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Clarke’s Generalized Gradient and Edalat’s L-derivative
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Abstract: Clarke [2, 3, 4] introduced a generalized gradient for real-valued Lipschitz
continuous functions on Banach spaces. Using domain theoretic notions, Edalat [5,
6] introduced a so-called L-derivative for real-valued functions and showed that for
Lipschitz continuous functions Clarke’s generalized gradient is always contained
in this L-derivative and that these two notions coincide if the underlying Banach
space is finite dimensional. He asked whether they coincide as well if the Banach
space is infinite dimensional. We show that this is the case.
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1 Introduction

Clarke [4, Page 1] observed that “nonsmooth phenomena in mathematics and opti-
mization occur naturally and frequently, and there is a need to be able to deal with
them. We are thus led to study differential properties of nondifferentiable functions.”
Motivated by this observation, Clarke [2, 3, 4] introduced a generalized gradient ∂f (x)
for real-valued Lipschitz continuous functions f on Banach spaces. Using domain
theoretic notions in the realm of computable analysis, Edalat [5, 6] introduced a so-called
L-derivative for real-valued functions on Banach spaces. Domain theory arose in the
context of computer science and logic. While the primary application of domain theory
is in the semantics of programming languages, domain theoretic notions can also be
applied successfully in computable analysis, as shown in [5, 6] and in other articles by
Edalat. As Clarke’s generalized gradient and Edalat’s L-derivative are defined using
rather different mathematical notions it is remarkable that they are closely connected.
Edalat [5, 6] showed that for Lipschitz continuous functions Clarke’s generalized
gradient is always contained in his L-derivative and that these two notions coincide if
the underlying Banach space is finite dimensional. He asked whether they coincide as
well if the Banach space is infinite dimensional. We show that, indeed, for Lipschitz
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2 Peter Hertling

continuous real functions on arbitrary Banach spaces they coincide. In view of the
fact that both notions are defined within different mathematical theories, the fact that
they coincide for Lipschitz continuous functions may be taken as further indication that
the resulting notion is a natural one. That they coincide also shows that the domain
theoretic definition by Edalat can be used for a computability theoretic treatment of
Clarke’s generalized gradient.

In the following section we introduce some basic notions and collect fundamental facts
about a Banach space X , its dual space X∗ and the weak∗ topology on X∗ . Then, in
Section 3, for a Lipschitz continuous function on X , we introduce Clarke’s generalized
directional derivative and Clarke’s generalized gradient. In the following section, for
an open subset U of X , we introduce a function that may be considered as a “global”
version of Clarke’s generalized directional derivative. Then we prove a crucial property
of this function. Using this function, in Section 5 we introduce a certain weak∗ compact
subset of X∗ that contains Clarke’s generalized gradient. In Section 6 we formulate
several fundamental facts concerning continuous functions f : X → Y where X may be
an arbitrary topological space, eg a Banach space, and where Y is a directed complete
partial order (dcpo). Furthermore, we consider some special bounded complete dcpo’s.
In Section 7 we introduce Edalat’s so-called ties of functions that are needed for the
definition of his L-derivative. We also show how they are related to the weak∗ compact
subsets introduced in Section 5. Finally, in Section 8 we introduce Edalat’s L-derivative
and show that for a Lipschitz continuous function on an arbitrary Banach space it
coincides with Clarke’s generalized gradient.

2 Basic notions

In this section, we remind the reader of several well-known notions concerning a Banach
space X , its dual space X∗ and the weak∗ topology on X∗ . We will consider only vector
spaces over R, the field of real numbers.

Let X be a real Banach space with norm || · ||. For any x ∈ X and r > 0 let

B(x, r) := {y ∈ X : ||y− x|| < r}
be the open ball with radius r and midpoint x . For subsets S, T ⊆ X we write as usual

S + T := {x ∈ X : (∃s ∈ S) (∃t ∈ T) x = s + t}.

Let X∗ be the linear vector space of all continuous linear functions ζ : X → R. With
the norm || · ||∗ defined by

||ζ||∗ := sup{|ζ(v)| : v ∈ X, ||v|| ≤ 1}
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this space is a Banach space as well. As either |ζ(v)| = ζ(v) or |ζ(v)| = −ζ(v) = ζ(−v)
and || − v|| = ||v|| we may write as well

||ζ||∗ = sup{ζ(v) : v ∈ X, ||v|| ≤ 1}.

The weak∗ topology is a topology on the set X∗ . It is defined to be the coarsest topology
such that for any x ∈ X the function

lx : X∗ → R defined by lx(ζ) := ζ(x)

is continuous. Every subset U ⊆ X∗ that is open in the weak∗ topology is also open in
the topology induced by the norm || · ||∗ . The converse is in general not true; see, eg,
Megginson [9, Theorem 2.6.2 and Corollary 2.6.3]. It is well known that X∗ with the
weak∗ topology is a topological vector space and a Hausdorff space; see, eg, Rudin [10,
Page 66 and Theorem 1.12]. Subsets of X∗ that are compact in the weak∗ topology
will be called weak∗ compact.

3 Clarke’s Generalized Gradient

The terminology in this section is copied from Clarke [4, Chapter 2].

