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1 Introduction

Historically, the classical Newtonian mechanics has been closely connected with the
development of Calculus and it still remains a rich source of problems to be formulated
and solved in the language of differential and integro-differential equations. Perhaps
one of the simplest examples of an important practical problem that is solved within the
context of ordinary differential equations is the forced conservative oscillator

(1) mx′′ + Fs = f (t)

of a mass m > 0, with unknown displacement x = x(t), driven by an external force f (t)
and a restoring (spring) force Fs . It is customary to close the system by a constitutive
relation of the form

(2) Fs = h(x)

with some reasonable function h(x), as eg in the linear so-called Hooke’s law h(x) = kx .
This turns (1) into a second order ODE, a thoroughly studied mathematical object for
which a well-developed theory of existence, uniqueness and qualitative properties of
solutions is available. For h(x) linear or piecewise affine, one can also express the
solution explicitly in terms of quadratures and elementary functions.
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There, however, exist modifications both physically reasonable and interesting from
point of view of applications, of the forced oscillator problem (1), for which the classical
framework no longer suffices. It might be that the relationship between x and Fs

does not assume the explicit functional form (2) (see Rajagopal [9] for a discussion of
the relevance of implicit relationships between the displacement and spring force). A
related possibility is that the motion is further restricted by some obstacles. Both these
clearly go beyond the classical setting: globally smooth solutions cannot exist.

Implicit relationships between x and Fs can be studied via the general theory of
differential inclusions, see Filippov [2], and the so-called non-smooth dynamical
systems in Kunze [4]. For particular simple examples of oscillators with obstacles, it is
possible to “patch” the global solution by imposing bounce conditions, see eg Marò [7],
Kunze and Ortega [5] and Kunze and Ortega [6]. In the present paper, we propose an
alternative way. Instead of providing an ad hoc generalized mathematical framework,
we systematically enlarge our universe by working within the context of non-standard
analysis (NSA). In virtue of the well-known principle of transfer, the whole classical
ODE theory remains to our disposal and the new universe has the best of both worlds:
it remains conceptually simple, yet rich enough to capture a number of non-classical
phenomena.

In particular, we focus here on the problem of oscillator whose motion is restricted
to x ≤ 0 by an inextensible string; perhaps more aptly, we will think of an infinitely
tough wall located at x = 0. The description of this problem in the framework of NSA
suggests the following: we model the wall as a spring with infinitely large stiffness.
More precisely, we extend the equation (1), valid for x < 0, by mx′′ + Lx = f (t) for
x > 0, where L > 0 is an infinitely large positive number. The question of existence
of solution is then solved in one shot, transferring the classical Picard’s theorem. It
is also easy to see that the solution does what we expect: the mass is bounced back
immediately with opposite velocity (cf Proposition 2 below).

Our main focus is the problem of uniqueness, or perhaps more precisely, of macroscopic
stability. The question is: does infinitely small perturbation of initial data only lead
to infinitely small deviation of solution? Note that this does not follow from Picard’s
theorem: there is an infinitely large Lipschitz constant L > 0 in our equation, hence the
general theory allows for a factor eLt growth of disturbances, which is infinitely large
for standard t > 0. A second natural and related question reads: is the macroscopic (ie
modulo infinitely small error) behavior of solution independent of the particular choice
of the infinitely large constant L > 0? In the main result of the paper (Theorem 2) we
are able answer both of these questions affirmatively.
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We also note that the “standard” way to treat the problem of inextensible string would
eventually lead to a sequence of approximating problems, where L is replaced with
standard Ln → +∞. The expected result is that the approximating solutions xn

converge to some x, which is a continuous (even smooth if x < 0) function, cf Yuan
et al [12]. And this is precisely what we arrive at in our last Theorem 3, simply by
transferring both our original equation and the result of Theorem 2 to the standard world.
The theorems are logically equivalent, but one can argue that the language of NSA is
better suited both for the physical description of the problem, and the mathematical
theorem and its proof.

Two points seem worth emphasizing. Any application of the NSA means that some
initial theory is taken into an extended universe, giving rise to new concepts and new
methods of reasoning. Our initial theory is, however, highly nontrivial: essentially what
we need is to transfer the classical ODE theory for Lipschitz nonlinearities, Riemann
integral, Picard’s theorem and also the variation of constants formula. What we gain,
in turn, is a conceptually simple, yet highly powerful framework, in which problems
involving differential inclusions, weak convergence and estimates of oscillations are
tractable by truly elementary analytical means.

Secondly, we would like to pinpoint what in our opinion is the central issue of the paper.
It is the question as to what the oscillator does when the constraint at x = 0 is reached,
but the external force f (t) is positive. In particular, what will happen if the velocity
is zero at such a moment? This is precisely the point where the classical description
fails most markedly, possibly also the situation that even baffles our intuition as to what
the dynamics ought to be. To solve the problem, we impose an additional structural
assumption on the right-hand side f (t), cf (9) below. We are then able to show that
although the system can switch between the two regimes x > 0 and x < 0 infinitely
(more precisely, hyper-finitely) many times, only an infinitesimal increase of energy is
possible as long as f (t) ≥ 0.

The paper is organized as follows: the problem under study is described in Section 2
and the main three theorems are formulated. In Section 3, we outline the required
background from NSA. In particular, we explain the theory within which we work and
prove Theorem 1 in detail. We also show how Theorem 3 follows from Theorem 2.

Section 4 forms the main core of the paper and it deals with the crucial problem: how
will the solution with initial conditions infinitely close to the wall x = 0 behave?

Section 5 is devoted to the proof of the main Theorem 2. In Section 6 we prove three
auxiliary lemmata on “integration” of various type difference inequalities, which are
instrumental in the proof of the key Proposition 4.
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2 Problem formulation and main theorems.

