and R such that L = tR,
R = Lt and every morphism in C factors as a morphism in L followed by a
morphism in R.

Algebraic weak factorisation systems (awfs’s), originally called natural weak factorisa-
tion systems, are a variation developed by Grandis and Tholen in [8]. Garner showed
in [7] that a form of the small object argument can be used to construct awfs’s from
a diagram of left maps. However, the proof uses transfinite arguments that may be
problematic constructively. Riehl used awfs’s in [15] as the main ingredient in the theory
of algebraic model structures; the same paper contains a comprehensive introduction to
awfs’s.

We recall the definition of awfs below. We write 2 and 3 for the categories given by
linear orderings with 2 elements and 3 elements respectively.

Definition 1.12 Let C be a category. Note that there is a canonical functor C3 → C2

given by composition. A functorial factorisation on C is a functor C2 → C3 that is a
section of the composition functor.

Throughout this paper we will write out functorial factorisations as three separate
components: a functor K : C2 → C together with maps λf and ρf for each morphism

Journal of Logic & Analysis 8:1 (2016)
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f : X → Y in C, as in the diagram below:

(10)

X
f //

λf   

Y

Kf
ρf

??

For each functorial factorisation we may define a copointed endofunctor L : C2 → C2 ,
whose action on objects is given by sending f to λf , and a pointed endofunctor
R : C2 → C2 , whose action on objects is given by sending f to ρf . For full details see
Grandis and Tholen [8], Garner [7] or Riehl [15].

Definition 1.13 (Grandis, Tholen) Let C be a category. An algebraic weak factori-
sation system on C consists of a functorial factorisation K, λ, ρ, together with natural
transformations Σ : L → L2 and Π : R2 → R such that L together with Σ form a
comonad, L (with Σ the comultiplication map), and Π together with R form a monad
R.

Note in particular that the multiplication on R gives us an R-algebra structure on ρf for
any f (as is the case for any monad), and dually comultiplication gives λf the structure
of an L-coalgebra for every f .

2 Construction of Functorial Factorisation

2.1 Construction of Factorisation

We now define the awfs on 01Sub. The basic idea is the same as Garner’s small object
argument, as in [7], but is somewhat simpler here than in general. This can also be seen
as a generalisation of Kan completion, as defined by Huber in [9, Section 3.5].

We first define the functor K : 01Sub2 → 01Sub that will provide the objects of the
functorial factorisation 01Sub2 → 01Sub3 . The basic intuition here is that we know
the map ρ : Kf → Y should be a Kan fibration. Hence we freely add fillers for open
boxes to Kf to ensure this is the case. We use the set of open boxes itself to do this,
with the idea that each open box is its own filler. In order for Kf to be an object in
01Sub we need to ensure that if (u, y) is a 1-open (A, a)-box that has been added to Kf ,
then the substitution (u, y)(a := 1) is well defined. For this, we add another component
K+f which is a subset of [A]Kf , corresponding to what Bezem, Coquand and Huber
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refer to as Kan composition in [3]. The remaining substitutions are already determined
by the conditions on Kan filler operations, including the uniformity conditions so we
don’t need to add anything more regarding 1 open boxes. We then do the same thing
for 0-open boxes and iterate ω times.

Fix f : X → Y . We will define Kf in ω stages. For each n ∈ ω , we will de-
fine inductively Knf ∈ 01Sub. We will simultaneously define ρn : Knf → Y and
λn : Knf → Kn+1f . We will also ensure that ρn+1 ◦ λn = ρn .

If we have already defined Kmf for m < n then we define colimm<n Kmf to be the
colimit over Kmf for m < n together with the maps λm . We now define Knf , assuming
that Kmf has already been defined for m < n. We first define nominal sets K↑n f , K+

n f ,
K↓n f and K−n f .

(1) Define K↑n f to be pairs (u, y) where u is a 1-open box in colimm<n Kmf over y.
The action of permutations on K↑n f is defined componentwise.

(2) Define K+
n f to be the subset of [A]K↑n f consisting of 〈a〉(u, y) where u is a 1-open

A, a-box in colimm<n Kmf over y. More formally, we define an equivariant subset
of A×K↑n f as the set of pairs (a, (u, y)) where u is an A, a-box for some finite A
with a ∈ A, and then define K+

n f to be image of this subset under the projection
A× K↑n f → [A]K↑n f .

(3) Define K↓n f analogously to K↑n f but for 0-open boxes.

(4) Define K−n f analogously to K+
n f but for 0-open boxes.

We now define Knf to be coproduct X q K↑n f q K+
n f q K↓n f q K−n f in nominal sets.

Since we have not defined a substitution structure on the individual components, it
would not make sense to use the coproduct in 01Sub. We will show below how to
define a substitution structure on Knf .

Note that there is a natural injection of K↑n−1f into K↑n f , and similarly for the other
components of the disjoint union. Hence we can define λn−1 componentwise. We also
define ρn componentwise, as follows.

(1) If x ∈ X , we define ρn(x) = f (x).

(2) If (u, y) ∈ K↑n f is a 1-open A, a-box, we define ρn(u, y) = y.

(3) If 〈a〉(u, y) ∈ K+
n f , we define ρn(〈a〉(u, y)) := y(a := 1). Formally, to show this

is well defined, first use the above description to get a partial function on pairs
(a, (u, y)) where (u, y) is a 1-open A, a box and apply Lemma 1.2. Note that a is
fresh for y(a := 1) by the axioms for 01-substitution sets.
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(4) For K↓n f , we define ρ analogously to K↑n f .

(5) For K−n f , we define ρ analogously to K+
n f .

Since Knf was defined as a coproduct in nominal sets, we already have an action of
Perm(A) on Knf (which is just defined componentwise), but we still need to define the
action of substitutions. If x is in the “copy” of X in Knf , then define x(a := i) to be
the same as in X itself. If (u, y) is an element of K↑n f , with u an A, a box then define
(u, y)(a′ := i) by cases. In the below, we write λm<n to mean the natural injection of
colimm<n Kmf into Knf .