Let X be a Banach space with norm || · ||. Let Y be a subset of X , and let c be a
non-negative real number. A function f : Y → R is called Lipschitz continuous with
Lipschitz constant c if for all x, y ∈ Y

|f (x)− f (y)| ≤ c · ||x− y||.

A function f : X → R is called Lipschitz continuous with Lipschitz constant c near
a point x ∈ X if there is an ε > 0 such that the restriction of f to the ball B(x, ε)
is Lipschitz continuous with Lipschitz constant c. A function f : X → R is called
Lipschitz continuous (near x) if there exists a real number c ≥ 0 such that f is Lipschitz
continuous with Lipschitz constant c (near x).

Let f : X → R be Lipschitz continuous near some point x ∈ X . Fix an arbitrary v ∈ X .
The generalized directional derivative of f at x in the direction v, denoted f ◦(x; v), is
defined by

f ◦(x; v) := lim sup
z→x,t↓0

f (z + tv)− f (z)
t

.

In the following section we spell this out in more detail (Lemma 1(4)).

For any x ∈ X the generalized gradient of f at x , denoted ∂f (x), is defined as follows:

∂f (x) = {ζ ∈ X∗ : (∀v ∈ X) ζ(v) ≤ f ◦(x; v)}.
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4 Peter Hertling

This is a nonempty, convex and weak∗ compact subset of X∗ ; see Clarke [4, Proposition
2.1.2(a)].

4 A Global Version of Clarke’s Generalized Directional
Derivative

Let X be a Banach space with norm || · ||. For a nonempty, open set U ⊆ X and a
function f : dom(f ) ⊆ X → R with U ⊆ dom(f ) that is Lipschitz continuous on U we
define

f̃ (U, v) := sup
{

f (z + tv)− f (z)
t

: z ∈ U, t > 0, z + tv ∈ U
}

for v ∈ X . We show in the following lemma that this is well defined. This function can
be considered as a global version of Clarke’s generalized directional derivative. In the
following lemma several elementary assertions about this function are collected.

Lemma 1 Let X be a Banach space, let U ⊆ X be a nonempty open subset, and let
f : dom(f ) ⊆ X → R with U ⊆ dom(f ) be a function Lipschitz continuous on U . For
the first four of the following five assertions, fix an arbitrary v ∈ X .

(1) The value f̃ (U, v) is well defined, and if c ≥ 0 is a Lipschitz constant for f on U
then f̃ (U, v) ≤ c · ||v||.

(2) If U′ ⊆ U is a nonempty open subset of U then f̃ (U′, v) ≤ f̃ (U, v).

(3) If x ∈ U then f ◦(x, v) ≤ f̃ (U, v).

(4) If x ∈ U then limn→∞ f̃ (B(x, 2−n), v) = f ◦(x, v).

(5) The function v 7→ f̃ (U, v) is positively homogeneous, i.e, for all r > 0 and
v ∈ X ,

f̃ (U, rv) = rf̃ (U, v).

Proof Fix some v ∈ X .

(1) Let c ≥ 0 be a Lipschitz constant for f on U . Then for all z ∈ U and t > 0 such
that z + tv ∈ U we have

f (z + tv)− f (z)
t

≤ |f (z + tv)− f (z)|
t

≤ ct||v||
t

= c · ||v||.

This shows that f̃ (U, v) is well defined and satisfies f̃ (U, v) ≤ c · ||v||.
(2) This follows directly from the definition of f̃ (U, v).
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(3) This is a consequence of the definitions of f ◦(x, v) and of f̃ (U, v).

(4) Note that by the second statement the sequence (f̃ (B(x, 2−n), v))n∈N is non-
increasing, and by the third statement it is bounded from below. Therefore its
limit exists. That its limit is equal to f ◦(x, v) is simply a restatement of the
definition of f ◦(x, v).

(5) We additionally fix some real number r > 0. Then

f̃ (U, rv) = sup
{

f (z + trv)− f (z)
t

: z ∈ U, t > 0, z + trv ∈ U
}

= sup
{

r · f (z + sv)− f (z)
s

: z ∈ U, s > 0, z + sv ∈ U
}

= r · sup
{

f (z + sv)− f (z)
s

: z ∈ U, t > 0, z + sv ∈ U
}

= r · f̃ (U, v).

Clarke’s generalized directional derivative is positively homogeneous and subadditive
[4, Proposition 2.1.1]. In Lemma 1(5) we have seen that also the global function
v 7→ f̃ (U, v) is positively homogeneous. In the following lemma we show that it is
subadditive as well if U is convex.

Lemma 2 Let X be a Banach space, let U ⊆ X be a convex open subset, and
f : dom(f ) ⊆ X → R with U ⊆ dom(f ) be a function Lipschitz continuous on U . Then
the function v 7→ f̃ (U, v) is subadditive, ie, for all v,w ∈ X ,

f̃ (U, v + w) ≤ f̃ (U, v) + f̃ (U,w).

Proof We will fix some ε > 0 and show that for any v,w ∈ X

f̃ (U, v) + f̃ (U,w) ≥ f̃ (U, v + w)− ε.

