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Differential Geometry via Infinitesimal Displacements
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MIKHAIL G. KATZ

Abstract: We present a new formulation of some basic differential geometric
notions on a smooth manifold M , in the setting of nonstandard analysis. In place
of classical vector fields, for which one needs to construct the tangent bundle
of M , we define a prevector field, which is an internal map from ∗M to itself,
implementing the intuitive notion of vectors as infinitesimal displacements. We
introduce regularity conditions for prevector fields, defined by finite differences,
thus purely combinatorial conditions involving no analysis. These conditions
replace the more elaborate analytic regularity conditions appearing in previous
similar approaches, eg by Stroyan and Luxemburg or Lutz and Goze. We define
the flow of a prevector field by hyperfinite iteration of the given prevector field, in
the spirit of Euler’s method. We define the Lie bracket of two prevector fields by
appropriate iteration of their commutator. We study the properties of flows and
Lie brackets, particularly in relation with our proposed regularity conditions. We
present several simple applications to the classical setting, such as bounds related
to the flow of vector fields, analysis of small oscillations of a pendulum, and an
instance of Frobenius’ Theorem regarding the complete integrability of independent
vector fields.
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1 Introduction

We develop foundations for differential geometry on smooth manifolds, based on
infinitesimals, where vectors and vector fields are represented by infinitesimal displace-
ments in the manifold itself, as they were thought of historically. Such an approach
was previously introduced eg by Stroyan and Luxemburg in [14], and by Lutz and
Goze in [10]. For such an approach to work, one needs to assume some regularity
condition on the infinitesimal displacement maps used to represent vector fields, in
place of the smoothness properties appearing in the classical setting. The various
regularity conditions chosen in existing sources seem non basic and overly tied up with
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2 Tahl Nowik and Mikhail G. Katz

classical analytic notions. In the present work we introduce natural and easily verifiable
regularity conditions, defined by finite differences. We show that these weak regularity
conditions are sufficient for defining notions such as the flow and Lie bracket of vector
fields.

In more detail, we would like to study vectors and vector fields in a smooth manifold
M while bypassing its tangent bundle. We would like to think of a vector based at a
point a in M as a little arrow in M itself, whose tail is a and whose head is a nearby
point x in M . The notions “little” and “nearby” can be formalized in the hyperreal
framework, ie nonstandard analysis, where infinitesimal quantities are available. We aim
to demonstrate that various differential geometric concepts and various proofs become
simpler and more transparent in this framework. For good introductions to nonstandard
analysis see eg Albeverio et al [1], Goldblatt [4], Gordon, Kusraev and Kutateladze
[5], Keisler [7], Loeb and Wolff [9], Väth [16]. For an advanced study of axiomatic
treatments see Kanovei and Reeken [6]. For a historical perspective see Bascelli et al [3].
For additional previous applications of nonstandard analysis to differential geometry see
Almeida, Neves and Stroyan [2] and references therein. For application of nonstandard
analysis to the solution of Hilbert’s fifth problem see Tao [15] and references therein.
Nonstandard analysis was initiated by Robinson [11].

Infinitesimal quantities may themselves be infinitely large or infinitely small compared
to one another, so the key to our application of infinitesimal quantities in differential
geometry is to fix a positive infinitesimal hyperreal number λ once and for all, which
will fix the scale of our constructions. We then define a prevector based at a nearstandard
point a of ∗M to be a pair of points (a, x) in ∗M for which the distance between a and x
is not infinitely large compared to λ. Two prevectors (a, x), (a, y) based at a are termed
equivalent if the distance between x and y is infinitely small compared to λ. Note that
the notion of the distance in ∗M being infinitely large or infinitely small compared to λ
does not require a metric on M ; it is intrinsic to the differentiable structure of M . We
next define a prevector field to be an internal map F : ∗M → ∗M such that for every
nearstandard point a in ∗M , the pair (a,F(a)) is a prevector at a. The requirement that
the map F be internal is crucial, eg for hyperfinite iteration, internal induction, and
the internal definition principle. Two prevector fields F,G are equivalent if for every
nearstandard a in ∗M , the pairs (a,F(a)) and (a,G(a)) are equivalent prevectors.

As already mentioned, in place of the hierarchy Ck of smoothness appearing in the
classical setting of vector fields, we introduce a hierarchy Dk of weaker regularity
conditions for prevector fields, defined by finite differences. We show that these weaker
regularity conditions are sufficient for defining notions such as the flow of a prevector
field and the Lie bracket of two prevector fields. We use our flow to show that a
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Differential Geometry via Infinitesimal Displacements 3

canonical representative can be chosen from every equivalence class of local prevector
fields, and that every classical vector field on M can be realized by a prevector field on
∗M whose values on the nearstandard part of ∗M are canonically prescribed. For this
last statement, in case the manifold is non compact, we will need to assume that our
nonstandard extension is countably saturated. (The notion of countable saturation will
be explained in Section 6.)

The framework we propose suggests various possibilities for further investigation.
For example, one could seek to formulate notions corresponding to the Poincaré-
Hopf Theorem regarding indices of zeros of vector fields, in terms of infinitesimal
displacements. Another example is proving Frobenius’ Theorem in the spirit of our
proof of Theorem 7.13 and Classical Corollary 7.14, characterizing when k vector fields
are the first k coordinate vector fields for some choice of coordinates. This can be
thought of as an instance of Frobenius’ Theorem, with stronger assumption and stronger
conclusion.

A very different alternative approach to the foundations of differential geometry is that
of Synthetic Differential Geometry, introduced by Lawvere and others, see eg Kock [8].
It relies on category-theoretic concepts and intuitionistic logic, which are not needed
for our approach. To the extent that our hierarchy Dk of regularity classes is formulated
in terms of finite differences and thus avoids classical analytic notions, our approach
can also be characterized as synthetic differential geometry.

The structure of the paper is as follows. In Section 2 we define prevectors, and explain
their relation to classical tangent vectors. We define such notions as the action of a
prevector on a smooth function, and the differential of a smooth map from one smooth
manifold to another. In Section 3 we define local and global prevector fields. We
define the Dk regularity property of prevector fields. The property Dk is defined via
coordinates by a finite difference condition. We show how a local classical vector field
induces a local prevector field, and show that if the classical vector field is Ck then
the induced local prevector field is Dk (Proposition 3.7). We then show the following,
which though rather simple for D1 turns out somewhat involved for D2 .

Theorem 1.1 The definition of D1 and D2 prevector fields is independent of the choice
of coordinates (Propositions 3.10, 3.14).

We further show that D2 implies D1 (Proposition 3.12). In Section 4 we show that a
global D1 prevector field is bijective on the nearstandard part of M (Theorem 4.6).

In Section 5 we define the flow of a prevector field by hyperfinite iteration of the given
prevector field. It is a generalization of the Euler approximation for the flow appearing
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eg in Keisler [7, page 162], as well as Stroyan and Luxemburg [14, page 128] and
Lutz and Goze [10, page 115]. Using straightforward internal induction we prove the
following.

Theorem 1.2 The flow of a D1 prevector field remains in a bounded region for some
appreciable interval of time. The growth of the distance between two points moving
under the flow is bounded above and below after time t by factors of the form e±Kt

(Theorem 5.2). The difference between the flows of different prevector fields is bounded
above by a function of the form βteKt (Theorem 5.3).

We note that this implies corresponding bounds for the flow of classical vector fields
(Classical Corollary 5.9). We use the flow of prevector fields to show the following.