(u, y)(a′ := i) :=


λm<n(u(a′, i)) if (a′, i) ∈ A× 2 \ (a, 1)

〈a〉(u, y) ∈ K+
n f if a′ = a and i = 1

(u(a′ := i), y(a′ := i)) ∈ K↑n f otherwise

Substitution for K↓n f is defined similarly.

If 〈a〉(u, y) is an element of K+
n f , with u a 1-open A, a-box, then we define

〈a〉(u, y)(a′ := i) as follows. Note that by applying corollary 1.3 we may assume
without loss of generality that a′ 6= a.

〈a〉(u, y)(a′ := i) :=

{
λm<n(u(a′, i)(a := 1)) if a′ ∈ A

〈a〉(u(a′ := i), y(a′ := i)) otherwise

To check that we do satisfy the conditions of corollary 1.3, we note that in both cases a
is fresh for 〈a〉(u, y)(a′ := i). Substitution for K−n f is defined similarly.

To show that Knf is a 01-substitution set, we need to check the axioms for 01-substitution
operation listed in definition 1.4.

These can be checked by induction on n, splitting into cases depending on which disjoint
component of Knf x lies in. For axioms 1 and 3 in the definition of 01-substitution
operation it is necessary to use the freshness and adjacency conditions respectively in
the definition of open box.

We now define Kf to be the colimit over all Knf (together with the injections λn ). We
also have an obvious morphism λf : X → Kf given by inclusion X into K0f , and a
morphism ρf : Kf → Y using the ρn .

2.2 Rank is Well Defined

Note that for every n there is a canonical map λn<ω : Knf → Kf . In the following
lemma we show that for every x ∈ Kf there is a least n such that x appears in the image
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of such a map. Note that constructively, we cannot simply appeal to the well ordering
of ω .

Lemma 2.1 For every x ∈ Kf , there is a least n such that there is x′ ∈ Knf such that
λn<ω(x′) = x . Furthermore, x′ is uniquely determined.

Proof First note that since decidable inhabited subsets of ω always have least elements,
it suffices to show that for each x ∈ Kmf and for any n either there exists x′ ∈ Knf such
that λn<ω(x′) = λm<ω(x) or there does not, and that x′ is unique if it exists.

We now show the statement above by induction on m. Note that we may assume without
loss of generality that n < m.

Now given x ∈ Kmf , note that x must belong to one of the five components in the
disjoint union forming Kmf .

If x ∈ X , then for all n there exists a suitable x′ .

Now suppose that x is of the form (u, y) where u is a 1-open A, a-box. For every
(a′, i) ∈ A× 2 \ (a, 1), we have that u(a′, i) ∈ colimm′<m Km′ f . Hence we know by the
induction hypothesis that for each (a′, i) ∈ A× 2 \ (a, 1), u(a′, i) either belongs to Kn′ f
for some n′ < n or does not. Since A× 2 \ (a, 1) is finite, we deduce that the statement
that u(a′, i) belongs to the image of colimn′<n Kn′ f for every (a′, i) ∈ A × 2 \ (a, 1)
is either true or false. However, we will show that the statement is true precisely
when there exists x′ ∈ Knf such that λn<ω(x′) = λm<ω(x). Suppose that every u(a′, i)
does belong to the image of colimn′<n Kn′ f , say z′a′,i ∈ colimn′<n Kn′ f . Then we
can define u′ by u′(a′, i) := z′a′,i , which satisfies the adjacency conditions using the
injectivity of the λi giving us an open box in colimn′<n Kn′ f and so (u′, y) ∈ Knf . For
each (a′, i), the image of u′(a′, i) in colimm′<m Km′ f is equal to u(a′, i), so we get
λn<ω((u′, y)) = λm<ω((u, y)). For the converse, note that if there exists x′ ∈ Knf such
that λn<ω(x′) = λm<ω((u, y)), then x′ has to be of the same form (u′, y), since each
λi maps each component in the disjoint union making up Kif into the corresponding
component of Ki+1f . It easily follows that that u(a′, i) belongs to the image of
colimn′<n Kn′ f for every (a′, i) ∈ A× 2 \ (a, 1).

If x belongs to one of the remaining 3 components, then the proof is similar to that of
K↑n f .

Finally uniqueness is clear again using the injectivity of the λi .

Definition 2.2 Given x ∈ Kf , we refer to the n in Lemma 2.1 as the rank of x .
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Remark 2.3 We will see later that the fact that rank is a well defined natural number
implies that all left maps have decidable image (Lemma 6.4). Constructively, this is not
the case in general for cofibrantly generated awfs’s.

2.3 Functoriality of K

In section 2.1 we defined K on the objects of 01Sub2 . We now complete the construction
of the functor by defining the action of K on the morphisms of 01Sub2 .

Given f : X → Y and g : U → V objects of 01Sub2 , recall that a morphism from f to
g is a commutative square

X h //

f
��

U

g
��

Y
k
// V

We also need to check that the following diagram commutes (in order to ensure that the
overall factorisation 01Sub2 → 01Sub3 is a functor).

(11)

X h //

λf
��

U

λg

��
Kf

K(h,k) //

ρf

��

Kg

ρg

��
Y k // V

We will simultaneously check this while defining K(h, k). One can also check at the
same time that K(h, k) is equivariant and preserves substitution, ie that it actually is a
morphism in 01Sub.

We define K(h, k) : Kf → Kg by induction on rank. If x ∈ Kf has rank 0, then it is an
element of X . We define K(h, k)(x) to be h(x). Note that this precisely ensures that the
upper square of (11) commutes.