Once this is proved for any ε > 0, the assertion

f̃ (U, v) + f̃ (U,w) ≥ f̃ (U, v + w)

follows.

So, let us fix some ε > 0 and elements v,w ∈ X . We choose a point z ∈ U and a real
number t > 0 such that z + t(v + w) ∈ U and

f (z + t(v + w))− f (z)
t

≥ f̃ (U, v + w)− ε.

Journal of Logic & Analysis 9:c1 (2017)
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One might try to prove the assertion simply by replacing the quotient on the left hand
side by the following term:

f (z + t(v + w))− f (z + tv)
t

+
f (z + tv)− f (z)

t
.

If z + tv would happen to be an element of U , then this term would be a lower bound
for f̃ (U,w) + f̃ (U, v), and we would be done. Unfortunately, the point z + tv may lie
outside of the open set U ; see Figure 1. We will have to proceed differently. This is

a[1] a[2] a[3] a[4] a[5]
5 4 1 3 2

5

4 1

3 2

U

z

z + tv

z + t(v + w)
U

z0 = z

zk = z + t(v + w)

4

Figure 1: The diagram on the left hand side illustrates a proof attempt for Lemma 2 that does
not work. The diagram on the right hand side illustrates the construction in the proof for k = 5.

where the convexity of U will be important. As U is convex, the line segment

L := {z + r(v + w) : 0 ≤ r ≤ t}

is a subset of U . Since this line segment L is compact and U is open there exists some
δ > 0 such that even the set

L + B(0, δ)

is a subset of U . Let k be a positive integer so large that

t||v||
k

< δ.

Then for i = 0, . . . , k the points

zi := z + i · t
k
· (v + w)

are elements of the line segment L and, thus, of the open set U , and the points zi +
t
k v

are elements of L+B(0, δ), and, hence, elements of the open set U as well; see Figure 1.

Journal of Logic & Analysis 9:c1 (2017)



Clarke’s Generalized Gradient and Edalat’s L-derivative 7

Using these points we can replace the quotient f (z+t(v+w))−f (z)
t by a sum of quotients as

follows:
f (z + t(v + w))− f (z)

t

=
f (zk)− f (z0)

t

=

k−1∑
i=0

f (zi+1)− f (zi)
t

=

k−1∑
i=0

f (zi +
t
k (v + w))− f (zi)

t

=
k−1∑
i=0

(
f (zi +

t
k (v + w))− f (zi +

t
k v)

t
+

f (zi +
t
k v)− f (zi)

t

)

=
k−1∑
i=0

1
k
·

f (zi +
t
k (v + w))− f (zi +

t
k v)

t/k
+

k−1∑
i=0

1
k
·

f (zi +
t
k v)− f (zi)
t/k

≤
k−1∑
i=0

1
k
· f̃ (U,w) +

k−1∑
i=0

1
k
· f̃ (U, v)

= f̃ (U,w) + f̃ (U, v).

We have shown
f̃ (U, v) + f̃ (U,w) ≥ f̃ (U, v + w)− ε,

where ε > 0 was chosen arbitrarily. This ends the proof.

5 About Nonempty, Convex, Weak∗ Compact Sets

Let X be a Banach space. In this section, first we observe that any nonempty, convex,
weak∗ compact subset K of X∗ can be expressed with the help of its support function.
Then, using the global version of the generalized directional derivative, we introduce
certain nonempty, convex, weak∗ star compact subsets of X∗ .

Let K be a nonempty, weak∗ compact subset of X∗ . It is well known (see, eg,
Megginson [9, Corollary 2.6.9]) that any such set is bounded, ie, there is some
non-negative real number B such that

(∀ζ ∈ K) ||ζ||∗ ≤ B.
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This implies for all ζ ∈ K and v ∈ X

ζ(v) ≤ ||ζ||∗ · ||v|| ≤ B · ||v||.

Thus, for v ∈ X , by
sK(v) := sup{ζ(v) : ζ ∈ K}

a real number is defined that satisfies

sK(v) ≤ B · ||v||.

The function sK : X → R is called the support function of K .

Lemma 3 Let X be a Banach space. Let K ⊆ X∗ be a nonempty, convex, and weak∗

compact subset of X∗ . Then

K = {ζ ∈ X∗ : (∀v ∈ X) ζ(v) ≤ sK(v)}.

Proof The inclusion “⊆” follows from the definition of sK(v). We wish to prove the
inclusion “⊇”. Therefore, let us consider some ξ ∈ X∗ with ξ 6∈ K . By the second part
of Beer [1, Theorem 1.4.2] there exist an element v ∈ X and a real number α such that
either

(1) ξ(v) > α and (∀ζ ∈ K) ζ(v) < α

or
ξ(v) < α and (∀ζ ∈ K) ζ(v) > α.

In the second case we obtain

ξ(−v) = −ξ(v) > −α and (∀ζ ∈ K) ζ(−v) = −ζ(v) < −α,

thus, (1) holds for −v and −α . Therefore, we can assume that (1) holds. Then

sK(v) ≤ α < ξ(v)

and, hence,
ξ 6∈ {ζ ∈ X∗ : (∀v ∈ X) ζ(v) ≤ sK(v)}.