Theorem 1.3 A canonical representative can be chosen from each equivalence class
of local prevector fields which contains a D1 (respectively D2 ) prevector field, and this
representative is itself D1 (respectively D2 ).

This is done roughly as follows. Given a D1 (respectively D2 ) local prevector field F ,
its flow in ∗M induces a standard local flow in M , which is then extended back to ∗M and
evaluated at time t = λ, producing a new prevector field F̃ . Different representatives F
of the given equivalence class induce the same standard flow (Theorem 5.7) and so F̃ is
indeed canonically chosen. We then need to show that F̃ is in fact equivalent to the
original F one started with (Theorem 5.19), and that if F is D1 or D2 then the same
holds for F̃ (Propositions 5.15, 5.16). As example of an application of our results on
flows we analyze oscillations of a pendulum with infinitesimal amplitude (Section 5.3).

In Section 6 we show the following.

Theorem 1.4 Every global classical C1 (respectively C2 ) vector field can be realized
by a global D1 (respectively D2 ) prevector field, whose values on the nearstandard part
of ∗M are canonically prescribed (Theorem 6.6).

This involves techniques similar to those mentioned above in relation to the construction
of F̃ , and additionally, for a vector field which does not have compact support, our
assumption of countable saturation is used.

In Section 7 we define the Lie bracket of two prevector fields, and relate it to the classical
Lie bracket of classical vector fields (Theorem 7.12). We show the following.
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Theorem 1.5 The Lie bracket of two D1 prevector fields is itself a prevector field
(Theorem 7.2). The Lie bracket of two D2 prevector fields is D1 (Theorem 7.5). The
Lie bracket is well defined on equivalence classes of D2 prevector fields (Theorem 7.10),
and this is not the case for prevector fields that are merely D1 (Example 7.11).

We show that the Lie bracket of two D2 prevector fields is equivalent to the identity
prevector field if and only if their local standard flows commute (Theorem 7.13). We
note that this implies the classical result that the flows of two vector fields commute if
and only if their Lie bracket vanishes (Classical Corollary 7.14).

We would like to thank Thomas McGaffey for guiding us to the existing literature on
nonstandard analysis approaches to differential geometry.

2 Prevectors

For our analysis we will need to compare different infinitesimal quantities. It is helpful
to introduce the following relations.

Definition 2.1 For r, s ∈ ∗R, we will write r ≺ s if r = as for finite a, and will write
r ≺≺ s if r = as for infinitesimal a.

Thus r ≺ 1 means that r is finite, and r ≺≺ 1 means that r is infinitesimal. Given
a finite dimensional vector space V over R, and given v ∈ ∗V , and s ∈ ∗R, we will
write v ≺ s if ∗‖v‖ ≺ s for some norm ‖ · ‖ on V . We will generally omit the ∗ from
function symbols and so will simply write ‖v‖ ≺ s. This condition is independent of
the choice of norm since all norms on V are equivalent. Similarly we will write v ≺≺ s
if ‖v‖ ≺≺ s. We will also write v ≈ w when v− w ≺≺ 1. If one chooses a basis for
V thus identifying it with Rn , then x = (x1, . . . , xn) ∈ ∗Rn satisfies x ≺ s or x ≺≺ s if
and only if each xi satisfies this, since this is clear in, say, the Euclidean norm on Rn .
Given 0 < s ∈ ∗R let Vs

F = {v ∈ ∗V : v ≺ s} and Vs
I = {v ∈ ∗V : v ≺≺ s}. Then

Vs
I ⊆ Vs

F ⊆ ∗V are linear subspaces over R, and Vs
F/Vs

I
∼= V , since it is well known

that V1
F/V1

I
∼= V , and multiplication by s maps V1

F onto Vs
F and V1

I onto Vs
I .

Our object of interest is a smooth manifold M . For p ∈ M , the halo of p, which we
denote by h(p), is the set of all points x in the nonstandard extension ∗M of M , for
which there is a coordinate neighborhood U of p such that x ∈ ∗U and x ≈ p in the
given coordinates. In fact, the definition of h(p) does not require coordinates, but rather
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depends only on the topology of M . 1 The points of M are called standard, and a point
which is in h(p) for some p ∈ M is called nearstandard. If a is nearstandard then the
standard part (or shadow) of a, denoted st(a), is the unique p ∈ M such that a ∈ h(p).

Definition 2.2 For A ⊆ M , the halo of A is hA =
⋃

a∈A h(a).

In particular, hM is the set of all nearstandard points in ∗M . If A ⊆ M is open in M
then hA ⊆ ∗A, and if it is compact then ∗A ⊆ hA. In particular, if M is compact then
hM = ∗M . If M is noncompact then hM is an external set. 2

Much of our analysis will be local, so given an open W ⊆ Rn and a smooth function
f : W → R we note some properties of the extension ∗f : ∗W → ∗R, obtained by
transfer. When there is no risk of confusion, we will omit the ∗ from the function
symbol ∗f and simply write f for both the original function and its extension.

Lemma 2.3 For open W ⊆ Rn , let f : W → R be continuous. Then f (a) is finite for
every a ∈ hW .

Proof Given a ∈ hW , let U be a neighborhood of st(a) such that U ⊆ W and U is
compact. So there is C ∈ R such that |f (x)| ≤ C for all x ∈ U . By transfer |f (x)| ≤ C
for all x ∈ ∗U , in particular |f (a)| ≤ C , so f (a) is finite. (As for functions, we omit the
∗ from relation symbols, writing ≤ in place of ∗≤.)

Given an open U ⊆ Rn and a smooth function f : U → R, the partial derivatives of ∗f
are by definition the functions ∗

( ∂f
∂xi

)
, ie the extensions of the partial derivatives of f .

So, one has a row vector Da of partial derivatives at any point a ∈ ∗U if f is C1 , and
similarly a Hessian matrix Ha of the second partial derivatives at every a ∈ ∗U , in case
f is C2 . By Lemma 2.3 Da and Ha are finite throughout hU .

We state the following properties of Da and Ha as three remarks for future reference.

Remark 2.4 Let a, b ∈ hU with a ≈ b, then the interval between a and b is included in
hU ⊆ ∗U . By transfer of the mean value theorem, if f is C1 then f (b)− f (a) = Dx(b−a)
for some x in the interval between a and b. Since the partial derivatives are continuous,

1For a topological space X and p ∈ X let Np be the set of all open neighborhoods of p in X .
Then the halo (or monad) of p is defined as h(p) =

⋂
U∈Np

∗U .
2The converse of the statements in this paragraph also hold if we assume that our nonstandard

extension satisfies countable saturation, and using the fact that M has a countable basis. See eg
Albeverio et al [1, Section 2.1]
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we have by the characterization of continuity via infinitesimals 3 that Dx − Dy ≺≺ 1
for any y ≈ a (eg y = st(a)), so writing

f (b)− f (a) = Dy(b− a) + (Dx − Dy)(b− a),

we see that f (b) − f (a) − Dy(b − a) ≺≺ ‖b − a‖. Furthermore, if the first partial
derivatives are Lipschitz in some neighborhood (eg if f is C2 ), and we are given a
constant β ≺≺ 1 such that ‖x− y‖ ≺ β for all x in the interval between a and b, then
we have the stronger condition f (b)− f (a)− Dy(b− a) ≺ β‖b− a‖.

Remark 2.5 If f is C2 then by transfer of the Taylor approximation theorem we have
f (b)− f (a) = Da(b− a) + 1

2 (b− a)tHx(b− a) for some x in the interval between a and
b, and remarks similar to those we have made regarding Dx − Dy apply to Hx − Hy .