We study the behavior of a standard oscillator with external forcing, whose motion is
restricted to x ≤ 0 by an infinitely elastic wall:

mx′′ + s(x) = f (t), t ∈ I(3)

x(0) = x0,(4)

x′(0) = v0,(5)

with

(6) s(x) =

{
h(x), x < 0

Lx, x ≥ 0.

We set1 I = ∗[0, T], where T > 0 is a standard positive number; the restoring force is
given by a standard function h(x) ∈ C1

loc((−∞, 0]). It is convenient and without loss of
generality to assume that h(0) = 0 and h(x) is globally (standard) Lipschitz. Finally
L > 0, modeling the response of the wall, is infinitely large positive number.

The initial data x0 , v0 are hyperreal limited, with x0 � 0. External force is a standard
continuous function and for the sake of notational simplicity we henceforth set the mass
m equal to 1.

Theorem 1 The problem (3–6) has a unique solution on I .

Proof This follows immediately by transferring the Picard’s existence theorem; see
Section 3 for more details.

The energy is defined in the usual manner:

(7) E(t) =

{
1
2 (x′)2(t) + L

2 x2(t), x(t) ≥ 0,
1
2 (x′)2(t) + H(x(t)), x(t) ≤ 0,

where H(x) =
∫ x

0 h(ξ) dξ is primitive to h(x). It is easy to show that the energy remains
limited, provided the data are so. Here and in what follows, c > 0 stands for a generic
standard constant.

Lemma 1 One has E(t) ≤ c for any t ∈ I , where c is a standard constant depending
on the data x0 , v0 , f (t) and T > 0. Moreover, if x(t) > 0, then x(t) ≤ cL−1/2 ≈ 0.

1See next Section for definition of ∗ , ≈ , etc.
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Proof Multiply the equation by x′ . We have

(8)
d
dt

E(t) = x′(t)f (t) ≤ 1
2
(
x′(t)

)2
+

1
2
(
f (t)
)2 ≤ E(t) + c

and estimate E(t) using transferred version of the Gronwall’s lemma. Then second
assertion follows since for x > 0, (7) implies |x| ≤ (2E/L)1/2 .

From this point of view, the existence part of the theory seems satisfactory. We also
note that |x′| ≤ c, ie the solutions are globally Lipschitz. But there is a serious problem
lurking behind the uniqueness. Note that by standard argument, we obtain the following.

Lemma 2 Let x(t), x̃(t) be two solutions that are negative on some [t0, t1] ⊂ [0,T].
Then

|x(t)− x̃(t)|+ |x′(t)− x̃′(t)| ≤ c
(
|x(t0)− x̃(t0)|+ |x′(t0)− x̃′(t0)|

)
∀t ∈ [t0, t1]

where c is a standard constant only depending on the Lipschitz constant of h(x).

Proof In the usual manner, the equation can be rewritten as

x′ = y

y′ = f (t)− h(x)

where the right-hand side is Lipschitz with respect to x , y. The conclusion follows by
Gronwall’s lemma.

This lemma implies in particular what we would call a macroscopic stability: if the
initial data are infinitely close at t = t0 , the solutions remain so for all t ∈ [t0, t1]. But
this argument cannot be extended to cover the situation where possibly x(t) or x̃(t)
becomes positive, since then h(x) must be replaced by s(x) and the Lipschitz constant
of the right-hand side becomes infinitely large; cf (6).

Indeed, the equation is not in the above sense stable with respect to initial conditions.
Assume that f (t) ≡ 0, v0 = 0 and x0 = L−1/2 . It follows from Lemma 3 below that
for t1 = πL−1/2/2, x(t1) = 0 and x′(t1) = −1, and thus x(t) = (t1 − t) for t ≥ t1 .
Such a solution deviates appreciably from the equilibrium x ≡ 0, though it has an
infinitely close initial condition. Note also that the velocity of the former solution has a
macroscopic jump, more precisely the function t→ st x′(∗t) is not continuous at t = 0.

On the other hand, it is reasonable to expect that two solutions arriving at the wall
from the outside, with infinitely close distances and velocities, will remain so after
colliding with it. Even more, the value of L should not play any role, as long as it is
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infinitely large. However, it also turns out that the right-hand side f (t) cannot be too
wild—additional structural assumption on the right-hand side seems necessary—and
we henceforth require:

(9)
f (t) is a standard C1 function and if f (t0) = 0 for some t0 ∈ [0,T],

then either f ′+(t0) 6= 0 or f ≡ 0 on some right neighbourhood of t0.

The main result of our paper is the following theorem.

Theorem 2 Let x(t) be a solution to (3–6). Let f (t) satisfy (9) and let x̃(t) be another
solution with possibly different L̃ ≈ ∞ in (6) such that x̃(0) ≈ x0 and x̃′(0) ≈ v0 .
Then x(t) ≈ x̃(t) for all t ∈ I ; and in the regime where x(t) and x̃(t) < 0 there holds
x′(t) ≈ x̃′(t).

Our result can also be translated (more precisely, transferred) to the standard language;
note that this also requires that the equation being studied must be reformulated.

Theorem 3 Let xn(t) be a sequence of solutions to (3–6) in a standard setting with
L = Ln being standard numbers converging to +∞, subject to initial conditions
x0, v0 ∈ R, x0 < 0. Then xn(t) converge to some x(t) uniformly in [0, T]. The mapping
(x0, v0)→ x(t) is continuous and (x0, v0)→ x′(t) is continuous at points where x(t) < 0.

Moreover, the function x(t) solves the standard equation (3), (6)1 whenever x(t) < 0.

3 A brief review of NSA

In this section we offer a brief and rather informal review of NSA. For a more exhaustive
and detailed treatment we refer the reader to Hurd and Loeb [3] or Väth [11].