Let U ⊆ X be a nonempty, open subset of the Banach space X , and let f : dom(f ) ⊆
X → R with U ⊆ dom(f ) be a function Lipschitz continuous on U . We define

KU,f := {ζ : X → R : ζ is linear and (∀v ∈ X) ζ(v) ≤ f̃ (U, v)}.

Lemma 4 (1) KU,f is a nonempty, convex, and weak∗ compact subset of X∗ .

(2) For all x ∈ U , ∂f (x) ⊆ KU,f .
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(3) Let n0 be a nonnegative integer with B(x, 2−n0) ⊆ U . Then

∂f (x) =
⋂

n≥n0

KB(x,2−n),f .

Proof (1) Let c ≥ 0 be a Lipschitz constant for f on U . According to Lemma 1(1)
for any v ∈ X we have f̃ (U, v) ≤ c · ||v||. Hence, for ζ ∈ KU,f , ζ(v) ≤ c · ||v||
and −ζ(v) = ζ(−v) ≤ c · || − v|| = c · ||v||, thus |ζ(v)| ≤ c · ||v||. This implies
ζ ∈ X∗ , and KU,f is contained in the set {ζ ∈ X∗ : ||ζ||∗ ≤ c}. By Alaoglu’s
theorem (see, eg, Megginson [9, Theorem 2.6.18]) this set is weak∗ compact.
As KU,f is a weak∗ closed subset of this set, KU,f is itself weak∗ compact; see,
eg, Engelking [7, Theorem 3.1.2]. It is also clear that KU,f is a convex set. That
KU,f is nonempty follows from the second assertion and the fact that ∂f (x) is
nonempty.

(2) This follows from Lemma 1(3).

(3) By the second assertion we obtain ∂f (x) ⊆ KB(x,2−n),f for any n ≥ n0 , hence

∂f (x) ⊆
⋂

n≥n0

KB(x,2−n),f .

For the inverse inclusion consider some ζ ∈
⋂

n≥n0
KB(x,2−n),f . Then, for all

n ≥ n0 and all v ∈ X ,
ζ(v) ≤ f̃ (B(x, 2−n), v),

hence,
ζ(v) ≤ lim

n→∞
f̃ (B(x, 2−n), v) = f ◦(x, v)

(compare Lemma 1(4)), and this implies ζ ∈ ∂f (x). That was to be shown.

6 Continuous Functions from an Arbitrary Topological
Space to a Bounded Complete DCPO

It is the purpose of this section to provide several fundamental facts concerning
continuous functions f : X → Y where X may be an arbitrary topological space, eg a
Banach space, and where Y is a directed complete partial order (dcpo), in particular,
where Y is a bounded complete dcpo. Furthermore, we consider some special bounded
complete dcpo’s. We will need all this later in order to define Edalat’s L-derivative for
arbitrary functions. In order to make the presentation self-contained we introduce basic
notions about dcpo’s as well.

A set Z with a binary relation v⊆ Z × Z satisfying the following three conditions
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10 Peter Hertling

(1) (∀z) z v z (reflexivity),

(2) (∀x, y, z) (x v y ∧ y v z)⇒ x v z (transitivity),

(3) (∀y, z) (y v z ∧ z v y)⇒ y = z (antisymmetry),

is called a partial order. Let (Z,v) be a partial order.

• An element z ∈ Z is called an upper bound of a subset S ⊆ Z if (∀s ∈ S) s v z.

• An element z ∈ Z is called a supremum or least upper bound of a subset S ⊆ Z
if it is an upper bound of S and if for all upper bounds y of S one has z v y.
Obviously, if a set S has a supremum, then this supremum is unique. Then we
denote it by sup(S).

• A subset S ⊆ Z is called directed if it is nonempty and for any two elements
x, y ∈ S there exists an upper bound z ∈ S of the set {x, y}.

• Z is called a dcpo if for any directed subset S ⊆ Z there exists a supremum of S
in Z .

• A subset S ⊆ Z is called upwards closed if for any elements s, z ∈ Z : if s ∈ S
and s v z then z ∈ S .

The following lemma is well known.

Lemma 5 (See, eg, Goubault-Larrecq [8, Proposition 4.2.18]) Let (Z,v) be a partial
order. The set of all subsets O ⊆ Z satisfying the following two conditions:

(1) O is upwards closed,

(2) if S ⊆ Z is a directed subset with sup(S) ∈ O then S ∩ O 6= ∅,

is a topology on Z , called the Scott topology.

Consider now some partial order (Z,v) and an arbitrary topological space X . We call a
total function f : X → Z Scott continuous if it is continuous with respect to the given
topology on X and the Scott topology on Z . Let C(X,Z) denote the set of all Scott
continuous functions f : X → Z . On this set we define a binary relation vC by

f vC g :⇐⇒ (∀x ∈ X) f (x) v g(x).

Proposition 6 Let (Z,v) be a dcpo, and let X be an arbitrary topological space. Then
C(X, Z) with vC is a dcpo. Furthermore, if F ⊆ C(X, Z) is a vC -directed set then the
function g : X → Z defined by

g(x) := sup({f (x) : f ∈ F})

is Scott continuous and the least upper bound of F .
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Proof It is clear that (C(X,Z),vC) is a partial order.