Remark 2.6 If ϕ = (ϕi) : U → Rn then the n rows Di
a corresponding to ϕi form the

Jacobian matrix Ja of ϕ at a. By applying the above considerations to each ϕi we
obtain that ϕ(b)−ϕ(a)−Jy(b−a) ≺≺ ‖b−a‖, or if all partial derivatives are Lipschitz
in some neighborhood (eg if ϕ is C2 ) then ϕ(b)− ϕ(a)− Jy(b− a) ≺ β‖b− a‖ with
β as above.

Now choose a positive infinitesimal λ ∈ ∗R, and fix it once and for all.

Definition 2.7 Given a ∈ hM , a prevector based at a is a pair (a, x), x ∈ hM , such
that for every smooth f : M → R, f (x) − f (a) ≺ λ. Equivalently, given coordinates
in a neighborhood W of st(a) in M , whose image is U ⊆ Rn , and â, x̂ ∈ ∗U are the
coordinates for a and x, then (a, x) is a prevector based at a if x̂− â ≺ λ, where the
difference x̂− â is defined in ∗Rn ⊇ ∗U .

We show that the two definitions are indeed equivalent. Assume the first definition,
and let x1, . . . , xn be the chosen coordinate functions. Since each xi is smooth, we get
xi(x)− xi(a) ≺ λ for each i, ie x̂− â ≺ λ. Conversely, assume the second definition
holds, and let f : M → R be a smooth function. Then f (x)− f (a) = Dc(x̂− â) for some
c in the interval between â and x̂ , and so f (x)− f (a) ≺ ‖x̂− â‖ ≺ λ. (The components
of Dc are finite by Lemma 2.3.)

We denote by Pa = Pa(M) the set of prevectors based at a.

Definition 2.8 We define an equivalence relation ≡ on Pa as follows: (a, x) ≡ (a, y)
if f (y)− f (x) ≺≺ λ for every smooth f : M → R, or equivalently, if in coordinates as
above, ŷ− x̂ ≺≺ λ.

3 g is continuous at a if and only if ∗g(h(a)) ⊆ h(g(a)).
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The equivalence of the two definitions follows by the same argument as above. Since
the relation (a, x) ≡ (a, y) depends only on x, y, we will also simply write x ≡ y. We
denote the set of equivalence classes Pa/≡ by Ta = Ta(M). In the spirit of physics
notation, the equivalence class of (a, x) ∈ Pa will be denoted →ax .

Given a ∈ hM let W be a coordinate neighborhood of st(a) in M with image U ⊆ Rn .
We can identify Pa with (Rn)λF via (a, x) 7→ x̂ − â. This induces an identification of
Ta = Pa/≡ with Rn = (Rn)λF/(Rn)λI . Under this identification Ta inherits the structure
of a vector space over R. If we choose different coordinates in a neighborhood of
st(a) with image U′ ⊆ Rn , then if ϕ : U → U′ is the change of coordinates, then
by Remark 2.6 ϕ(x̂) − ϕ(â) − Jst(a)(x̂ − â) ≺≺ ‖x̂ − â‖ ≺ λ. This means that the
map Rn → Rn induced by the two identifications of Ta with Rn provided by the two
coordinate maps, is given by multiplication by the matrix Jst(a) , and so is linear. Thus
the vector space structure induced on Ta via coordinates is independent of the choice of
coordinates, and so we have a well defined vector space structure on Ta over R. Note
that the object Ta is a mixture of standard and nonstandard notions. It is a vector space
over R rather than ∗R, but defined at every a ∈ hM .

If a, b ∈ hM and a ≈ b, then given coordinates in a neighborhood of st(a), the identifi-
cations of Ta and Tb with Rn induced by these coordinates induces an identification
between Ta and Tb . Given a different choice of coordinates, the matrix Jst(a) used in
the previous paragraph is the same matrix for a and b, and so the identification of Ta

with Tb is well defined, independent of a choice of coordinates. Thus when a ≈ b ∈ hM
we may unambiguously add a vector −→a x ∈ Ta with a vector

−→
b y ∈ Tb .

Definition 2.9 A prevector (a, x) ∈ Pa acts on a smooth function f : M → R as
follows:

(a, x)f =
1
λ

(f (x)− f (a)),

which is finite by definition of prevector.

This induces a differentiation of f : M → R by a vector −→a x ∈ Ta as follows:
−→a x f = st((a, x)f ). The action −→a x f is well defined by definition of the equivalence
relation ≡. Note our mixture again, −→a x is a nonstandard object based at the nonstandard
point a, but it assigns a standard real number to the standard function f . The action
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Differential Geometry via Infinitesimal Displacements 9

(a, x)f satisfies the Leibniz rule up to infinitesimals, indeed:

1
λ

(
f (x)g(x)− f (a)g(a)

)
=

1
λ

(
f (x)g(x)− f (x)g(a) + f (x)g(a)− f (a)g(a)

)
= f (x)

1
λ

(
g(x)− g(a)

)
+

1
λ

(
f (x)− f (a)

)
g(a)

≈ f (a)
1
λ

(
g(x)− g(a)

)
+

1
λ

(
f (x)− f (a)

)
g(a),

where the final ≈ is by continuity of f . For the action −→a xf this implies the following,
where the second equality is by continuity of f and g.

Proposition 2.10 Letting a0 = st(a) we have
−→a x(fg) = st(f (a)) · −→a xg +−→a xf · st(g(a)) = f (a0) · −→a xg +−→a xf · g(a0).

Definition 2.11 If h : M → N is a smooth map between smooth manifolds, then for
a ∈ hM we define the differential of h, dha : Pa(M)→ Ph(a)(N) by setting

dha((a, x)) = (h(a), h(x)).

This induces a map dha : Ta(M) → Th(a)(N) given by dha(−→a x) =
−−−−−→
h(a) h(x). The

relation here between h and dh seems more transparent than in the corresponding
classical definition. Furthermore, the “chain rule”, ie the fact that d(g ◦ h)a =

dgh(a) ◦ dha , becomes immediate, for both Pa and Ta . Namely, dgh(a) ◦ dha((a, x)) =

dgh(a)((h(a), h(x))) = (g ◦ h(a), g ◦ h(x)) = d(g ◦ h)a((a, x)), and similarly for −→a x ∈ Ta .

Remark 2.12 For standard a ∈ M , Ta is naturally identified with the classical tangent
space of M at a as follows. Since we have done everything also in terms of coordinates,
it is enough to see this for open U ⊆ Rn , where the tangent space at any point a is Rn

itself. A vector v ∈ Rn is then identified with
−−−−−−−→
a (a + λ · v). Under this identification,

our definitions of −→a xf and dh(−→a x) coincide with the classical ones.

3 Prevector fields

For a smooth manifold M , recall that hM denotes the set of all nearstandard points in
∗M , and Pa denotes the set of prevectors based at a ∈ hM . We define a prevector field
on ∗M to be an internal map F : ∗M → ∗M such that (a,F(a)) ∈ Pa for every a ∈ hM ,
that is, in coordinates F(a)− a ≺ λ for every a ∈ hM . If F and G are two prevector
fields then we will say F is equivalent to G and write F ≡ G if F(a) ≡ G(a) for every
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a ∈ hM (recall Definition 2.8). A local prevector field is an internal map F : ∗U → ∗V
satisfying the above condition, where U ⊆ V ⊆ M are open. When the distinction is
needed, we will call a prevector field defined on all of ∗M a global prevector field.