Let S be a set and let S0 = S and Sn+1 = S0 ∪ P(Sn). Then the superstructure of S is
defined by

Ŝ =
∞⋃

n=1

Sn.

The elements of S are called atoms and the elements of Ŝ that are not atoms are called
entities.

Observe that the superstructure is large enough to contain practically every mathematical
object we may be interested in, specially all the functions f : X → R if X and R are
entities in Ŝ .
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The basic concept of NSA is the construction of a superstructure T̂ and of a map
∗ : Ŝ→ T̂ , the so-called elementary embedding, that serve as an abstract idealization
of the superstructure Ŝ and a transition map between the original superstructure and
the idealized one. Although the actual construction of the superstructure T̂ and the
elementary embedding ∗ can be achieved by different means (eg by abstract model
theory, by working with ultrafilters or by axiomatization, cf Benci et al [1] or Nelson [8]),
the particular method by which we obtain the elementary embedding plays no role in
the applications.

Let us write ∗̂S instead of T̂ and ∗A instead of ∗(A) and let ∗ : Ŝ→ ∗̂S be an elementary
embedding.

Let α be a first order formula with constants in Ŝ . Then α is called transitively bounded
if the scope of any quantifier is explicitly bounded, eg (∀x ∈ [0, 1])(∃y ∈ [0, 1])[y2 = x].
Obviously, any formula of the usual mathematical practice can be written in this form.
The ∗-transform of α is the formula ∗α where we replace any constant c by ∗c.

The following proposition, which will be referred to as “the transfer principle” rather
than Theorem 4, is essential in NSA and justifies the transition from the original
superstructure Ŝ to the idealized superstructure ∗̂S . At the same time it ensures that all
the tools we have in the original superstructure work in the idealization as well.

Theorem 4 (Transfer principle [11, Theorem 3.7]) Let α be a transitively bounded
formula with constants in Ŝ . Then α holds true if and only ∗α holds true.

We emphasize that the elementary embedding ∗ : Ŝ→ ∗̂S is not onto unless the set S is
finite, in which case the transition to ∗̂S does not bring anything new. If an element is in
the range of ∗, we call it a standard element. The elements of standard sets are called
internal and the elements which are not internal are called external. In other words, b
is standard if b = ∗a for some a ∈ Ŝ and b is internal if b ∈ ∗A for some entity A ∈ Ŝ .

We may think of the internal elements as the elements of ∗̂S which can be described by
the language of the original superstructure Ŝ . This can be made precise by the so-called
internal definition principle but will not be needed in the rest of the paper. We only
remark that the set of all internal entities is closed under finite set operations such as
unions, intersections and subtractions (cf Väth [11, Theorem 3.19]) and the following
characterization holds.

Theorem 5 [11, Theorem 3.21] Let A,B ∈ Ŝ be entities and let BA denote the set of
all functions f : A→ B. Then

∗(BA) = {f : ∗A→ ∗B; f is internal}.

Journal of Logic & Analysis 9:4 (2017)
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From now on, we assume that R is an entity in Ŝ . From the transfer principle
and Theorem 5 we see that there exists a standard (and therefore internal) function
∗| · | : ∗R→ ∗R that satisfies all the properties of the standard modulus function, such as
the non-negativity or subadditivity. This concept can actually be applied to all functions
and relations on R, eg the function sin or the ordering ≤. In the following we will
drop the symbol ∗ for all the standard functions and relations defined on ∗R, eg we
will write |r| instead of ∗|r| and r ≤ q instead of r∗≤s, where r, s ∈ ∗R. We will also
identify the real numbers with their hyperreal counterpart, eg we will simply write 1
instead of ∗1. Similarly for a, b ∈ ∗R we will use the notation

[a, b] = {x ∈ ∗R; a ≤ x ≤ b}, (a, b) = {x ∈ ∗R; a < x < b}.

Observe that in view of the above we have [∗a, ∗b] = ∗[a, b] for a, b ∈ R and these
sets are internal.

We will call the elements of ∗R (or ∗N) hyperreal (or hypernatural) numbers. A
hyperreal number r ∈ ∗R will be called limited if there exists n ∈ N such that |r| < ∗n,
unlimited if |t| > ∗n for every n ∈ N, infinitesimal if |t| < ∗(n−1) for every n ∈ N.
The key point is that the sets of all unlimited and infinitesimal numbers are not empty,
cf Väth [11, Corollary 5.10].

By a ≈ b we mean that a is infinitely close to b, ie |a− b| is infinitesimal. Symbol
a � b means that a < b and a 6≈ b. With a slight abuse of notation, the symbol b ≈ ∞
means that b is unlimited positive. Observe that the relation ≈ is not transitive anytime
∞ is involved.

By st x we denote the standard part of a limited number x ∈ ∗R, ie the uniquely defined
real number r ∈ R such that ∗r ≈ x . For A ⊂ ∗R, we define st A = {st a; a ∈ A}.

An entity A ∈ ∗̂S will be called hyperfinite if there exists some N ∈ ∗N and an internal
bijection f : {n ∈ ∗N; n ≤ N} → A.

Let f : ∗R→ ∗R be a function. The domain ∗R is chosen only for simplicity as all of
the discussed features have an obvious analogue for suitable subsets of ∗R. We say
that f is ∗-continuous in x ∈ ∗R, if the function satisfies the transferred definition of
continuity, namely(
∀ε ∈ ∗R

) (
∃δ ∈ ∗R

) (
∀x ∈ B(x0, δ) \ {x0}

) [
ε > 0 ∨ δ > 0 ⇒ |f (x)− f (x0)| < ε

]
.

We say that f is S-continuous in x0 ∈ ∗R if x ≈ x0 implies f (x) ≈ f (x0) with x ∈ ∗R.