If x is of the form (u, y) where u is a 1-open A, a-box, then note that for each
(a′, i) ∈ A × 2 \ (a, 1) we have that u(a′, i) is of strictly lower rank than x, and so
we may assume that K(h, k)(u(a′, i)) has already been defined. Note that we have a
1-open A, a-box given by K(h, k) ◦ u. Furthermore, note that by applying the lower
square of (11) to each u(a′, i) we have that K(h, k) ◦ u is an open box over k(y).
Hence (K(h, k) ◦ u, k(y)) is an element of Kg, and so we can take K(h, k)(x) to be

Journal of Logic & Analysis 8:1 (2016)



16 Andrew Swan

(K(h, k)◦u, k(y)). Note that we can now see that the lower square of (11) holds “locally”
at x .

Given 〈a〉(u, y) ∈ K+f , we define K(h, k) to be 〈a〉(K(h, k) ◦ u, k(y)), noting that we
can use Lemma 1.2 to ensure we get a well defined function.

We can similarly define K(h, k) on elements of K↓f and K−f .

Finally note that one can easily show by induction that K preserves composition and
identities.

3 Monad and Comonad Structure

3.1 L is a Comonad

We define the comonad L as follows. We need to define a comultiplication morphism
Σ : L→ L2 . Given a morphism f : X → Y , recall that Lf = λf : X → Kf . This means
that L2f is the morphism λλf : X → Kλf . We will define σf such that Σf will be the
commutative square below.

(12)

X

λf

��

X

λλf
��

Kf σf
// Kλf

We inductively define σf : Kf → Kλf , by taking it to be the identity on X (note that
this implies that (12) is commutative). Then given an element, (u, y) of K↑n f , send it to
(σf ◦ u, (u, y)) in Kλ. Given an element 〈a〉(u, y) of K+f , send it to 〈a〉(σf ◦ u, (u, y))
(which is well defined by Lemma 1.2), and similarly for the remaining components of
Knf ). Checking that L is indeed a comonad amounts to checking the following three
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diagrams commute:

Kf Kλf

ρλfoo

Kf

σf

OO
(13)

Kf Kλf
KΦfoo

Kf

σf

OO
(14)

Kλλf Kλf
KΣfoo

Kλf

σλf

OO

Kf

σf

OO

σf
oo

(15)

All three can be verified by induction on rank. To illustrate, we check the comultiplication
law, (15) below. The case when we are given an element of X is clear, so it remains to
check the cases where we are given an element of the form (u, y) or 〈a〉(u, y). We will
just verify the case (u, y); the other case is similar.

KΣf ◦ σf (u, y) = KΣf (σf ◦ u, (u, y))

= (KΣf ◦ σf ◦ u, σf (u, y))

= (KΣf ◦ σf ◦ u, (σf ◦ u, (u, y)))

σλf ◦ σf (u, y) = σλf (σf ◦ u, (u, y))

= (σλf ◦ σf ◦ u, (σf ◦ u, (u, y)))

= (KΣf ◦ σf ◦ u, (σf ◦ u, (u, y))) by induction on rank

= KΣf ◦ σf (u, y)

3.2 R is a Monad

To define the monad R, we need to define a multiplication map Π : R2 → R. Given
f : X → Y , Rf is of the form ρf : Kf → Y , and so R2f is of the form ρρf : Kρf → Y .
We will define πf so that Πf is the commutative diagram below.

(16)
Kρf

πf //

ρρf

��

Kf

ρf

��
Y Y
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We define πf inductively. If x ∈ Kρ is already an element of Kf , then we can take πf x
to be x. If x ∈ Kρf is of the form (u, y), then note that πf ◦ u is an open box over y,
and so we can take πf x to be (πf ◦ u, y). To check that this is a monad, we need to
verify the commutativity of the following diagrams.

Kf
λρf // Kρf

πf

��
Kf

Kf
KΛf // Kρf

πf

��
Kf

Kρρf

KΠf //

πρf

��

Kρf

πf

��
Kρf πf

// Kf

As before, each diagram can be checked by induction on rank.

4 Kan Fibrations

Every algebraic weak factorisation system gives rise to a weak factorisation system
(L̄, R̄) where L̄ and R̄ are the retract closures of L-maps and R-maps respectively
(the fact that this is indeed a weak factorisation system follows from standard results
in homotopical algebra). In fact L̄ and R̄ can also be characterised as the class of
maps that admit L-coalgebra and R-algebra structures when L and R are viewed as a
copointed and pointed endofunctor respectively, that is, when only the counit and unit
law are required and not the comultiplication and multiplication law (see Riehl [15,
Lemma 2.8]). We will check that for the awfs of this paper R̄ = R and show that this
class is precisely the class of Kan fibrations in the sense of Pitts [12], and in fact R
algebra structures correspond exactly to Kan filling operations.

Lemma 4.1 Suppose that f : X → Y is a map in 01Sub and that we are given an
algebra structure for f over R regarded as a pointed endofunctor (that is, we only require
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the unit law and not the multiplication law for algebras). Then we can produce Kan
filling operators f ↑ and f ↓ for f in a canonical way.

Proof A pointed endofunctor algebra structure for f is precisely a map g satisfying
the following commutative diagrams.

Kf

ρf

��

g // X

f
��

Y Y

X
λf // Kf

g
��

X

Let (u, y) be an open box in X over y in Y . Note that we can regard (u, y) as an element
of Kf . Define f ↑ (u, y) to be g((u, y)). One can easily check that this is a filler for (u, y)
and that f ↑ respects the uniformity conditions by applying the above two diagrams
and the fact that g preserves permutations and substitutions (since it is a morphism in
01Sub). Similarly for f ↓.

Lemma 4.2 Suppose that we are given f : X → Y and uniform Kan filling operations
f ↑ and f ↓ for f . We can produce an R-algebra structure on f in a canonical way.