The reason for allowing the values of a local prevector field defined on ∗U to lie in a
slightly larger range ∗V is in order to allow a prevector field F to be restricted to a
smaller domain which is not invariant under F . For example, if M = R and one wants
to restrict the prevector field F given by F(a) = a + λ, to the domain ∗(0, 1), then
one needs to allow a slightly larger range. In the sequel we will usually not mention
the larger range V when describing a local prevector field, but it will always be tacitly
assumed that we have such V when needed. A second instance where it may be needed
for the range to be slightly larger than the domain is the following natural setting for
defining a local prevector field.

Example 3.1 Let p ∈ M , V a coordinate neighborhood of p with image V ′ ⊆ Rn ,
and X a classical vector field on V , given in coordinates by X′ : V ′ → Rn . Then
there is a neighborhood U′ of the image of p, with U′ ⊆ V ′ , such that we can define
F′ : ∗U′ → ∗V ′ by

F′(a) = a + λ · X′(a),

eg one can take U′ such that U′ is compact and U′ ⊆ V ′ . For the corresponding U ⊆ V
this induces a local prevector field F : ∗U → ∗V which realizes X in U in the sense of
the following definition. (Recall Remark 2.12.)

Definition 3.2 A local prevector field F on ∗U realizes the classical vector field X on
U if for every smooth h : U → R we have Xh(a) =

−−−→
a F(a)h for all a ∈ U .

When realizing a vector field as in Example 3.1 it may indeed be necessary to restrict
to a smaller neighborhood U , eg for M = V = V ′ = (0, 1) and X′ = 1, one needs to
take U = (0, r) for some 1 > r ∈ R in order for F(a) = a + λ to always lie in ∗V .
Note that Definition 3.2 involves only standard points; see however Corollary 4.11 for
a discussion of this matter.

Different coordinates for the same neighborhood U will induce equivalent realizations
in ∗U . More precisely, we show the following.

Proposition 3.3 For U ⊆ Rn , let X : U → Rn be a classical vector field, ϕ : U →
W ⊆ Rn a change of coordinates, and Y : W → Rn the corresponding vector field,
ie Y(ϕ(a)) = JaX(a), where Ja is the Jacobian matrix of ϕ at a. Let F,G be the
prevector fields given by F(a) = a + λX(a), G(a) = a + λY(a) as in Example 3.1.
Then F ≡ ϕ−1 ◦ G ◦ ϕ, or equivalently, ϕ ◦ F(a)− G ◦ ϕ(a) ≺≺ λ for all a ∈ hU .
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Differential Geometry via Infinitesimal Displacements 11

Proof Let ϕi,Y i,Gi be the ith component of ϕ,Y,G respectively, and let Di
a be the

differential of ϕi at a, (so Di
a is the ith row of Ja ). Then we have

ϕi ◦ F(a)− Gi ◦ ϕ(a) = ϕi(a + λX(a))− ϕi(a)− λY i(ϕ(a))

= Di
cλX(a)− λDi

aX(a) = λ(Di
c − Di

a)X(a) ≺≺ λ,

where Di
c is the differential of ϕi at some point c in the interval between a and

a + λX(a). (Such c exists by Remark 2.4.) Since this is true for each component i, we
have

ϕ ◦ F(a)− G ◦ ϕ(a) ≺≺ λ.

Definition 3.4 We define I to be the identity prevector field on ∗M , (or on ∗U for any
U ⊆ M or U ⊆ Rn ), ie I(a) = a for all a. The prevector field I corresponds to the
classical zero vector field via the procedure of Example 3.1.

3.1 Regularity conditions

If one wants to define various operations on prevector fields, such as their flow,
or Lie bracket, then one must assume some regularity properties. Recall that a
classical vector field X : U → Rn is called Lipschitz if there is K ∈ R such that
‖X(a)−X(b)‖ ≤ K‖a−b‖ for a, b ∈ U . For the local prevector field F of Example 3.1,
where F(a)− a = λX(a), this translates into∥∥∥(F(a)− a

)
−
(

F(b)− b
)∥∥∥ ≤ Kλ‖a− b‖

for a, b ∈ ∗U . This motivates the following definition.

Definition 3.5 A prevector field F on a smooth manifold M is of class D1 if whenever
a, b ∈ hM and (a, b) ∈ Pa then in coordinates F(a)− a− F(b) + b ≺ λ‖a− b‖.

One can then also think of “order k” Lipschitz conditions on prevector fields, for
the definition of which we will use the following Euler notation for finite differences.
Given vector spaces V,W (classical or nonstandard), and given A ⊆ V , a ∈ A, and
v1, . . . , vk ∈ V such that a + e1v1 + · · ·+ ekvk ∈ A for all (e1, . . . , ek) ∈ {0, 1}k , and
given a function F : A→ W , we define the k th difference ∆k

v1,...,vk
F(a) as follows:

∆k
v1,...,vk

F(a) =
∑

(e1,...,ek)∈{0,1}k

(−1)
∑

ejF(a + e1v1 + · · ·+ ekvk).

We note that in terms of this difference notation, the D1 condition can be stated as
follows: ∆1

b−a(F − I)(a) ≺ λ‖a− b‖ for any a, b ∈ hM with a− b ≺ λ, (recall that I
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denotes the identity prevector field, ie I(a) = a for all a). Or, if we let v = b− a then
this can be written as ∆1

v(F − I)(a) ≺ λ‖v‖.

Generalizing to higher order differences, we define the Dk regularity condition on a
prevector field F by the following condition, in coordinates in a neighborhood U : For
any a ∈ hU and any v1, . . . , vk ∈ ∗Rn with vi ≺ λ,

∆k
v1,...,vk

(F − I)(a) ≺ λ‖v1‖‖v2‖ · · · ‖vk‖.

We note that for k ≥ 2, ∆k
v1,...,vk

I(a) = 0, so for k ≥ 2 the Dk condition simplifies to:

∆k
v1,...,vk

F(a) ≺ λ‖v1‖‖v2‖ · · · ‖vk‖.

For k = 2 this reads as follows.

Definition 3.6 A prevector field F on a smooth manifold M is of class D2 if for any
a ∈ hM , we have in coordinates that for any v,w ∈ ∗Rn with v,w ≺ λ,

∆2
v,wF(a) = F(a)− F(a + v)− F(a + w) + F(a + v + w) ≺ λ‖v‖‖w‖.

We will show that the definitions of D1 and D2 prevector fields are independent of
coordinates in Propositions 3.10 and 3.14 respectively. We will show in Proposition 3.12
that D2 implies D1 . In fact, the proof of the invariance of D2 will use the fact that D2

implies D1 in any given coordinates, which in turn relies on the technical Lemma 3.11.
In Proposition 3.7 we will show that the prevector field of Example 3.1 induced by a
classical vector field of class Ck , is a Dk prevector field. This is in fact the central
motivation for our definition of Dk , but we note that our Dk is in fact a weaker condition
than Ck , eg F of Example 3.1 is D1 if X is (order 1) Lipschitz, which is weaker than
C1 . We remark that a definition of D0 along the above lines would simply amount to
F(a)− a ≺ λ, ie F being a prevector field. Note, however, that in our definitions above,
being a prevector field is part of the definition of Dk .

Proposition 3.7 For open W ⊆ Rn , let X : W → Rn be a classical Ck vector field.
Then for any a ∈ hW and any v1, . . . , vk ∈ ∗Rn with vi ≺≺ 1,

∆k
v1,...,vk

X(a) ≺ ‖v1‖‖v2‖ · · · ‖vk‖.

It follows that if F is the prevector field on ∗W of Example 3.1, ie F(a)− a = λX(a),
then F is Dk .