To relate the results obtained in the nonstandard idealization, ie the superstructure ∗̂S ,
to the standard superstructure Ŝ , we will use the following theorem.
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Theorem 6 (Hurd and Loeb [3, Exercise III.3.17]) Let [a, b] ⊆ R and let f : ∗[a, b]→
R be an internal S-continuous function such that f (∗x) is limited for all x ∈ [a, b]. Let
g : [a, b]→ R be defined by g(x) = st f (x). Then g is continuous on [a, b].

Next we will discuss the calculus with internal ∗-continuous functions. It is quite
common in the NSA-related research concerning differential equations to discretize
the time or the space with an infinite precision and treat the differential equation as a
difference equation with infinitesimal steps. We will use a different approach and work
with the transferred version of the standard derivative and Riemann integral. However,
this is only possible since we restrict ourselves to standard continuously differentiable
right-hand sides of the equation (3). If we were to consider less regular right-hand sides,
eg measures, a more refined approach would be required.

Let D : C1(R)→ C(R) be an operator defined by

(D(f ))(x) =
d
dx

f (x), x ∈ R.

Then the transfer principle allows us to work with the operator ∗D : ∗(C1(R))→ ∗(C(R))
which we will call the ∗-derivative. The operator ∗D satisfies the same properties
as the operator D, specially ∗D is linear and all the differentiation rules still apply.
The transfer principle and Theorem 5 also shows that ∗(C1(R)) is the set of all the
∗-continuous internal functions defined on ∗R with ∗-continuous ∗-derivative.

Similarly, let a, b ∈ R and let Ib
a : C([a, b])→ R denote the Riemann integral

Ib
a(f ) =

∫ b

a
f (s)ds.

Then by the transfer principle for every a, b ∈ ∗R there exists an operator
∗Ib

a : {f : [a, b]→ ∗R; f internal and ∗ -continuous} → ∗R

with properties matching the ones of the Riemann integral.

With another slight abuse of notation, we will not distinguish between the “standard”
versions of the derivative and the integral and the transferred versions unless explicitly
mentioned and we will use the standard notation.

Now we are ready to prove Theorem 1 and Theorem 3. Before the proofs, let us
precisely state the definition of the solution to the problem (3–5), although it is clearly
just a transferred version of the standard definition.

Definition An internal function x : (a, b)→ ∗R, where a, b ∈ ∗R and ∗[0, T] ⊂ (a, b),
is a solution of the problem (3–5) if x is twice ∗−differentiable on (a, b), solves the
equation (3) on (a, b) and satisfies the initial conditions (4) and (5).
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Proof of Theorem 1 Observe that function s(x) defined in (6) is globally Lipschitz
continuous in nonstandard sense (with Lipschitz constant L). The existence of unique
global solution then follows by transfer of the corresponding result from the classical
ODE theory. Note that the solution operator (t, x0, v0) 7→ (x(t), x′(t)) is internal,
∗-continuous function.

Proposition 1 Let X(t) be a ∗-differentiable solution to

X′ = F(t,X)

on some standard interval I = ∗[0,T], where F : ∗R1+n → ∗Rn is ∗-continuous.
Assume that J ⊂ I is an interval and Q ⊂ Rn+1 a set such that graph X|J ⊂ Q.

1. If F(t,X) is limited on Q, then X(t) is S-continuous on J .

2. If moreover J , Q are standard and F(t,X) is standard and continuous on Q, then
st X is a classical solution to X′ = F̃(t,X) on J , where F = ∗F̃ .

Proof 1. For any fixed component i = 1, . . . , n we get by transfer of the Lagrange
theorem

(10) Xi(t + h)− Xi(t) = Fi(τ,X(τ )) h

for any t , t + h in I , where τ ∈ [t, t + h]. If |F| ≤ M with some standard M , then
clearly X(t) is M -Lipschitz and in particular S-continuous.

2. From the first part we already know that X(t) is S-continuous, hence st X(t) is a
well-defined continuous function. Assume now that t , t + h ∈ J are standard. Applying
the standard part on (10) leads to

st Xi(t + h)− st Xi(t) = st Fi(τ,X(τ )) h.

But also, thanks to the assumptions on F , we have

st F(τ,X(τ )) = F̃(st τ, st X(τ )),

hence by a classical limit argument we obtain

(st Xi)′(t) = F̃i(t, st X(t)).

Theorem 7 (Robinson [10, Theorem 4.2.1]) Let (X, d) be a metric space and let
x ∈ X . Let {xn} be a sequence in X . Then xn → x in X if and only if d(∗xN ,

∗x) ≈ 0
for every N ∈ ∗N unlimited.

Journal of Logic & Analysis 9:4 (2017)
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Proof of Theorem 3 Let L ≈ ∞ be arbitrary and let xL be a solution to (3–6) from
Theorem 1. Denote x(t) = st xL(t) for t ∈ [0,T]. From Theorem 2 it follows that
x(t) does not depend on the particular choice of L. Moreover, the solution operator
(t, x0, v0) 7→ xL(t) is S-continuous, as is (t, x0, v0) 7→ x′L(t) if x(t) � 0. Hence the
assertion about continuity of (x0, v0) 7→ st x(t) = x(t) and (x0, v0) 7→ st x′(t) follows
from Theorem 6.

To prove that x(t) is a uniform limit of solutions to approximating problems, let Ln →∞
be a sequence of real numbers and xn(t) solutions of (3–6) posed in the standard setting
with Ln instead of L . Let (X, d) be the space of continuous functions on [0,T] with a
metric d induced by the supremum norm, ie with the topology of uniform convergence.
Then by the transfer principle and Theorem 5 we have

∗X = {x̃ : ∗[0,T]→ ∗R; x̃ is internal and ∗-continuous},
d(f , g) = sup{|f (t)− g(t)|; t ∈ ∗[0,T]} for f , g ∈ ∗X.