Proof Define g : Kf → X by induction. For k a rank 0 element of Kf , take g(x) to be
x. For (u, y) in K↑f , note that we may assume by induction that g ◦ u is defined and
that it is an open box over y in X . Define g((u, y)) to be f ↑ (g ◦ u, y). Note that this
is a morphism in 01Sub (ie preserves permutations and substitutions) by applying the
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uniformity conditions. We need to check that the following diagrams commute.

X
λf // Kf

g
��

X

Kf

ρf

��

g // X

f
��

Y Y

Kρf
πf //

K(g,1)
��

Kf

g
��

Kf g
// X

The first follows easily from the definition of g, and the remaining two can be shown by
induction on rank.

Theorem 4.3 For f : X → Y , R-algebra structures on f are in precise correspondence
to pairs f ↑ and f ↓ of Kan filling operators.

Proof Observe that the construction in the proof of Lemma 4.2 is a left inverse to the
construction in the proof of lemma 4.1, and is also a right inverse when restricted to
(monad) R-algebra structures.

Theorem 4.4 Let f : X → Y be a morphism in 01Sub. Then the following are
equivalent.

(1) f is an element of R̄
(2) f admits a pointed endofunctor R-algebra structure

(3) f is a Kan fibration

(4) f admits a (monad) R-algebra structure

Proof For (1) ⇒ (2), this follows easily from the fact that (L̄, R̄) is a wfs and in
particular that L t R̄. (See Riehl [15, Lemma 2.8])

For (2)⇒ (3), apply Lemma 4.1.

For (3)⇒ (4), apply Lemma 4.2.

Finally note that (4)⇒ (1) is trivial.
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Remark 4.5 The implication (2) ⇒ (4) in Theorem 4.4 is to be expected, since it
holds in general for awfs’s generated with Garner’s version of the small object argument
(see [15, Lemma 2.30]).

5 The Generating Left Maps

In [7], Garner shows how to define an awfs from a generating diagram of L-maps.
The resulting awfs is algebraically free over the diagram. Since the construction here
is a constructive variant of Garner’s argument the same should be true here. In this
section we define a diagram based on box inclusions and check that indeed the awfs is
algebraically free over the diagram.

5.1 Definition of the Diagram

We now define the diagram of generating L-maps. This is based on open box inclusions
for cubical sets (as described by Huber in [9, Remark 3.9]) translated into 01-substitution
sets.

Let J be the category defined as follows. The objects of J are 4-tuples (i,A, a,B),
where i ∈ 2, A and B are finite subsets of A and a ∈ A. A morphism (i,A, a,B)→
(i′,A′, a′,B′) is a pair (f , g) such that i = i′ , f : A′ → A is a bijection with f (a′) = a
and g : B′ → B is a morphism in the category of names and substitutions, ie a function
B′ → Bq 2 which is “injective where defined.” (Note that f and g are in the opposite
direction to (f , g)).

Definition 5.1 Given a function f : A→ Aq 2, say f is injective where defined if the
function f |f−1(A) is an injection.

Definition 5.2 Given A a finite subset of A, define the standard A-cube, �A , to be
the set of functions A → A q 2 that are injective where defined. We make �A a
01-substitution set by defining

(π.f )(a) :=

{
π(f (a)) f (a) ∈ A
f (a) f (a) ∈ 2

and

(17) (f (a′ := i))(a) :=


f (a) f (a) ∈ 2

f (a) f (a) ∈ A and f (a) 6= a′

i f (a) = a′
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Note that this gives a functor from the opposite of the category of names and substitutions
to 01Sub. Given f : B→ A, define �f : �A → �B by sending g ∈ �A to g ◦ f . (This
corresponds to the functor to cubical sets given by the Yoneda embedding)

Definition 5.3 Given A a finite subset of A and a ∈ A, define the standard 1-open
A, a-box, tA,a in 01Sub to be the subset of �A consisting of f such that for some
(a′, i) ∈ A× 2 \ {(a, 1)}, f (a′) = i. Note that this is a subobject of �A by inclusion, in
01Sub.

The standard 0-open A, a-box, uA,a , is defined analogously.

Note that the morphism �f : �A → �B given above restricts to a morphism tA,a →
tB,b if f (b) = a.

We define a functor J : J → 01Sub2 as follows. On an object (i,A, a,B), define
J(i,A, a,B) to be the map from tA,a ∗�B to �A ∗�B defined by taking the product of
the inclusion tA,a ↪→ �A with the identity on �B .

Given a morphism (f , g) : (i,A, a,B)→ (i,A′, a′,B′), define J(f , g) componentwise by
composing f and g with elements of �A and �B respectively.

5.2 Algebraic Freeness

We will show that the awfs is algebraically free on J . This means we need to find
η : J → L-Map over 01Sub2 such that the following is an isomorphism of categories
(see Garner [7, Definition 3.9]).

(18) R-Map lift−→ L-Mapt ηt−→ J t

We require that η(i,A, a,B) is an L-coalgebra structure on J(i,A, a,B). We just show
the case for 1-open boxes. The case for 0-open boxes is similar. We now fix (1,A, a,B)
and refer to J(1,A, a,B) as ι. To find η(1,A, a,B) we need to find h : �A ∗�B → Kι
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satisfying the following commutative diagrams.

tA,a ∗�B

ι

��

tA,a ∗�B

λι
��

�A ∗�B
h // Kι

(19)

�A ∗�B
h // Kι

ρι
��

�A ∗�B

(20)

�A ∗�B
h //

h
��

Kι

K(1,h)
��

Kι
σι // Kλι

(21)

If (f , g) ∈ �A ∗�B is already an element of tA,a ∗�B , then define h(f , g) to be (f , g).
Note that this precisely ensures that (19) commutes.