Now we show that C(X, Z) with vC is even a dcpo. Let F ⊆ C(X, Z) be a vC -directed
set. Then for every x ∈ X , the set

F(x) := {f (x) : f ∈ F} = {z ∈ Z : (∃f ∈ F) z = f (x)}

is v-directed. We define a total function g : X → Z by g(x) := sup(F(x)).

First, we claim that this function g is Scott continuous. Fix some point x ∈ X , and
let O ⊆ Z be a Scott open set with g(x) ∈ O. We have to show that there is an open
set U ⊆ X with x ∈ U and g(U) ⊆ O. From sup(F(x)) = g(x) ∈ O and from the
assumption that F(x) is a directed set we conclude F(x) ∩ O 6= ∅, hence, there is some
f ∈ F with f (x) ∈ O. As f is Scott continuous, there is some open set U ⊆ X with
x ∈ U and f (U) ⊆ O. Thus, for all y ∈ U , on the one hand we have f (y) ∈ O, and on
the other hand, by definition of g, f (y) v g(y). As O is Scott open and, thus, upwards
closed, we obtain g(y) ∈ O. This shows g(U) ⊆ O. Thus, we have shown that g is
Scott continuous.

By the definition of g, for all f ∈ F we have f vC g, thus g is an upper bound of F .
Finally, if h is an arbitrary upper bound of F , then for all x ∈ X , g(x) = sup(F(x)) ≤ h(x).
Hence, g is a least upper bound of F .

Let (Z,v) be a partial order.

• An element y ∈ Z is called a least element of Z if for all z ∈ Z , y v z. Obviously,
if a least element exists then it is unique. Usually, when a least element exists, it
is denoted ⊥.

• A subset S ⊆ Z is called bounded if there exists an upper bound z ∈ Z for S .

• Z is called bounded complete if for any bounded subset S ⊆ Z there exists a
supremum of S in Z .

Lemma 7 Any bounded complete partial order has a least element.

This is well known. For completeness sake we give the proof.

Proof In any partial order, every element is an upper bound of the empty set. Hence,
in a bounded complete partial order sup(∅) exists. It is a least element.

The following proposition covers the cases of bounded complete dcpos that we will
need.

Journal of Logic & Analysis 9:c1 (2017)



12 Peter Hertling

Proposition 8 Let Y be a nonempty topological vector space whose topology is a
Hausdorff topology. Let

Z := {Y} ∪ {K : K ⊆ Y is a nonempty, convex, compact set}.

(1) Then Z with v defined as reverse inclusion is a bounded complete dcpo with
least element Y .

(2) If S ⊆ Z is bounded or directed then

sup(S) =
⋂
K∈S

K.

Proof First, we observe that (Z,v) is a partial order.

Next, we prove the following claim.

Claim 1: For any S ⊆ Z , the set
⋂

K∈S K is either empty or an element of Z .

For the proof, we distinguish three cases.

Case I: S = ∅. Then
⋂

K∈S K = Y , and this is an element of Z .

Case II: S = {Y}. Then again
⋂

K∈S K = Y , and this is an element of Z .

Case III: S contains at least one element K0 that is different from Y , ie, that is nonempty,
convex and compact. As all elements of S are closed (any compact subset of a Hausdorff
space is closed; see, eg, Engelking [7, Theorem 3.1.8]) and the intersection of arbitrarily
many closed sets is closed as well, the intersection

⋂
K∈S K is a closed subset of Y . In

fact, it is a closed subset of the compact set K0 , and hence (see, eg, [7, Theorem 3.1.2])
compact itself. Note also that all elements of S are convex and that the intersection
of arbitrarily many convex sets is again a convex set. Thus,

⋂
K∈S K is a convex and

compact subset of Y . If this intersection is not empty then it is an element of Z . We
have proved Claim 1.

We continue with the following claim.

Claim 2: If S ⊆ Z is bounded or directed then
⋂

K∈S K is not empty.

Let S ⊆ Z be a bounded set, and let K0 ∈ Z be an upper bound of S . This means
K0 ⊆ K for all K ∈ S , hence, K0 ⊆

⋂
K∈S K . And as all elements of Z are nonempty,

K0 is nonempty. Hence,
⋂

K∈S K is nonempty. Now let S ⊆ Z be directed. If S = {Y}
then

⋂
K∈S K = Y , and this set is nonempty. Let us assume that S contains at least one

element K0 that is different from Y , hence, K0 is a nonempty, convex, compact subset
of Y . Using the assumption that S is a directed set, one shows by induction that the set

S′ := {K ∩ K0 : K ∈ S}
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has the finite intersection property, ie, the intersection of any finite subset of S′ is
nonempty. As the elements of S′ are closed subsets of the compact set K0 , this implies
that

⋂
K′∈S′ K

′ 6= ∅; see, eg, [7, Theorem 3.1.1]. It is clear that
⋂

K∈S K =
⋂

K′∈S′ K
′ .

We have proved Claim 2.