The supremum is well defined as the functions are ∗-continuous on a ∗-closed interval.
Let N ∈ ∗N, N ≈ ∞ be arbitrary. Then using Theorem 2 we get ∗x(t) ≈ xN(t) for
t ∈ ∗[0,T] and thus d(∗x, xN) ≈ 0, as the supremum is attained. From Theorem 7 we
obtain xn → x in X , ie xn ⇒ x on [0,T].

The final part follows directly from Proposition 1, applied to X = (x, y), with y = x′ ,
F(t,X) = (y, f (t)− h(x)) and the fact that F(t,X) is standard on Q = {x < 0}.

4 Behavior near the wall

The aim of this Section is to describe the interaction of the oscillator with the wall. We
show that we can distinguish three mutually exclusive scenarios, given by Propositions 1–
3, which are stable in terms of infinitesimal perturbations of the initial condition. It is
also important that they are independent of the actual value of L , as long as it remains
infinitely large.

The first scenario describes the (strict) bounce off the wall. We will need the usual
variation of constants formula to write the solution for x > 0 explicitly.
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Lemma 3 Let t0, t1 ∈ ∗R be such that [t0, t1] ⊂ ∗[0,T] and x ≥ 0 on [t0, t1]. Then

x(t) = x(t0) cos
√

L(t − t0)

+ x′(t0)
sin
√

L(t − t0)√
L

+

∫ t

t0
f (t − s)

sin
√

L(s− t0)√
L

ds
(11)

x′(t) = −x(t0)
√

L sin
√

L(t − t0)

+ x′(t0) cos
√

L(t − t0) +

∫ t

t0
f (t − s) cos

√
L(s− t0) ds

for all t ∈ [t0, t1].

Proof For x ≥ 0, the equation reduces to x′′ + Lx = f (t), whence the formulas are
obtained by variation of constants.

The proposition describing the bounce can be now stated as follows. Recall that E(t) is
the total energy of the system, defined by (7) above.

Proposition 2 Let t0 ∈ ∗(0, T) be such that x(t0) ≈ 0 and E(t0) � 0. Then there exist
tin < tout infinitely close to t0 , such that x(tin) = x(tout) = 0, x > 0 in (tin, tout) and
x′(tin) ≈ −x′(tout) are not infinitesimal.

Proof Case 1. Assume first that x(t0) = 0 exactly, hence by assumption x′(t0) = ṽ0

is not infinitesimal. Let ṽ0 > 0 (the case ṽ0 < 0 being entirely symmetric). We set
tin = t0 . For simplicity of notation, let t0 = 0. By Lemma 3 we have

x(t) =
ṽ0√

L
sin
√

Lt +
1√
L

∫ t

0
f (t − s) sin

√
Ls ds(12)

x′(t) = ṽ0 cos
√

Lt +
1√
L

(∫ t

0
f ′(t − s) sin

√
Ls ds + f (0) sin

√
Ls
)

(13)

as long as x(t) ≥ 0, which clearly holds on some nontrivial interval [0, δ). Let tout > 0
be smallest time such that x(tout) = 0. Observe that for t̃ = 3π/2

√
L the first term in

(12) gives −ṽ0/
√

L , while the second is estimated by c/L , which would yield x(t̃) < 0,
hence tout exists in the (infinitesimal) interval (0, 3π/2

√
L).

To locate tout more precisely, observe again from (12) that

| sin
√

Ltout| ≤
c√
L

On the other hand, for ε > 0 small enough, | sin y| ≤ ε is only possible if |y− kπ| ≤ 2ε
for some integer k . This imposes the condition

|tout −
kπ√

L
| ≤ c

L

Journal of Logic & Analysis 9:4 (2017)
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and in view of the above, k = 1 is the only possibility. Hence we have

|tout −
π

2
√

L
| ≤ c

L
and it follows from (13) that x′(tout) ≈ −ṽ0 .

Case 2. If x(t0) < 0 with x(t0) ≈ 0 and x′(t0) = ṽ0 > 0 not infinitesimal, we start
in the standard regime (cf. first part of Proposition 1) with both x(t) and x′(t) being
S-continuous. Whence clearly exists tin > t0 , such that tin ≈ t0 , and x(tin) = 0,
x′(tin) ≈ ṽ0 and we continue as in case 1.

Case 3. Assume finally that x(t0) ≈ 0 with x(t0) > 0, and E(t0) > 0 is not infinitesimal.
Invoking again formulas from Lemma 3, we deduce by an argument analogous to case
1 the existence of tin < tout conforming to the assertion of the lemma. Note that in this
case t0 ∈ (tin, tout) and x′(t0) might lie strictly between x′(tin), x′(tout). On the other
hand, we always have |x′(tin)| ≈ |x′(tout)| ≈

√
2E(t0).

It remains to consider the case x(t0) ≈ 0, E(t0) ≈ 0. We now employ the assumption
(9), dealing first with zero force. In fact a somewhat weaker assumption on f (t) would
suffice.

Lemma 4 Let x(t0) ≈ 0 and E(t0) ≈ 0 and let f (t) be an internal continuous function
such that f (t) ≈ 0 on [t0, t0 + ∆]. Then E(t) ≈ 0, x(t) ≈ 0 on [t0, t0 + ∆].

Proof Multiplying the equation by x′ yields d
dt E(t) ≈ 0 and so E(t) ≈ 0 follows by

integration, whence obviously x(t) ≈ 0 too.