Proof Let U ⊆ W be a smaller neighborhood of st(a) for which all k th partial
derivatives of X are bounded. Let X1, . . . ,Xn be the components of X . Given p ∈ U
and v1, . . . , vk ∈ Rn such that p + s1v1 + · · ·+ skvk ∈ U for all 0 ≤ s1, . . . , sk ≤ 1, let

ψi(s1, . . . , sk) = Xi(p + s1v1 + · · ·+ skvk).
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By iterating the mean value theorem k times there is (t1, . . . , tk) ∈ [0, 1]k such that∑
(e1,...,ek)∈{0,1}k

(−1)
∑

ejψi(e1, . . . , ek) =
∂k

∂s1∂s2 · · · ∂sk
ψi(t1, . . . , tk)(−1)k.

(For the case k = 2 see eg Rudin [12, Theorem 9.40]). So

|∆k
v1,...,vk

Xi(p)| =
∣∣∣ ∑
(e1,...,ek)∈{0,1}k

(−1)
∑

ejXi(p + e1v1 + · · ·+ ekvk)
∣∣∣

=
∣∣∣ ∑
(e1,...,ek)∈{0,1}k

(−1)
∑

ejψi(e1, . . . , ek)
∣∣∣

=
∣∣∣ ∂k

∂s1 · · · ∂sk
ψi(t1, . . . , tk)

∣∣∣ ≤ Ci‖v1‖‖v2‖ · · · ‖vk‖

where Ci is determined by a bound for all k th partial derivatives of Xi in U .

This is true for each Xi , i = 1, . . . , n, and so there is a K ∈ R such that

‖∆k
v1,...,vk

X(p)‖ ≤ K‖v1‖‖v2‖ · · · ‖vk‖

for every p ∈ U and v1, . . . , vk ∈ Rn such that p + s1v1 + · · · + skvk ∈ U for all
0 ≤ s1, . . . , sk ≤ 1, si ∈ R. By transfer the same is true, with the same K , for all p ∈ ∗U
and v1, . . . , vk ∈ ∗Rn such that a + s1v1 + · · ·+ skvk ∈ ∗U for all 0 ≤ s1, . . . , sk ≤ 1,
si ∈ ∗R. In particular this is true for our a and all v1, . . . , vk ∈ ∗Rn with vi ≺≺ 1.

Remark 3.8 Proposition 3.7 was stated for a Ck vector field X : U → Rn , but for
the first statement one can think of X as any Ck map, and indeed in the proof of
Proposition 3.14 below it will be used for X = ϕ : U → W a Ck change of coordinates.

We note that a D1 prevector field F satisfies the following.

Proposition 3.9 If F is D1 and a, b ∈ hM with a− b ≺ λ, then

‖a− b‖ ≺ ‖F(a)− F(b)‖ ≺ ‖a− b‖.

More in detail, given K ≺ 1 such that ‖F(a)− F(b)− a + b‖ ≤ Kλ‖a− b‖ we have
(1− Kλ)‖a− b‖ ≤ ‖F(a)− F(b)‖ ≤ (1 + Kλ)‖a− b‖.

Proof We have |‖F(a)− F(b)‖ − ‖a− b‖| ≤ ‖F(a)− F(b)− a + b‖ ≤ Kλ‖a− b‖,
so (1− Kλ)‖a− b‖ ≤ ‖F(a)− F(b)‖ ≤ (1 + Kλ)‖a− b‖.
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3.2 Invariance of regularity conditions

The definitions of D1 and D2 above are in terms of coordinates. In the present section
we prove that these definitions are in fact independent of coordinates, and that every D2

prevector field is also D1 . This section is quite technical and can be skipped on first
reading. Lemma 3.11 that we prove and use in this section will be used again only in
the proof of Lemma 7.8.

Proposition 3.10 The definition of D1 is independent of coordinates.

Proof Let U,W ⊆ Rn be two coordinate charts for a neighborhood of st(a), and
ϕ : U → W the change of coordinates map. Let F be a D1 prevector field in U and G
the corresponding prevector field in W , ie G ◦ ϕ = ϕ ◦ F . For b with a− b ≺ λ we
must show

G(ϕ(a))− G(ϕ(b))− ϕ(a) + ϕ(b) ≺ λ‖ϕ(a)− ϕ(b)‖.

Let φ = ϕi be the ith component of ϕ. By Remark 2.4 there is a point x on the interval
between F(a) and F(b) such that φ(F(a))− φ(F(b)) = Dx(F(a)− F(b)), where D is
the differential of φ. There is a point y on the interval between a and b such that
φ(a)− φ(b) = Dy(a− b). So

φ(F(a))− φ(F(b))− φ(a) + φ(b) = Dx(F(a)− F(b))− Dy(a− b)

= Dx(F(a)− F(b)− a + b)− (Dy − Dx)(a− b)

≺ λ‖a− b‖ ≺ λ‖ϕ(a)− ϕ(b)‖,

since 1) the entries of Dx are finite, 2) F(a)−F(b)−a+b ≺ λ‖a−b‖ by assumption, 3)
Dx − Dy ≺ ‖x− y‖ ≺ λ (assuming the partial derivatives of ϕ are Lipschitz, eg if ϕ is
C2 ), and 4) the entries of the Jacobian of ϕ−1 are finite, giving ‖a−b‖ ≺ ‖ϕ(a)−ϕ(b)‖.

This is true for all components φ = ϕi of ϕ and so it is true for ϕ, ie

ϕ(F(a))− ϕ(F(b))− ϕ(a) + ϕ(b) ≺ λ‖ϕ(a)− ϕ(b)‖,

which completes the proof since ϕ ◦ F = G ◦ ϕ.

We would now like to show that for any given coordinates, D2 implies D1 . We first
prove the following technical lemma, which will also be used in the proof of Lemma 7.8.
We demonstrate the content of this lemma with a simple example. Let f , g : ∗R→ ∗R
be f (x) = cx and g(x) = cd sin π

2d x, with d ≺≺ 1, then f (0) = g(0) = 0. We now
advance by steps of size d and see how f and g develop. The increment of f and g
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after one step is the same, f (d) = g(d) = cd . But after m steps with m ≥ 1
d , f (md) ≥ c

whereas g(md) ≤ cd ≺≺ c. The increments of f properly accumulate along the m
steps to produce a large value for f (md) in comparison to f (d), due to the fact that the
increment f (x + d)− f (x) is constant. On the other hand, g(md) remains small since the
increments of g are not sufficiently persistent, this being reflected in the fact that the
difference

(
g(x + 2d)− g(x + d)

)
−
(

g(x + d)− g(x)
)

between successive increments
is not sufficiently small compared to the first increment g(d)− g(0). This lemma will,
in fact, be used in the reverse direction, namely, a bound on f (md)− f (0) will be used
in order to obtain a stronger bound on f (d)− f (0).

Lemma 3.11 Let B ⊆ Rn be an open ball around the origin 0, let a ∈ h(0), and let
0 6= v ∈ ∗Rn with v ≺≺ 1. If G : ∗B→ ∗Rn is an internal function satisfying

∆2
v,vG(x) ≺ ‖v‖‖G(a)− G(a + v)‖

for all x ∈ hB, then there is m ∈ ∗N such that a + mv ∈ hB and

G(a)− G(a + v) ≺ ‖v‖‖G(a)− G(a + mv)‖.