If f is defined everywhere on A, then let u be the 1-open f (A), f (a)-box defined for
a′′ ∈ f (A) by

(22) u(a′′, i) := f (a′′ := i)

We then define

(23) h(f , g) := (u, (f , g))

If f is defined everywhere on A \ a and f (a) = 1, then let b be a fresh variable, define
f ′ as follows

(24) f ′(a′) :=

{
f (a′) a′ ∈ A \ a

b a′ = a

Then define u′ as for u in (22), but with f ′ in place of f , and we can now define
h(f , g) ∈ K+ι to be

(25) h(f , g) := 〈b〉(u′, (f ′, g))

This completes the definition of η(1,A, a,B) = h. The commutativity of (20) is clear
by definition and we check (21) as follows. Since the image of u in (22) is a subset of
the X component of Kι, we have σι ◦ u = u. Hence we deduce:

σι ◦ h(f , g) = (σι ◦ u, h(f , g))

= (u, h(f , g))

= K(1, h)(u, (f , g))
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The case for 0-open boxes is similar. We now show that (18) is an isomorphism by
exhibiting an inverse.

The elements of J t are of the form (g, φ) where g : X → Y is a morphism in 01Sub

and φ is lifting data for g against J . We will use φ to define Kan filling operators on g
and apply Lemma 4.1 to get an R-algebra structure on g.

Let (u, y) be an open box in X over y in Y . Let u be a 1-open A, a-box, and let C
be a finite support for u. Let B := C \ A, and note that B is a finite set. For any
(a′, i) ∈ A× 2 \ (1, a), we can define (a′, i) ∈ tA,a by

(a′, i)(a′′) :=

{
i a′′ = a′

a′′ a′′ 6= a′

Now note that there is a unique morphism ũ : tA,a → X such that for each (a′, i) ∈
A × 2 \ (a, 1), ũ((a′, i)) = u(a′, i). Also note that there is a unique morphism
ỹ : �A ∗ �B → Y such that ỹ(1A, 1B) = y. (Both of these results can be viewed as
translating the Yoneda lemma from cubical sets to 01-substitution sets). These maps
together make a commutative square:

tA,a ∗�B
ũ //

� _

��

X

g
��

�A ∗�B
ỹ // Y

Then, applying the lifting data φ yields a diagonal filler j : �A ∗ �B → X . One can
check that j(1A, 1B) is a filler for (u, y).

To show that this gives a Kan filling operation, we first need to check that it is well
defined. So let C′ be another finite support for u. Since the intersection of two
finite supports is also a finite support, we may assume without loss of generality that
C′ ⊆ C . Hence also B′ ⊆ B and the inclusion i : B′ ↪→ B induces a morphism
(1,A, a,B) → (1,A, a,B′) in J . Applying the coherence condition for φ to i, then
shows that the fillers we get using B and using B′ are equal.

Similar arguments show that the filling operation we get satisfies the uniformity
conditions.

Exactly the same argument allows us to construct a filling operator for 0-open boxes.
Applying Lemma 4.1 then gives us an R-algebra structure on g.

Finally, one can check that this is in fact an inverse to the map (18).
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Remark 5.4 We can use this characterisation to verify that for any map f in the
category of cubical sets, the fibration structures on f correspond precisely to the
fibration structures on the image of f in 01Sub under Pitts’ equivalence in [13]. This is
because Huber gave in [9, Remark 3.9] a characterisation of fibrations that can be easily
seen as showing the fibrations are algebraically cofibrantly generated. Since it can be
easily checked that the generating diagram in this section is (naturally isomorphic to)
the image of the generating diagram of left maps in [9, Remark 3.9], we deduce that the
resulting fibration structures are also the same (up to isomorphism).

6 Path Objects

As shown by Awodey and Warren in [1], identity types in type theory can be implemented
using path objects, which are defined as follows.

Definition 6.1 Let (L,R) be a wfs and let f : X → Y be a map in R. A path object
on f is a factorisation of the the diagonal map ∆ : X → X×Y X as a map in L followed
by a map in R.

Note that we can trivially generate path objects using the awfs structure itself. For any
fibration f : X → Y , if ∆ : X → X ×Y X is the diagonal map, then K∆ is a path object.
However, in order to implement identity types it is necessary for the path objects to be
stable under pullback (see the statement of [1, Theorem 3.1]).

This is not the case for path objects generated using the awfs, as we prove below. This
is often the case for awfs’s, as remarked by van den Berg and Garner in [2, Remark
3.3.4]. The basic idea in this case is that given a continuous function f : X → Y , for
each point x ∈ X and each path p in Y with p(0) = f (x), we freely added a path p̃ in
X over p with p̃(0) = x. However, our construction also adds the other endpoint of
p̃, p̃(1). In our definition of the awfs, this can be seen explicitly as elements of the
K+f component (and similarly the K− component). The added endpoint p̃(1) contains
“data” about the whole path p, but lies entirely in the fibre of p(1). Hence the pullback
along the map 1→ Y given by p(1) does not preserve the awfs.

Theorem 6.2 There are fibrant objects X , Y and Z , a fibration f : X → Y and a map
g : Z → Y such that, writing g∗(f ) for the pullback of f along g, there is no map
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K∆g∗(f ) → K∆f making the following diagram a pullback.

(26)

K∆g∗(f ) //

ρ∆g∗(f )

��

K∆f

ρ∆f

��
g∗(X)×Z g∗(X) // X ×Y X

Proof Let X = Y = N([0, 1]) (in fact any non trivial complete metric space will do),
let f be the identity on N([0, 1]), and let Z := 1 and g := λx.0.

In particular, we have X ×Y X = X ×X X ∼= X and g∗(X) ×Z g∗(X) ∼= 1, so by
functoriality of K , it suffices to show that K11 (by 11 we mean the identity on the
terminal object) is not isomorphic to 1×X K1X .