If f (t0) 6≈ 0, then either f (t) ≥ c > 0 or f (t) ≤ −c close enough to t0 , for some
standard c > 0. If f (t0) ≈ 0, then we can actually assume f (t0) = 0. Indeed, as
f (t) is a standard function, there is t̃0 ≈ t0 such that f (t̃0) = 0; clearly x(t̃0) ≈ 0 and
E(t̃0) ≈ 0 holds. Having now set the case f (t) ≡ 0 aside, by the second part of (9), we
have that f ′(t0) is a standard non-zero number. But this again means that on some right
neighborhood of t0 , either f (t) > 0 or f (t) > 0 with the derivative close to f ′+(t0). To
summarize, we can assume that:

(14) there exist ∆ > 0 and c or a standard positive such that one of the following
holds on [t0, t0 + ∆]:

(i) f (t) ≤ −c

(ii) f (t) ≥ c

(iii) f (t0) = 0 and f ′(t) ≤ −a

(iv) f (t0) = 0 and a ≤ f ′(t) ≤ 5
3 a

Journal of Logic & Analysis 9:4 (2017)
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Since we are now in a situation when the solution can switch between the regimes x > 0
and x < 0, that is to say between the equation x′′ + Lx = f (t) and x′′ + h(x) = f (t), we
will further simplify our considerations by showing that it is actually possible to set
h(x) = 0 without loss of generality.

Lemma 5 Let t0 be such that x(t0) ≈ 0, E(t0) ≈ 0 and one of the cases in (14)
holds on [t0, t0 + ∆]. Then for x(t) < 0, the solution satisfies x′′ = f̃ (t), where
f̃ (t) = f (t) − h(x(t)) has the same property in (14) as f (t) does, up to a possible
adjustment of the constants c, a, or ∆ > 0.

Proof By (8) above, Gronwall’s lemma and the fact that E(t0) ≈ 0 we have E(t) ≤
µ + c(t − t0), for some µ ≈ 0 and hence h(x(t)) and (h(x(t))′ = h′(x(t))x′(t) can be
estimated by a small standard ε > 0. So after a possible adjustment of c, a or ∆, the
variant of (14) holding for f (t) holds for f̃ (t), too.

For the rest of this section, we will constantly make use of this lemma, by assuming
that (1) has the simple form x′′ = f (t) whenever x(t) < 0.

We now observe that in cases (i) or (iii) of (14), the solution is pulled-out from the wall
immediately.

Proposition 3 Let t0 ∈ ∗[0,T) be such that x(t0) and E(t0) ≈ 0. Let f (t) < 0 on
(t0, t0 + ∆]. Then

(15) x(t) ≈
∫ t

t0
F(s) ds, t ∈ [t0, t0 + ∆]

where F(t) =
∫ t

t0
f (s) ds, and in particular, x(t) < 0 whenever t � t0 .

Proof If x(t0) ≤ 0, then (15) follows simply by integration. If x(t0) > 0, we again
employ the formula (11). It follows that no later than at t = t0 + π/

√
L, the first two

terms are negative, to which the second term also gives a negative (albeit infinitesimal)
contribution. Hence, there is tout ∈ (t0, t0 + π/

√
L) such that x(tout) = 0, and clearly

x′(tout) < 0, with x′(tout) ≈ 0. We are thus reduced to a previous case with tout = t0 .

It remains to deal with the most interesting case, namely that f (t) ≥ 0 acting on a
system for which x(t0) and E(t0) ≈ 0. The problem is that we cannot say a priori where
the solution will be. Indeed the situation x(t) > 0 and x(t) < 0 can change infinitely
many times, switching between the equation x′′ = f (t) and x′′+ Lx = f (t). We however
do observe the following.
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Lemma 6 Let f (t) satisfy (14). Then the set of zero times {t ∈ [t0, t0 + ∆]; x(t) = 0}
is an internal hyperfinite set.

Proof This is an easy application of the transfer principle. Assume that L > 0 in (6) is
a standard number. Let x(t) be an arbitrary solution. If x(t0) = 0, then either x′(t0) 6= 0,
or, if x′(t0) = 0, we invoke the equation and (9) to show that x′(t) 6= 0 on some P(t0, δ).
It follows that each zero point is isolated, hence the set of zero points in [0, T] is finite.

By transferring a suitable formalization of the last assertion, it follows that for arbitrary
hyperreal L > 0, the set of zero points is hyperfinite.

Our strategy is as follows: by the previous lemma, the zero points of x(t) in [t0, t0 + ∆]
can be denoted by ti , i = 1, . . .N with some N ∈ N∞ . Set Ei = E(ti). We will
prove recursive estimates of Ei+1 in terms of Ei , and the result is then obtained by
“integration” of these local estimates into a global one which would entail Ei ≈ 0 for
all i ≤ N . It then follows that x(t) ≈ 0 and x′(t) ≈ 0 on [t0, t0 + ∆].

Let us start with the intervals where x > 0.

Lemma 7 Let x(t) > 0 on (ti, ti+1).

1. There holds

(16) Ei+1 − Ei ≤ µ(ti+1 − ti)

where µ ≈ 0 only depends on f (t).

2. Moreover, if f (t) is nondecreasing, then even

(17) Ei+1 − Ei ≤ 0

Proof We write

E(ti+1)− E(ti) =

∫ ti+1

ti
x′(t)f (t) =

[
x(t)f (t)

]t=ti+1

t=ti
−
∫ ti+1

ti
x(t)f ′(t) dt

The increment is zero since x(ti) = x(ti+1) = 0. By the boundedness of the energy (cf
Lemma 1) we have |x(t)| ≤ c/L1/2 . Hence the integrand is estimated by an infinitesimal
constant and (16) follows. Moreover, if f ′(t) ≥ 0, the integrand is non-positive and we
obtain (17).

The situation for x < 0 is more delicate and it will require several different estimates.
It is also more convenient to work with the velocities vi = x′(ti). Recall that c > 0
is a standard positive constant, the value of which can change from line to line in the
inequalities appearing below.
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Lemma 8 Let and x < 0 and f (t) ≥ 0 on (ti, ti+1).