Proof Let N = br/‖v‖c where 0 < r ∈ R is slightly smaller than the radius of B, and
for 0 ≤ x ∈ ∗R, bxc ∈ ∗N is the integer part of x . So any m ≤ N satisfies that a+mv ∈
hB. Let A = G(a)−G(a + v). For 0 ≤ j ≤ N let xj = a + jv, then by our assumption on
G we have G(xj)−2G(xj+1)+G(xj+2) = ∆2

v,vG(xj) = Cj‖v‖‖A‖ with Cj ≺ 1. Let C be
the maximum of C0, · · · ,CN , then C ≺ 1 and G(xj)− 2G(xj+1) + G(xj+2) ≤ C‖v‖‖A‖
for all 0 ≤ j ≤ N . Given k ≤ N we have∥∥∥A−

(
G(xk)− G(xk+1)

)∥∥∥ =
∥∥∥(G(x0)− G(x1)

)
−
(

G(xk)− G(xk+1)
)∥∥∥

≤
k−1∑
j=0

∥∥∥(G(xj)− G(xj+1)
)
−
(

G(xj+1)− G(xj+2)
)∥∥∥ ≤ Ck‖v‖‖A‖.

So for any m ≤ N ,∥∥∥mA−
(

G(x0)− G(xm)
)∥∥∥ =

∥∥∥m−1∑
k=0

(
A−

(
G(xk)− G(xk+1)

))∥∥∥ ≤ Cm2‖v‖‖A‖,

so
∥∥∥mA−

(
G(x0)− G(xm)

)∥∥∥ = Km2‖v‖‖A‖ with K ≺ 1. It follows that

m‖A‖ − Km2‖v‖‖A‖ ≤ ‖G(x0)− G(xm)‖,

and so, multiplying by ‖v‖, we have m‖v‖‖A‖(1− Km‖v‖) ≤ ‖v‖‖G(x0)− G(xm)‖.
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Now let m = min{ N , b 1
2K‖v‖c }, then

m‖v‖‖A‖/2 ≤ ‖v‖‖G(x0)− G(xm)‖.

By definition of N and since K ≺ 1 we have that m‖v‖ is appreciable, ie not
infinitesimal, and so finally A ≺ ‖v‖‖G(x0) − G(xm)‖, that is, G(a) − G(a + v) ≺
‖v‖‖G(a)− G(a + mv)‖.

Proposition 3.12 If F is D2 for some choice of coordinates in W , then F is D1 .

Proof Given a ∈ hW , in the given coordinates take some ball B around st(a). Define
G = F− I , ie G(x) = F(x)−x , then we must show for any v ≺ λ that G(a)−G(a+v) ≺
λ‖v‖ (here v = b − a in Definition 3.5). If G(a) − G(a + v) ≺≺ λ‖v‖ then we are
certainly done. Otherwise λv ≺ ‖G(a)−G(a + v)‖ so λ‖v‖2 ≺ ‖v‖‖G(a)−G(a + v)‖,
and on the other hand ∆2

v,vG(x) = ∆2
v,vF(x) ≺ λ‖v‖2 for all x , since ∆2

v,vI(x) = 0, and
by taking v = w in Definition 3.6. Together we have ∆2

v,vG(x) ≺ ‖v‖‖G(a)−G(a+v)‖,
so by Lemma 3.11 there is m ∈ ∗N such that a + mv ∈ hB and

G(a)−G(a + v) ≺ ‖v‖‖G(a)−G(a + mv)‖ ≤ ‖v‖
(
‖G(a)‖+ ‖G(a + mv)‖

)
≺ ‖v‖λ

since F is a prevector field and so G(x) = F(x)− x ≺ λ for all x .

We need one more lemma before proving that D2 is independent of coordinates.

Lemma 3.13 In given coordinates, F is D2 if and only if it satisfies

∆2
v,wF(a) ≺ λ

(
max{‖v‖, ‖w‖}

)2

for every a, and every v,w ≺ λ.

Proof Clearly D2 implies the above condition. For the converse, say ‖v‖ ≤ ‖w‖. If
w ≺ ‖v‖ then the two conditions are clearly equivalent. Otherwise let n = b‖w‖/‖v‖c,
and w′ = w/n. Then ‖v‖ ≤ ‖w′‖ ≤ n+1

n ‖v‖, and so by the preceding remark the two
conditions are equivalent for v,w′ , and so for every 1 ≤ k ≤ n,

Ck =
∆2

v,w′F(a + (k − 1)w′)

λ‖v‖‖w′‖

is finite. Let C be the maximum of C1, . . . ,Cn then C is finite and

∆2
v,w′F(a + (k − 1)w′) ≤ Cλ‖v‖‖w′‖
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for every 1 ≤ k ≤ n. And so

‖∆2
v,wF(a)‖ = ‖F(a)− F(a + v)− F(a + w) + F(a + v + w)‖

≤
n∑

k=1

‖F(a + (k − 1)w′)− F(a + (k − 1)w′ + v)

− F(a + kw′) + F(a + kw′ + v)‖

=
n∑

k=1

‖∆2
v,w′F(a + (k − 1)w′)‖ ≤ nCλ‖v‖‖w′‖ = Cλ‖v‖‖w‖.

Proposition 3.14 The definition of D2 is independent of coordinates.

Proof Let ϕ : U → W be a change of coordinates. Let F be a D2 prevector field in
U and G the corresponding prevector field in W , ie G ◦ ϕ = ϕ ◦ F . Given p ∈ hW ,
and x, y ∈ ∗Rn with x, y ≺ λ, and say ‖x‖ ≤ ‖y‖, then by Lemma 3.13 it is enough to
show ∆2

x,yG(p) = G(p)−G(p + x)−G(p + y) + G(p + x + y) ≺ λ‖y‖2 . Let a, v,w be
such that ϕ(a) = p, ϕ(a + v) = p + x , ϕ(a + w) = p + y. Then ‖w‖ ≺ ‖y‖ and so it is
enough to show

(1) ϕ(F(a))− ϕ(F(a + v))− ϕ(F(a + w)) + G(p + x + y) ≺ λ‖w‖2.

Since F is D2 , by Proposition 3.12 it is also D1 , and so by Proposition 3.10 G is D1 .
So

G(p + x + y)− G(ϕ(a + v + w))− (p + x + y) + ϕ(a + v + w)(2)

≺ λ‖p + x + y− ϕ(a + v + w)‖
= λ‖ − ϕ(a) + ϕ(a + v) + ϕ(a + w)− ϕ(a + v + w)‖ ≺ λ‖w‖2,

by Remark 3.8 (assuming ϕ is C2 ) and since p + x + y = −ϕ(a) +ϕ(a + v) +ϕ(a + w)
and ‖v‖ ≺ ‖w‖. In view of (2) we see that (1) holds if and only if

ϕ(F(a))− ϕ(F(a + v))− ϕ(F(a + w)) + ϕ(F(a + v + w))

− ϕ(a) + ϕ(a + v) + ϕ(a + w)− ϕ(a + v + w)

= ∆2
v,w(ϕ ◦ F − ϕ)(a) ≺ λ‖w‖2,

so we proceed to prove this last inequality. Let φ = ϕi be the ith component of ϕ. We
have

(3) φ(F(a + v))− φ(F(a)) =

D(F(a + v)− F(a)) +
1
2

(F(a + v)− F(a))tH1(F(a + v)− F(a)),
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where D = DF(a) is the differential of φ at F(a) and H1 is the Hessian matrix of φ at
some point on the interval between F(a) and F(a + v), (recall Remark 2.5). Similarly

(4) φ(F(a + w))− φ(F(a)) =

D(F(a + w)− F(a)) +
1
2

(F(a + w)− F(a))tH2(F(a + w)− F(a))

and

(5) φ(F(a + v + w))− φ(F(a)) =

D(F(a + v + w)− F(a)) +
1
2

(F(a + v + w)− F(a))tH3(F(a + v + w)− F(a))

with H2,H3 similarly defined. We have

φ(a + v)− φ(a) = Dav +
1
2

vtH′1v,

where Da is the differential of φ at a and H′1 is the Hessian matrix of φ at some point
on the interval between a and a + v. Now let Y1 = H′1 − H1 then Y1 ≺ λ (assuming
the second partial derivatives of ϕ are Lipschitz, eg if ϕ is C3 ), and we have

(6) φ(a + v)− φ(a) = Dav +
1
2

vt(H1 + Y1)v.