1 ×X K1X contains an uncountable subset U , consisting of elements of the form
(∗, 〈a〉(u, y)) where ∗ is the only element of 1, a ∈ A, u is a 1-open ({a}, a)-box
and y ∈ N([0, 1]) is such that y(a := 0) = u(a, 0) and y(a := 1) = 0. To show
(∗, 〈a〉(u, y)) belongs to 1×X K1X , we need that ρf (〈a〉(u, y)) = 0, but this is the case
because ρf (〈a〉(u, y)) = y(a := 1) = 0. Also note that in general, for any nominal sets,
if 〈a〉x = 〈a〉x′ then x = x′ .

However K11 is countable, since it is a countable union of countable sets.

(For this argument to work constructively, note that U is an inhabited decidable subset
of 1×X K1X and such subsets of countable sets are countable. Furthermore, one can
find explicit enumerations of Kn11 and thereby also an explicit enumeration of K11 .
Then, assuming countable choice, we can use Cantor’s diagonal argument to show U is
uncountable.)

6.1 Name Abstraction

The cubical sets used in Bezem, Coquand and Huber [3] to implement identity types
correspond in 01-substitution sets to name abstraction.

Definition 6.3 Given f : X → Y , define the name abstraction over f , [A]f X as
follows:

(27) [A]f X := {〈a〉x ∈ [A]X | a#f (x)}

One can adapt the proof in [3] that identity types are Kan fibrations to show that the
projection map [A]f X → X ×Y X is an R-map.
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In order to show that [A]f X is a path object on X over f , it remains only to show that
the reflexivity map r : X → [A]f X has the left lifting property with respect to every
R-map. (r(x) is defined to be Fresh a in 〈a〉x .)

We will see later (Corollary 6.14) that assuming classical logic this is a path object.
However, we show now that this cannot be done constructively. In particular, we will
show that one cannot show constructively that r : X → [A]f X is always a left map.

Lemma 6.4 Suppose that i : U → V has the left lifting property with respect to every
R-map. Then i has decidable image. (That is, every element of V either lies in the
image of i or does not lie in the image of i).

Proof First, note that we can show that the map λi : U → Ki has decidable image.
This is because rank is well defined by Lemma 2.1, but the image of λi is precisely the
subset of Ki of rank 0, and every natural number is either equal to 0 or greater than 0.

Now by assumption, i : U → V has the left lifting property with respect to the R-map
ρr , giving us a diagonal filler, j, in the following diagram:

(28)
U

λi //

i
��

Ki

ρi

��
V

j

>>

V

However, note that it easily follows from this diagram that any v ∈ V lies in the image
of i if and only if j(v) lies in the image of λi . Since we have checked that λi has
decidable image, it follows that i must also have decidable image.

Theorem 6.5 It cannot be proved constructively that for every fibrant 01-substitution
set, X , the reflexivity morphism r : X → [A]X has the left lifting property with respect
to every R-map.

Proof We will show this by assuming r does have this property and deriving the weak
limited principle of omniscience (WLPO), that is, for any f : N → 2 the statement
“f (n) = 0 for all n” is either true or false. (In particular this implies the existence of
noncomputable functions, and so is not provable constructively, even if we assume
dependent choice, eg by considering the realizability model in Rathjen [14])

Let f : N→ 2. Define X := N([0, 1]), the nerve of [0, 1]. Since [0, 1] is complete, we
have that N([0, 1]) is fibrant by Proposition 1.10.
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We construct a continuous function f̄ : [0, 1] → [0, 1]. Given x ∈ [0, 1] we will
construct a Cauchy sequence (yn)n<ω . Let n < ω . If f (m) = 0 for all m < n, then
let yn := 0. If there is m < n such that f (m) = 1, then there is a least m0 such that
f (m0) = 1. Let yn := 2−m0q, where q is chosen such that |q− x| < 2−n . Note that in
classical logic f̄ could have been defined

(29) f̄ (x) =

{
0 f (n) = 0 for all n

2−nx there is n least such that f (n) = 1

Now note that we can view f̄ as an element of X dependent on (at most) a single name,
say, a by Lemma 1.9. So we have that 〈a〉f̄ ∈ [A]X .

We then have that 〈a〉f̄ lies in the image of r if and only if a is fresh for f̄ , which is the
case precisely when f̄ is constant with respect to a, which in turn happens precisely
when f is constantly 0. But we showed in Lemma 6.4 that the image of r must be
decidable. Therefore, WLPO follows as required.

6.2 Labelled Name Abstraction

In this section we give a new construction of path object that is valid constructively
and preserved by pullback. The basic idea is to add “labels” to the “name abstraction”
identity types. Any side of a cube that has been “labelled” in guaranteed to be
degenerate (although there may be additional degenerate sides that are not labelled).
In order to make the notation and proofs slightly easier we use some notions from
the construction of the awfs. In particular, we have already checked that K∆ is a
01-substitution set, so we know, for instance that “commutativity of substitution” holds,
ie z(a := i)(a′ := i′) = z(a′ := i′)(a := i). A full proof that these objects can be used to
model identity types will be left for another paper, using ideas from algebraic model
structures. For now we simply give a definition and verify that they are path objects and
stable under pullback.

Definition 6.6 Let f : X → Y be a fibration and let a ∈ A. Write ∆ for the diagonal
map X → X ×Y X and define the subset P0

YX of K∆ of pre-normal forms in direction
a inductively as follows.

(1) If x ∈ X and a#x then x is a pre-normal form in direction a.

(2) If u is a 1-open A, a-box over (x1, x2), a#x1 , u(a, 0) = x1 and for every
a′, i ∈ (A \ a)× 2, u(a′, i) is a pre-normal form in direction a, then (u, (x1, x2))
is a pre-normal form in direction a. (Note that since (x1, x2) belongs to X ×Y X
by the definition of K∆ we also have automatically that f (x1) = f (x2).)
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Note that P0
YX is closed under permutations, and every substitution of the form (a′ := i)

where a′ 6= a.