1. If f (t) is nonincreasing, then

|vi+1| − |vi| ≤ 0

2. If f (t) ≥ c > 0, then

|vi+1| − |vi| ≤ c|vi|(ti+1 − ti)

3. If f ′(t) ≥ a > 0, then

(18) |vi+1| − |vi| ≤ c|vi|1/2(ti+1 − ti)

4. Finally, if 0 < a ≤ f ′(t) ≤ 5a/3 and f (t0) = 0 holds, then

(19) |vi+1| − |vi| ≤
|vi|
ti

(ti+1 − ti)

for any i ≥ 1.

Proof 1. If f (t) ≥ 0 is nonincreasing, then f ′(t) ≤ 0 and we deduce that Ei+1 ≤ Ei as
in second part of Lemma 7, and since x(ti) = x(ti+1) = 0, we obtain |vi+1| ≤ |vi|.

For the rest of the proof, we shift to ti = 0 and ti+1 = t1 in order to simplify the
notation. Recall that in virtue of Lemma 5, we work with the equation

x′′ = f (t)

Writing F(t) =
∫ t

0 f (s) ds, we have

x′(t) = v0 + F(t)

x(t) = tv0 +

∫ t

0
F(s) ds

and the return time t1 is given by the condition

(20) − v0 =
1
t1

∫ t1

0
F(s) ds

Our aim is to estimate

(21) |v1| − |v0| = x′(t1) + v0 = 2v0 + F(t1) =
1
t1

∫ t1

0
F(t1)− 2F(s) ds

In the remaining estimates, we use the Taylor expansion:

(22) F(t) = F(0) + tF(0) +
1
2

t2F′(τ ) = tf (0) +
1
2

t2f ′(τ )

for some τ ∈ (0, t).
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2. In particular, (22) implies |F(t)− tf (0)| ≤ ct2 , which gives

(23)
1
t1

∫ t1

0
F(t1)− 2F(s) ds ≤ 1

t1

∫ t1

0
t1f (0)− 2sf (0) + ct2

1 ds ≤ ct2
1

On the other hand, for f (t) ≥ c > 0, we have F(t) ≥ ct and from (20) one obtains

t1 ≤ c|v0|

Combining with (23) yields the conclusion.

3. For f ′(t) ≥ a > 0, we have f (t) ≥ at and thus F(t) ≥ ct2 . From (20) we deduce

t1 ≤ c|v0|1/2

and again use (23) to arrive at the conclusion.

4. We again employ (22), recalling that a ≤ f ′(τ ) ≤ 5a/3. Consequently

(24)
1
t1

∫ t1

0
F(t1)− 2F(s) ds ≤ 1

t1

∫ t1

0
t1f (0) +

5
6

t2
1a− 2sf (0)− s2a ds =

1
2

at2
1

On the other hand, we have F(t) ≥ f (0)t , hence by (20)

(25) |v0| ≥
1
2

f (0)t1

Combining (24), (25) with (21) gives

|v1| − |v0| ≤
a|v0|
f (0)

t1

Shifting back to original time, t1 becomes ti+1 − ti and f (0) becomes f (ti). But
f (ti) ≥ ati by our assumptions on f (t) and we are done.

The synthesis of the above difference estimates is completed in the following key result.

Proposition 4 Let x(t0) ≈ 0, E(t0) ≈ 0. Let f (t) ≥ 0 on [t0, t0 + ∆]. Then E(t) ≈ 0
on [t0, t0 + ∆].

Proof We will show that Ei ≈ 0 for all i = 0, . . . ,N . It is easy to observe that Ei ≈ 0
implies E(t) ≈ 0 for all t ∈ [ti, ti+1]. In view of (14), we only need to deal with two
cases.

1. Let f (t) ≥ c > 0. If x(t) > 0 on (ti, ti+1), by Lemma 7, part 1, we have

Ei+1 − Ei ≤ µ(ti+1 − ti)

Journal of Logic & Analysis 9:4 (2017)
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with some positive µ ≈ 0. If, on the other hand, x(t) < 0, we have |vi+1| − |vi| ≤
c|vi|(ti+1 − ti) with some standard c > 0. Noting that Ei = 1

2 |vi|2 , it is easy to deduce

Ei+1 − Ei ≤ cEi(ti+1 − ti)

with possibly different c > 0. Combining the both we always have

Ei+1 − Ei ≤ (kEi + µ)(ti+1 − ti)

for some standard k > 0 and infinitesimal µ > 0. If follows by Lemma 9 that
Ei ≤ (E0 + µ/k) exp(k(ti − t0)). Hence if E0 ≈ 0, we have Ei ≈ 0 for all i.

2. Let f (t0) = 0 and a ≤ f ′(t) ≤ 5
3 a on [t0, t0 + ∆], where a > 0 is standard. We can

again set t0 = 0 for simplicity.

On intervals where x(t) < 0, we have two estimates at our disposal, namely (18) and
(19) from part 3 and 4 of Lemma 8.

On intervals where x(t) > 0, since f (t) is increasing, Ei+1 − Ei ≤ 0 by part 2 of
Lemma 7, and so |vi+1| − |vi| ≤ 0, which means that (18) and (19) actually hold for all
i.

One first employs (18). By Lemma 11 with g(u) = u1/2 and f (t) = 1, we obtain
|vi|1/2 ≤ |v0|1/2 + cti and hence

|vi| ≤ c(t2
i + |v0|)

Therefore, one can choose tι > 0 infinitesimal so that |vι|/tι ≈ 0. By Lemma 10 and
(19), the values of zi = |vi|/ti are nonincreasing, and thus |vi|/ti ≤ |vι|/tι ≈ 0 for all
i ≥ ι. Hence |vi| ≈ 0 for all i and we are done.