Similarly there are Y2,Y3 ≺ λ such that

(7) φ(a + w)− φ(a) = Daw +
1
2

wt(H2 + Y2)w

and

(8) φ(a + v + w)− φ(a) = Da(v + w) +
1
2

(v + w)t(H3 + Y3)(v + w).

Furthermore, since by Proposition 3.12 the prevector field F is D1 , we have

F(a)− F(a + v)− a + (a + v) ≺ λ‖v‖,

ie F(a+v)−F(a) = v+δ1 with δ1 ≺ λ‖v‖ ≺ λ‖w‖. Similarly there are δ2, δ3 ≺ λ‖w‖
such that F(a + w)− F(a) = w + δ2 , F(a + v + w)− F(a) = v + w + δ3 . Substituting
this into the quadratic terms of (3),(4),(5) we get

(9) φ(F(a + v))− φ(F(a)) = D(F(a + v)− F(a)) +
1
2

(v + δ1)tH1(v + δ1),

(10) φ(F(a + w))− φ(F(a)) = D(F(a + w)− F(a)) +
1
2

(w + δ2)tH2(w + δ2),
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(11) φ(F(a+v+w))−φ(F(a)) = D(F(a+v+w)−F(a))+
1
2

(v+w+δ3)tH3(v+w+δ3).

Now

∆2
v,w(φ ◦ F − φ)(a)

= φ(F(a))− φ(F(a + v))− φ(F(a + w)) + φ(F(a + v + w))

− φ(a) + φ(a + v) + φ(a + w)− φ(a + v + w)

= −
(
φ(F(a + v))− φ(F(a))

)
−
(
φ(F(a + w))− φ(F(a))

)
+
(
φ(F(a + v + w))− φ(F(a))

)
+
(
φ(a + v)− φ(a)

)
+
(
φ(a + w)− φ(a)

)
−
(
φ(a + v + w)− φ(a)

)
.

Substituting (6),(7),(8),(9),(10),(11) for these six parenthesized summands, after all
cancellations we remain with

D
(

F(a)− F(a + v)− F(a + w) + F(a + v + w)
)

− vtH1δ1 − wtH2δ2 + (v + w)tH3δ3 −
1
2
δt

1H1δ1 −
1
2
δt

2H2δ2 +
1
2
δt

3H3δ3

+
1
2

vtY1v +
1
2

wtY2w− 1
2

(v + w)tY3(v + w) ≺ λ‖w‖2.

This is true for all components φ = ϕi of ϕ and so it is true for ϕ.

3.3 Operations on prevector fields

We now show that addition of the vectors corresponding to D1 prevector fields F,G is
realized by their composition F ◦ G. More precisely, we show the following.

Proposition 3.15 Let F be a D1 prevector field and G any prevector field. Then for
every a ∈ hM , −−−−−−→

a F(G(a)) =
−−−→
a F(a) +

−−−→
a G(a).

In particular if both F,G are D1 then F ◦ G ≡ G ◦ F .

Proof In coordinates
−−−→
a F(a) +

−−−→
a G(a) = −→a x where x = a + (F(a)− a) + (G(a)− a) =

F(a)+G(a)−a. So F(G(a))−x = F(G(a))−F(a)−G(a)+a ≺ λ‖G(a)−a‖ ≺≺ λ.

We next show that the composition of D1 (respectively D2 ) prevector fields is D1

(respectively D2 ).
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Proposition 3.16 If F,G are D1 then F ◦ G is D1 .

Proof We have

‖F ◦ G(a)− F ◦ G(b)− a + b‖
≤ ‖F ◦ G(a)− F ◦ G(b)− G(a) + G(b)‖+ ‖G(a)− G(b)− a + b‖
≺ λ‖G(a)− G(b)‖+ λ‖a− b‖ ≺ λ‖a− b‖

by Proposition 3.9.

Proposition 3.17 If F,G are D2 then F ◦ G is D2 .

Proof In some coordinates let p = G(a), x = G(a+v)−G(a) and y = G(a+w)−G(a),
and so by Propositions 3.12 and 3.9 we have x ≺ ‖v‖ and y ≺ ‖w‖. Also by Propositions
3.12 and 3.9 we have

‖F(p + x + y)− F(G(a + v + w))‖ ≺ ‖p + x + y− G(a + v + w)‖
= ‖ − G(a) + G(a + v) + G(a + w)− G(a + v + w)‖ ≺ λ‖v‖‖w‖.

Now

‖∆2
v,w(F ◦ G)(a)‖

= ‖F ◦ G(a)− F ◦ G(a + v)− F ◦ G(a + w) + F ◦ G(a + v + w)‖
= ‖F(p)− F(p + x)− F(p + y) + F ◦ G(a + v + w)‖
≤ ‖F(p)− F(p + x)− F(p + y) + F(p + x + y)‖

+ ‖F(p + x + y)− F(G(a + v + w))‖
≺ λ‖x‖‖y‖+ λ‖v‖‖w‖ ≺ λ‖v‖‖w‖.

4 Global properties of prevector fields

The definition of D1 and D2 prevector fields relates to points in hM which are infinitely
close to each other, in fact of distance ≺ λ. In this section we establish properties of
D1 and D2 prevector fields valid on appreciable neighborhoods, or on the whole of hM .

Proposition 4.1 Let F be a prevector field.

(1) If W is a coordinate neighborhood with image U ⊆ Rn and B ⊆ U is a closed
ball, then there is a finite C such that ‖F(a)− a‖ ≤ Cλ for all a ∈ ∗B. (We use
F to denote both the prevector field itself, and its action in coordinates.)
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(2) If G is another prevector field, then there is a finite β such that ‖F(a)−G(a)‖ ≤ βλ
for all a ∈ ∗B.

(3) If furthermore F ≡ G then an infinitesimal such β exists.

Proof The first statement is a special case of the second, by taking G(a) = a for all a.
So we prove the second statement. Let

A = {n ∈ ∗N : ‖F(a)− G(a)‖ ≤ nλ for every a ∈ ∗B}.

Every infinite n ∈ ∗N is in A and so by underspill 4 there is a finite C in A.

For F ≡ G, let

A = {n ∈ ∗N : ‖F(a)− G(a)‖ ≤ λ

n
for every a ∈ ∗B}.

Every finite n ∈ ∗N is in A and so by overspill 5 there is an infinite n ∈ ∗N in A, and
take β = 1

n ≺≺ 1.

Proposition 4.2 Let F be a D1 prevector field. If W is a coordinate neighborhood
with image U ⊆ Rn and B ⊆ U is a closed ball, then there is K ∈ R such that

(1) ‖F(a)− a− F(b) + b‖ ≤ Kλ‖a− b‖

for all a, b ∈ ∗B.