An element of K∆ is a normal form if it is equal to z(a := 1) where z is some
pre-normal form in direction a for some a ∈ A. (Note that if a′ is fresh for z and a,
then the normal form can also be written as ((a′ a) · z)(a′ := 1) where (a′ a) · z is also a
pre-normal form, so this is independent of the choice of a).

We refer to the set of normal forms as PYX . Note that it is closed under permutations
and substitutions, and so we can view it as a 01-substitution set in the natural way.

Lemma 6.7 Let z, z′ be pre-normal forms in direction a. If z(a := 1) = z′(a := 1)
then z = z′ .

Proof Note that if z is an element of X with a#z, then z(a := 1) = z. If z is an open
box in direction a, then z(a := 1) is an element of K+∆.

Therefore, if z(a := 1) = z′(a := 1), then either z and z′ are both elements of X , or
they are both elements of K↑∆.

In the former case, we have z(a := 1) = z and z′(a := 1) = z′ (since a#z and a#z′ ) and
so z = z′ as required.

In the latter case, we have that z and z′ are of the form (u, (x1, x2)) and (u′, (x′1, x
′
2))

respectively. Then z(a := 1) and z′(a := 1) are the elements of K+∆, 〈a〉(u, (x1, x2))
and 〈a〉(u′, (x′1, x′2)). Since 〈a〉(u, (x1, x2)) = 〈a〉(u′, (x′1, x′2)), we have (u, (x1, x2)) =

(u′, (x′1, x
′
2)) as required.

Corollary 6.8 For every normal form w and every a ∈ A fresh, there is a unique
pre-normal form z in direction a such that z(a := 1) = w.

Unlike the path objects from the awfs, this construction is stable under pullback, as we
show below.

Theorem 6.9 Let f : X → Y and suppose we are given a commutative square of the
form below.

(30)
U h //

g
��

X

f
��

V k // Y
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Then we can define a map PVU → PYX making the following square commute.

(31)

PVU
PV (h,k) //

ρ∆|PV U

��

PYX

ρ∆|PY X

��
U ×V U k // X ×Y X

Furthermore, if (30) is a pullback square, then so is (31).

Proof The morphisms PVU → PYX can easily be defined by using corollary 6.8 to
lift to P0 , and then working by induction on the construction of P0 . Explicitly, given
an element u in the U component of P0

VU , we send it to h(u). Given an open box v
over u1, u2 , we send it to an open box P0

V(h, k) ◦ v over h(u1), h(u2). This definition
clearly makes (31) commute.

Now assume that (30) is a pullback. Note that to show (31) is a pullback, it suffices to
show that the square below is a pullback, where we write pf for the map PYX → Y given
by composition of the restriction of ρ∆ to PYX with the canonical map X ×Y X → Y ,
and similarly pg for the analogous map PVU → V .

(32)
PVU

PV (h,k)//

pg

��

PYX

pf

��
V k // Y

Now to check that this square is a pullback, it suffices to show that the canonical map
PVU → V×Y PYX is an isomorphism. So we need to show that given (v, x) ∈ V×Y PYX ,
there is a unique u ∈ PVU mapped to (v, x). This is done by induction on the construction
of P0 . If x ∈ X , then we can use the fact that (30) is a pullback. We now deal with the
case where x is of the form 〈a〉(w, (x1, x2)). The key point here is that we required in
Definition 6.6 that a#x1 . Hence, writing π for the canonical map X ×Y X → Y , we can
deduce

pf (〈a〉(w, (x1, x2))) = π(ρ∆(〈a〉(w, (x1, x2))))

= π(x1(a := 1), x2(a := 1))

= f (x1(a := 1))

= f (x1) (since a#x1)

Since (v, x) ∈ V ×Y PYX we must also have pf ((w, (x1, x2))) = k(v), and so k(v) =

f (x1) = f (x2). But now using that (30) is a pullback, we have uniquely specified u1, u2
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in U such that g(u1) = g(u2) = v, h(u1) = x1 and h(u2) = x2 . Applying the inductive
hypothesis, we also have a uniquely determined open box over w, so there is a unique
element of PVU mapped to 〈a〉(w, (x1, x2)), as required.

We now show that this construction does give us path objects.

Theorem 6.10 The restriction of ρ∆ : K∆→ X ×Y X to PYX is a fibration.

Proof Let v be a 1-open A, a-box in PYX over (x1, x2). Let b be a fresh variable. By
applying corollary 6.8 we get a 1-open A, a-box v′ over P0

YX satisfying the adjacency
conditions by Lemma 6.7 and such that for each (a′, i) ∈ A× 2 \ (a, 1), v′(a′, i) is a
pre-normal form in direction b. Note that π2 ◦ ρ∆ ◦ v′ is an open box in X (where
π2 is the second projection). Let A′ be A ∪ {b}. We extend π2 ◦ ρ∆ ◦ v′ to a 1-open
A′, a-box v′′ by setting v′′(b, 0) = x1 and v′′(b, 1) = x2 .

Let A′′ be A′ \ a. We define a 1-open A′′, b-box, w as follows. Define w(b, 0) to
be x1(a := 1). For (a′, i) ∈ A′ × 2, define w(a′, i) to be v′(a′, i)(a := 1). Note that
(w, (x1(a := 1), f +v′′)) is a pre-normal form.

We now form a 1-open A′, b-box, w′ as follows. Set w′(b, 0) to be x1 . Set w′(a, 1) to
be (w, (x1(a := 1), f +v′′)). For (a′, i) ∈ A× 2 \ (a, 1), define w′(a′, i) to be v′(a′, i).

Finally this allows to define the Kan filler of v to be

(33) (w′, (x1, f ↑ v′′))(b := 1)

We now show that r is a left map. The key point in the lemmas below is to ensure that
we always treat elements of the X component in P0

YX as degenerate paths, while also
ensuring substitutions are preserved.