Now let S ⊆ Z be bounded or directed. Claims 1 and 2 imply that
⋂

K∈S K is an
element of Z . It is clear that

⋂
K∈S K is an upper bound of S . On the other hand, any

upper bound of S must be a subset of any K in S , hence, a subset of
⋂

K∈S K . Thus,
this intersection is the least upper bound of S .

Example 9 Let us apply Proposition 8 to Y = R. Hence, let

I := {R} ∪ {[a, b] : a, b ∈ R, a ≤ b}
be the set whose elements are all nonempty, compact intervals and the whole set of real
numbers. We define v as reverse inclusion:

A v B :⇐⇒ B ⊆ A.

Then (I,v) is a bounded complete dcpo with least element R. The supremum of a
bounded or directed set S ⊆ I is the intersection

⋂
I∈S I .

Example 10 Let X be a Banach space. We apply Proposition 8 to Y := X∗ with the
weak∗ topology. It is well known that X∗ with the weak∗ topology is a topological
vector space and a Hausdorff space; see, eg, Rudin [10, Page 66]. We define Zconvex by

Zconvex := {X∗} ∪ {K : K ⊆ X∗ is a nonempty, convex, weak∗compact set}.
On Zconvex we define v again as reverse inclusion. Then (Zconvex,v) is a bounded
complete dcpo with least element X∗ . The supremum of a bounded or directed set
S ⊆ I is the intersection

⋂
K∈S K .

Edalat [5, Section 3], [6, Section 4] defined his L-derivate as the supremum of a certain
class of “elementary step functions” from a Banach space X to Zconvex from Example 10.
These elementary step functions are Scott continuous. We will see that under suitable
conditions the supremum of a certain class of such functions exists in the dcpo of Scott
continuous functions.

Definition 11 Let X be an arbitrary topological space and (Z,v) be a partial order
with least element ⊥. For any open subset U ⊆ X and any z ∈ Z we define the (total)
function (U ↘ z) : X → Z by

(U ↘ z)(x) :=

{
z if x ∈ U,

⊥ if x 6∈ U.

We call such a function an elementary step function.
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It is easy to see that any such function is Scott continuous. In fact, we will need
the following stronger statement, which is an immediate consequence of Goubault-
Larrecq [8, Lemma 5.7.10].

Lemma 12 Let X be an arbitrary topological space and (Z,v) be a partial order with
least element ⊥. Let F be a finite set of elementary step functions from X to Z such
that for each x ∈ X the set {f (x) : f ∈ F} has a least upper bound. Then the function
g : X → Z defined by

g(x) := sup({f (x) : f ∈ F})

is Scott continuous.

Note that this lemma implies that every elementary step function is Scott continuous.

Proof This is an immediate consequence (almost a reformulation) of [8, Lemma
5.7.10].

For the formulation of the desired result the following notion is useful. We call a set F
of total functions from X to Z pointwise bounded if for every x ∈ X , the set

F(x) := {f (x) : f ∈ F} = {z ∈ Z : (∃f ∈ F) z = f (x)}

is v-bounded.

Theorem 13 Let X be an arbitrary topological space, and let (Z,vZ) be a bounded
complete dcpo. Let F be a set of elementary step functions from X to Z . If F is
pointwise bounded then the total function g : X → Z defined by

g(x) := sup{f (x) : f ∈ F}

is Scott continuous and a least upper bound of F .

Proof Let F be a pointwise bounded set of elementary step functions. Remember that
we have already seen that every elementary step function is continuous, ie, F ⊆ C(X, Z).
Let the total function g : X → Z be defined by

g(x) := sup{f (x) : f ∈ F}.

This function is well defined because we assume that F is pointwise bounded and Z is
bounded complete. We have to show that g is Scott continuous and a least upper bound
of F . In fact, once we have shown that g is Scott continuous it is clear that g is a least
upper bound of F . Thus, we are now going to show that g is Scott continuous.
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For any finite subset E ⊆ F , the set {f (x) : f ∈ E} is bounded because F is pointwise
bounded. As Z is bounded complete, sup{f (x) : f ∈ E} exists. According to
Lemma 12, the function gE : X → Z defined by

gE(x) := sup{f (x) : f ∈ E}

is Scott continuous. It is clear that it is a least upper bound of E , ie, gE = sup(E). It is
straightforward to see that the set

D := {gE : E is a finite subset of F}

is a directed subset of C(X, Z). By Proposition 6 sup(D) exists and is a Scott continuous
function. Finally, it is also straightforward to see that sup(D) vC g and g vC sup(D),
thus, sup(D) = g. As sup(D) is Scott continuous, the proof is finished.

7 Ties of Functions

Let X be a Banach space. As in Example 10 we define Zconvex by

Zconvex := {X∗} ∪ {K : K ⊆ X∗ is a nonempty, convex, weak∗compact set}.