5 Proof of Theorem 2

Set

(26)
J = st{t ∈ I; x ≈ x̃ on [0, t]}
t0 = sup J

Note that the supremum is taken in R (not in ∗R) here. Clearly J ⊂ R is an interval.
Since by Lemma 1 the energy is bounded and thus x(t)− x̃(t) is (standard) Lipschitz,
one sees that J is closed, ie I = [0, t0] for some t0 ∈ [0, T]. We will show that t0 < T
leads to contradiction by a variant of the usual creeping argument.
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Observe first that x(t) and x̃(t) < 0 on some [0,∆] by continuity, and thus remain
infinitely close by Lemma 2. This means that t0 > 0, and we track down for repeated
future use that in particular

(27) x(t) ≈ x̃(t) on (t0 −∆0, t0] for some ∆0 > 0 standard

1. Let x(t0) < 0 and x(t0) 6≈ 0. Then in addition to (27) we have x(t), x̃(t) < 0 and
thus also x′(t) ≈ x̃′(t) on (t0 −∆0, t0]. In particular it follows that x′(t0) ≈ x̃′(t0) and
by Lemma 2 we deduce x(t) ≈ x̃(t) also for t ∈ [t0, t0 + ∆) with some standard ∆ > 0,
which contradicts the definition of t0 .

2. It remains to discuss the situation where x(t0) ≈ 0. We further distinguish the
following sub-cases:

2a. Let E(t0) 6≈ 0. Then we can apply Proposition 2 to x(t) and obtain tin < tout

infinitely close to t0 . Now x′(tin) � 0 and x(tin) = 0, so we can also assume that
x(t) < 0 on (tin −∆0, tin). It now follows from (27) and Proposition 1 that the second
solution x̃(t) will satisfy x̃(t̃in) = 0 for some t̃in ≈ tin ≈ t0 with x̃(t̃in) ≈ x′(tin); in
particular, Proposition 2 applies to x̃(t) as well.

Hence also x̃′(t̃out) ≈ x′(tout), which implies x(t) ≈ x̃(t) on some standard [t0, t0 + ∆).
This contradicts (26).

2b. Let x(t0) ≈ 0 and also E(t0) ≈ 0. We also have x̃(t0) ≈ 0. We also necessarily have
Ẽ(t0) ≈ 0; for otherwise we argue as in 2a. We now invoke the structural assumption
(9). If f (t) ≡ 0 on some [t0, t0 + ∆], then both solutions remain infinitely close to 0
and hence to each other by Lemma 4.

Otherwise, we can assume that (14) applies. Either by Proposition 3 both solutions are
pulled-out and keep infinitely close in virtue of (15), or by Proposition 4 both solutions
remain infinitely close to x = 0 up to some t0 + ∆. At any rate, this again contradicts
the definition of t0 and the proof is complete.

6 Appendix

Here we prove three auxiliary lemmas on “integration” of certain difference equations.
The results are proven by induction for standard sequences; hence by transfer they hold
for internal hyper-finite sequences as required.

The first lemma is just a discrete version of Gronwall’s lemma.
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Lemma 9 Let Ei ≥ 0 satisfy

(28) Ei+1 − Ei ≤ (kEi + µ)(ti+1 − ti), ∀i = 0, . . . ,N

where k ≥ 0, µ > 0. Then

(29) Ei ≤ E0 exp(k(ti − t0)) +
µ

k

(
exp(k(ti − t0))− 1

)
, ∀i = 0, . . . ,N

Proof Set Fi = kEi + µ. Then Fi > 0 and (28) can be can be rewritten as

Fi+1 − Fi

Fi
≤ k(ti+1 − ti)

Furthermore,

ln Fi+1 − ln Fi = ln
Fi+1

Fi
= ln

(
1 +

Fi+1

Fi
− 1
)
≤ Fi+1

Fi
− 1 =

Fi+1 − Fi

Fi

by an elementary inequality ln(1 + x) ≤ x, which is true for any x > −1. Thus we
have ln Fi+1 − ln Fi ≤ k(ti+1 − ti). Summing up and exponentiating we obtain

Fi ≤ Fi exp(k(ti − t0))

which can be rewritten as the desired conclusion (29).

Second lemma deals with homogeneous equations.

Lemma 10 Let ui satisfy

(30) ui+1 − ui = f (ti, ui)(ti+1 − ti), ∀i = 0, . . . ,N

where f = f (t, u) is 0-homogeneous: for any λ > 0, one has f (λt, λu) = f (t, u). Set
ui = tizi . Then zi satisfy

(31) (zi+1 − zi)ti+1 = (f (1, zi)− zi)(ti+1 − ti)

Proof One writes

ui+1 − ui = ti+1zi+1 − tizi = (zi+1 − zi)ti+1 + zi(ti+1 − ti)

Further, the homogeneity gives f (ti, ui) = f (1, zi) and (31) follows at once from (30).

The last lemma corresponds to integration of separable equations.
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Lemma 11 Let ui satisfy

ui+1 − ui ≤ g(ui)f (ti)(ti+1 − ti), ∀i = 0, . . . ,N

with g(u), f (t) nondecreasing and g(u) > 0. Then

(32) G(ui)− G(u0) ≤ F(ti)− F(t0), ∀i = 0, . . . ,N

where G(u), F(t) are primitive functions to 1/g(u) and f (t), respectively.

Proof Dividing by g(ui) > 0 preserves the inequality. On the left hand side, we
employ the mean value theorem to estimate

ui+1 − ui

g(ui)
= G′(ui)(ui+1 − ui) ≥ G′(η)(ui+1 − ui) = G(ui+1)− G(ui)

where η is between ui and ui+1 . Likewise the right hand side is estimated through

f (ti)(ti+1 − ti) ≤ F′(τ )(ti+1 − ti) = F(ti+1)− F(ti)

with τ between ti and ti+1 . Combining and summing up the estimates, we arrive at
(32).
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