Lemma 6.11 There is a nominal set morphism h : P0
YX ∗ A → X such that given z

in direction a, with b a fresh name, and a′ a name with a′ 6= a and a′ 6= b, we have
h(z(a′ := i), b) = h(z, b)(a′ := i), (h(z, b)(b := 0), h(z, b)(b := 1)) = ρ∆z, and for
x ∈ X , h(x, b) = x .

Proof We define h by induction on the construction of P0
YX . We define h(x, b) to be x .

Suppose we are given a pre-normal form of the form (u, (x1, x2)), where u is a 1-open
A, a-box and b a fresh name. Let A′ := A ∪ {b}. We form a 1-open A′, a-box, v in X
as follows. If (a′, i) is an element of A× 2 \ (a, 1), then we may assume by induction
that h(u(a′, i), b) has already been defined. Let v(a′, i) be h(u(a′, i), b). Let v(b, 0) be
x1 and let v(b, 1) be x2 . Now define h((u, (x1, x2)), b) to be f ↑ v.
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To illustrate h, consider when x2 is a path with x1 as one of the endpoints. In this case,
h is a homotopy from the constant path at x1 to the path x2 . If we are given an element
x of the X component of P0

YX , then we think of it as the degenerate path from x to itself,
and then return the degenerate homotopy from an endpoint of the degenerate path to the
path (and in this case all of the objects mentioned happen to be equal as elements of X ).

Next, in the lemma below we again produce a homotopy from a path to its endpoint, but
this time viewing paths as elements of P0

YX rather than elements of X , so we have some
extra structure to take care of.

Lemma 6.12 There is a nominal set morphism k : P0
YX ∗ A→ P0

YX such that if a is
the direction of z ∈ P0

YX , b is a fresh name and a′ is a name with a′ 6= a and a′ 6= b,
then k(z(a′ := i), b) = k(z, b)(a′ := i), and for x ∈ X we have k(x, b) = x and such that
if z ∈ P0

YX and ρ∆(z) = (x1, x2), then k(z, b)(b := 0) = x1 and k(z, b)(b := 1) = z. k
will also be “direction preserving.”

Proof We define k(x, b) to be x for x ∈ X . Now suppose we are given a pre-normal
form of the form (u, (x1, x2)), where u is a 1-open A, a-box and b a fresh name. Let
A′ := A ∪ {b} as before. We form a 1-open A′, a box v. Given (a′, i) ∈ A× 2 \ (a, 1),
set v(a′, i) to be k(u(a′, i), b). Set v(b, 0) to be x1 , and set v(b, 1) to be (u, (x1, x2)).
Finally, define k((u, (x1, x2)), b) to be (v, (x1, h((u, (x1, x2)), b))), where h is as in Lemma
6.11.

Theorem 6.13 The inclusion r : X → PYX is an element of L̄.

Proof We need to define a copointed endofunctor coalgebra on r .

We first define a morphism l : P0
YX ∗ A → Kr , ensuring that if z ∈ P0

YX is in
direction a, then a is fresh for l(z, b). As before, we ensure that l is a nominal set
morphism that preserves substitutions (a′ := i) for a′ 6= a, b. We will also ensure that
ρr(l(z, b)) = k(z, b)(a := 1).

Define l(x, b) to be x. Given (u, (x1, x2)) and b, where u is an A, a-box, let A′ :=
(A \ a) ∪ {b}. We define a 1-open A′, b-box, v as follows. Given (a′, i) ∈ (A \ a)× 2,
define v(a′, i) to be l(u(a′, i), b). Define v(b, 0) to be x1 . Then define l((u, (x1, x2)), b)
to be (v, k((u, (x1, x2)), b)(a := 1)), where k is as in Lemma 6.12.

This now allows us to define the coalgebra map c : PYX → Kr by defining c(z(a := 1))
(for z a prenormal form in direction a) to be l(z, b)(b := 1), where b is any fresh
variable (so c((u, (x1, x2))(a := 1)) will be an element of K+r). Note that we have
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ensured throughout that given an element x of X , c(x) = x . Finally to show that this is
a coalgebra structure we verify the counit law below.

ρr(c(z(a := 1))) = ρr(l(z, b)(b := 1))

= ρr(l(z, b))(b := 1)

= k(z, b)(a := 1)(b := 1)

= k(z, b)(b := 1)(a := 1)

= z(a := 1)(34)

Corollary 6.14 Assume that every x ∈ X , has a (necessarily unique) least finite
support, Supp(x) (which is always the case if we assume the axiom of excluded middle).
Then [A]f X is a path object.

Proof We write r′ for the reflexivity map X → [A]f X .

We will first define a map g : [A]f X → PYX such that the following diagram commutes.

(35)

X

��

X

��
[A]f X

g //

��

PYX

��
X ×Y X X ×Y X

Define

(36) X0 := {(x, a) | a#f (x)}

We first define a morphism g0 : X0 → P0
YX . We define g0(a, x) by induction on

|Supp(x)|. If a /∈ Supp(x), then define g0(a, x) := x . Otherwise, let A := Supp(x), and
note that a ∈ A. We define a 1-open A, a-box v as follows. Let v(a, 0) := x(a := 0).
For (a′, i) ∈ (A \ a) × 2, we may assume by induction that g0(〈a〉x(a′ := i)) has
already been defined. Let v(a′, i) := g(a, x(a′ := i)). We then define g0(a, x) to be
(v, (x(a := 0), x)).

We now define g(〈a〉x) to be g0(a, x)(a := 1).

We also have a morphism PYX → [A]f X given by projection. This induces a morphism
Kr → Kr′ , which combined with the result before and the coalgebra structure on r
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gives a commutative diagram.

(37)

X

r′
��

X

r
��

X

λr

��

X

λr′
��

[A]f X
g //

��

PYX

��

c // Kr

��

// Kr′

��
X ×Y X X ×Y X X ×Y X X ×Y X

However, this easily gives us a coalgebra structure on r′ .
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