On Zconvex we define v again as reverse inclusion. In Example 10 we already mentioned
that (Zconvex,v) is a bounded complete dcpo with least element X∗ . Note that for any
K ∈ Zconvex and any x ∈ X the set

K(x) := {r ∈ R : (∃ζ ∈ K) r = ζ(x)}

is an element of I as defined in Example 9. Let V ⊆ X be a nonempty open subset
of X . Following Edalat [5, Definition 1], [6, Definition 3.1], for a nonempty open set
U ⊆ V and an element K ∈ Zconvex , we call the set

δV (U,K) := {f : f : dom(f )→ R is a function with U ⊆ dom(f ) ⊆ V
and (∀x, y ∈ U) K(x− y) v f (x)− f (y)}

the single tie of O with K . Here, the formula K(x−y) v f (x)− f (y) has to be understood
with respect to the dcpo of Example 9. We can rewrite this definition without using
domain theoretic language as follows:

δV (U,K) = {f : f : dom(f )→ R is a function with U ⊆ dom(f ) ⊆ V
and (∀x, y ∈ U) (∃ζ ∈ K) f (x)− f (y) = ζ(x− y)}.

Remark 14 Actually, Edalat [5, Definition 1], [6, Definition 3.1] considered only
convex open sets U . Convexity of U will be important later. But since the definition of
δ(U,K) makes sense for arbitrary open U and since we wish to show where convexity
of U will be important, right now we do not restrict ourselves to convex U .
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Lemma 15 Let V ⊆ X be a nonempty open subset of X , and fix some K ∈ Zconvex .

(1) For any nonempty open sets U1,U2 ⊆ V

U1 ⊆ U2 =⇒ δV (U1,K) ⊇ δV (U2,K).

(2) Let U be a nonempty open subset of V , and let K ∈ Zconvex be different from X∗ ,
ie, let K be a nonempty, convex, weak∗ compact subset of X∗ . If f ∈ δV (U,K)
then

(a) f is Lipschitz continuous on U and

(b) KU,f ⊆ K .

Proof (1) This is clear.

(2) (a) We already mentioned that any nonempty, convex, weak∗ compact subset
of X∗ is bounded, that is, there exists some c ≥ 0 such that for all
ζ ∈ K , ||ζ||∗ ≤ c. Consider arbitrary x, y ∈ U . Due to the assumption
f ∈ δV(U,K) there exists some ζ ∈ K with ζ(x − y) = f (x) − f (y). We
obtain

|f (x)− f (y)| = |ζ(x− y)| ≤ ||ζ||∗ · ||x− y|| ≤ c · ||x− y||.

This shows that f is Lipschitz continuous on U .

(b) Due to the assumption f ∈ δV (U,K), for any z ∈ U and t > 0 with
z + tv ∈ U there exists some ζ ∈ K with

f (z + tv)− f (z)
t

=
ζ(z + tv− z)

t
= ζ(v).

This implies
f̃ (U, v) ≤ sK(v).

By Lemma 3 we obtain
KU,f ⊆ K.

Note that in the following lemma we consider convex U .

Lemma 16 Let V ⊆ X be a nonempty open subset of X . Let U be a nonempty convex
open subset of V . Let f : dom(f ) → R with U ⊆ dom(f ) ⊆ V be a function that is
Lipschitz continuous on U . Then f ∈ δV (U,KU,f ).
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Proof We have to show that for every x, y ∈ U there exists some ζ ∈ KU,f with
f (x)− f (y) = ζ(x− y). Consider some x, y ∈ U .

If x = y then we choose an arbitrary ζ ∈ KU,f (remember that by Lemma 4(1) KU,f is
not empty) and obtain

f (x)− f (y) = 0 = ζ(0) = ζ(x− y).

Now we consider the case x 6= y. We set w := x− y. Let W be the one-dimensional
subspace of X generated by w, and let the linear function ζ0 : W → R be defined by
ζ0(α · w) := α · (f (x)− f (y)), for any α ∈ R. Then for all α ≥ 0

ζ0(αw) = α · (f (x)− f (y))

= α · f (y + 1 · w)− f (y)
1

≤ α · f̃ (U,w)

= f̃ (U, αw),

and for α < 0

ζ0(αw) = α · (f (x)− f (y))

= (−α) · (f (y)− f (x))

= (−α) · f (x + 1 · (−w))− f (x)
1

≤ (−α) · f̃ (U,−w)

= f̃ (U, (−α) · (−w))

= f̃ (U, αw).

Hence, for all v ∈ W we have ζ0(v) ≤ f̃ (U, v). Now remember that the function
v 7→ f̃ (U, v), mapping X to R, is positively homogeneous (Lemma 1(5)) and subadditive
(Lemma 2; this is where the convexity of U is used). By the Hahn Banach Extension
Theorem (see, eg, Megginson [9, Theorem 1.9.5]) there exists a linear function
ζ : X → R satisfying

(1) ζ(v) = ζ0(v) for all v ∈ W and

(2) ζ(v) ≤ f̃ (U, v) for all v ∈ X .

The first equation implies

ζ(x− y) = ζ(w) = ζ0(w) = f (x)− f (y).

The second equation implies that ζ is an element of KU,f .
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8 Edalat’s L-derivative

In this section we consider the setting of Example 10, that is, X is a Banach space, and
on

Zconvex := {X∗} ∪ {K : K ⊆ X∗ is a nonempty, convex, weak∗compact set}

we define v as reverse inclusion. Then, (Zconvex,v) is a bounded complete dcpo with
least element X∗ ; see Example 10.

Note that in the following lemma we do not assume that the open set U considered
there is convex.

Lemma 17 Let X be a Banach space, V ⊆ X a nonempty open subset of X , U ⊆ V a
nonempty open subset of V , K ∈ Zconvex , and f : V → R a function with f ∈ δV (U,K).
If f is Lipschitz continuous near some point x ∈ V then

∂f (x) ⊆ (U ↘ K)(x).

Proof If x 6∈ U then (U ↘ K)(x) = X∗ , and ∂f (x) ⊆ X∗ is clear. Let us consider the
case x ∈ U . Then (U ↘ K)(x) = K . Thus, we have to show ∂f (x) ⊆ K . This is clear if
K = X∗ . Let us assume that K is not equal to X∗ , hence, that K is a nonempty, convex,
weak∗ compact subset of X∗ . According to Lemma 15(2), f is Lipschitz continuous
on U and KU,f ⊆ K . According to Lemma 4(2) we have ∂f (x) ⊆ KU,f . Together we
obtain ∂f (x) ⊆ K .

Let X be a Banach space, V ⊆ X a nonempty open subset of X , and f : V → R an
arbitrary function. We define:

D(f ) := {(U,K) : U ⊆ V is nonempty, open, and convex and
K ∈ Zconvex and f ∈ δV (U,K)}.

First, we note that D(f ) is not empty. For example, if U ⊆ V is an open ball (balls are
convex) then (U,X∗) is an element of D(f ) (this is shown by an application of the Hahn
Banach Extension Theorem in a similar manner as in the proof of Lemma 16).

Lemma 18 The set
F := {(U ↘ K) : (U,K) ∈ D(f )}

is pointwise bounded.
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Proof It is sufficient to show that for each x ∈ X the set F(x) is a bounded subset of
Zconvex . We distinguish two cases.

Case I: There is no pair (U,K) ∈ D(f ) with x ∈ U and K 6= X∗ . Then F(x) = {X∗}.
This set is bounded by X∗ itself, the least element of Zconvex .

Case II: There is some pair (U0,K0) with x ∈ U0 and K0 6= X∗ . Then K0 is a
nonempty, convex, weak∗ compact subset of X∗ . According to Lemma 15(2), f is
Lipschitz continuous on U0 and, hence, Lipschitz continuous near x. By Lemma 17
∂f (x) ⊆ (U ↘ K)(x) for any (U,K) ∈ D(f ). This shows that F(x) is bounded by
∂f (x).

Now we can define Edalat’s L-derivative [5, Section 3], [6, Section 4].

Definition 19 Let X be a Banach space, V ⊆ X be a nonempty open subset of X , and
f : V → R be an arbitrary function. The function Lf defined by

L(f ) := sup{(U ↘ K) : (U,K) ∈ D(f )}

is called L-derivative of f .

According to Lemma 18 and Theorem 13 this function Lf is well defined, Scott
continuous and a least upper bound of the set {(U ↘ K) : (U,K) ∈ D(f )}. Note that
we do not make any assumption about the function f . The following result describes
the L-derivative via Clarke’s generalized gradient.

Theorem 20 Let X be a Banach space, and let V ⊆ X be a nonempty open subset of
X . Let f : V → R be an arbitrary function. Fix some point x ∈ V .

(1) If f is not Lipschitz continuous near x then Lf (x) = X∗ .

(2) If f is Lipschitz continuous near x then Lf (x) = ∂f (x).

Since we have already done most of the work, the proof is fairly short.

Proof Let D(f ) be defined as before Lemma 18. We have already seen that D(f ) is
not empty. According to Theorem 13, Lemma 18 and the last assertion in Example 10

Lf (x) = sup{(U ↘ K)(x) : (U,K) ∈ D(f )} =
⋂

(U,K)∈D(f )

(U ↘ K)(x).
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(1) Let us assume that f is not Lipschitz continuous near x. Then there cannot
exist a pair (U,K) ∈ D(f ) with nonempty, convex, compact K ⊆ X∗ because
otherwise, according to Lemma 15(2), f were Lipschitz continuous on U and,
hence, Lipschitz continuous near x . We conclude that (U ↘ K)(x) = X∗ for all
(U,K) ∈ D(f ). Hence, also

L(f )(x) = X∗.

(2) Let us assume that f is Lipschitz continuous near x . On the one hand, according
to Lemma 17,

∂f (x) ⊆
⋂

(U,K)∈D(f )

(U ↘ K)(x) = Lf (x).

For the other direction, note that there is some n0 such that B(x, 2−n0) ⊆ V and
f is Lipschitz continuous on B(x, 2−n0). Then, according to Lemma 4(3),

∂f (x) =
⋂

n≥n0

KB(x,2−n), f .

And by Lemma 16 (remember that balls in X are convex), for all n ≥ n0 we
have f ∈ δV (B(x, 2−n),KB(x,2−n),f ). This implies (B(x, 2−n),KB(x,2−n),f ) ∈ D(f ),
hence,

Lf (x) ⊆
⋂

n≥n0

KB(x,2−n), f .

We have shown Lf (x) ⊆ ∂f (x) as well.
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