It follows that

(2) (1− Kλ)‖a− b‖ ≤ ‖F(a)− F(b)‖ ≤ (1 + Kλ)‖a− b‖.

Proof Let N = b1/λc. Given a, b ∈ ∗B, for k = 0, . . . ,N let ak = a + k
N (b − a),

then ak − ak+1 ≺ λ. Let Cab be the maximum of

‖F(ak)− ak − F(ak+1) + ak+1‖
λ‖ak − ak+1‖

for k = 0, . . . ,N − 1, then Cab is finite. For every 0 ≤ k ≤ N − 1 we have

‖F(ak)− ak − F(ak+1) + ak+1‖ ≤ Cabλ‖ak − ak+1‖ = Cabλ
‖a− b‖

N
.

So

‖F(a)− a− F(b) + b‖ ≤
N−1∑
k=0

‖F(ak)− ak − F(ak+1) + ak+1‖ ≤ Cabλ‖a− b‖.

4Recall that for ∗N , “underspill” is the fact that if A ⊆ ∗N is an internal set, and A contains
all infinite n then it must also contain a finite n .

5If B ⊆ ∗N is internal, and B ⊇ N , then there must also be an infinite n ∈ B .

Journal of Logic & Analysis 7:5 (2015)



22 Tahl Nowik and Mikhail G. Katz

Now let

A = {n ∈ ∗N : ‖F(a)− a− F(b) + b‖ ≤ nλ‖a− b‖ for every a, b ∈ ∗B}.

Since each Cab is finite, every infinite n ∈ ∗N is in A, and so by underspill, there is a
finite K in A, and the first statement follows. The second statement follows from the
first as in the proof of Proposition 3.9.

Proposition 4.3 Let F be a D2 prevector field. If W is a coordinate neighborhood
with image U ⊆ Rn and B ⊆ U is a closed ball, then there is K ∈ R such that

‖∆2
v,wF(a)‖ ≤ Kλ‖v‖‖w‖

for all a ∈ ∗B and v,w ∈ ∗Rn such that a + v, a + w, a + v + w ∈ ∗B.

Proof The proof is similar to that of Proposition 4.2. Let N = b1/λc. Given a ∈ ∗B
and v,w ∈ ∗Rn such that a + v, a + w, a + v + w ∈ ∗B, let ak,l = a + k

N v + l
N w,

0 ≤ k, l ≤ N . Let Cavw be the maximum of

‖∆2
v/N,w/NF(ak,l)‖

λ‖v/N‖‖w/N‖
for 0 ≤ k, l ≤ N − 1, then Cavw is finite. For every 0 ≤ k, l ≤ N − 1 we have

‖F(ak,l)− F(ak+1,l)− F(ak,l+1) + F(ak+1,l+1‖ =

‖∆2
v/N,w/NF(ak,l)‖ ≤ Cavwλ‖v/N‖‖w/N‖.

Summing over 0 ≤ k, l ≤ N − 1 we get

‖F(a)− F(a + v)− F(a + w) + F(a + v + w)‖ ≤ Cavwλ‖v‖‖w‖.

By underspill as in the proof of Proposition 4.2, there is a single finite K which works
for all a, v,w.

When speaking about local D1 or D2 prevector fields, whenever needed we will assume,
perhaps by passing to a smaller domain, that a constant K as in Propositions 4.2, 4.3
exists.

Corollary 4.4 If F is a D1 prevector field then F is injective on hM .

Proof Let a 6= b ∈ hM . If st(a) 6= st(b) then clearly F(a) 6= F(b). Otherwise there
exists a B containing a, b as in Proposition 4.2, and (2) of that proposition implies
F(a) 6= F(b).
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We will now show that a D1 prevector field is in fact bijective on hM . We first prove
local surjectivity, as follows.

Proposition 4.5 Let B1 ⊆ B2 ⊆ B3 ⊆ Rn be closed balls centered at the origin, of
radii r1 < r2 < r3 . If F : ∗B2 → ∗B3 is a local D1 prevector field then F(∗B2) ⊇ ∗B1 .

Proof Fix 0 < s ∈ R smaller than r2 − r1 and r3 − r2 . We will apply transfer to
the following fact: For every function f : B2 → B3 , if ‖f (x)− f (y)‖ ≤ 2‖x − y‖ for
all x, y ∈ B2 and ‖f (x)− x‖ < s for all x ∈ B2 then f (B2) ⊇ B1 . This fact is indeed
true since our assumptions on f imply that it is continuous, and that for every x ∈ ∂B2

the straight interval between x and f (x) is included in B3 − B1 , so f |∂B2 is homotopic
in B3 − B1 to the inclusion of ∂B2 . Now if some p ∈ B1 is not in f (B2) then f |∂B2

is null-homotopic in B3 − {p}, and so the same is true for the inclusion of ∂B2 , a
contradiction. Applying transfer we get that for every internal function f : ∗B2 → ∗B3 ,
if ‖f (x)− f (y)‖ ≤ 2‖x− y‖ for all x, y ∈ ∗B2 and ‖f (x)− x‖ < s for all x ∈ ∗B2 then
f (∗B2) ⊇ ∗B1 . In particular this is true for a D1 prevector field F : ∗B2 → ∗B3 , by
Proposition 4.2(2).

The following is immediate from Corollary 4.4 and Proposition 4.5.

Theorem 4.6 If F : ∗M → ∗M is a D1 prevector field then F|hM : hM → hM is bijective.

Remark 4.7 On all of ∗M , a D1 prevector field may be noninjective and nonsurjective,
eg take M = (0, 1) and F : ∗M → ∗M given by F(x) = λ for x ≤ λ and F(x) = x
otherwise. (Recall that the definition of D1 prevector field imposes no restrictions at
points of ∗M − hM .)

Remark 4.8 For D1 prevector field F , the map F|hM : hM → hM and its inverse
(F|hM)−1 are not internal if M is noncompact, since their domain is not internal. On the
other hand, for any A ⊆ M , F|∗A is internal. Furthermore, on ∗B1 of Proposition 4.5, F
has an inverse F−1 : ∗B1 → ∗B2 in the sense that F ◦ F−1(a) = a for all a ∈ ∗B1 , and
F−1 is internal. So, for a local D1 prevector field F : ∗U → ∗V we may always assume
(perhaps for slightly smaller domain) that F−1 : ∗U → ∗V also exists, in the above
sense. As mentioned, we will usually not mention the range ∗V but rather speak of a
local prevector field on ∗U .

Proposition 4.9 If F is D1 then F−1 is D1 . (F−1 exists by Remark 4.8.)

More in detail, if for x = F−1(a), y = F−1(b) there is given K ≺ 1 such that
‖F(x)− F(y)− x + y‖ ≤ Kλ‖x− y‖, then ‖F−1(a)− F−1(b)− a + b‖ ≤ K′λ‖a− b‖,
with K′ only slightly larger, namely K′ = K/(1− Kλ).
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Proof Let x = F−1(a), y = F−1(b), then

‖F−1(a)− F−1(b)− a + b‖ =

‖x− y− F(x) + F(y)‖ ≤ Kλ‖x− y‖ ≤ K′λ‖F(x)− F(y)‖ = K′λ‖a− b‖

by Lemma 3.9.

We conclude this section with the following observations.

Lemma 4.10 Let F,G be D1 prevector fields. If F(a) ≡ G(a) for all standard a, then
F(b) ≡ G(b) for all nearstandard b, ie F ≡ G.

Proof Given b, let K be as in Proposition 4.2 for both F and G, in a ball around
a = st(b). Then

‖F(b)− G(b)‖ = ‖F(b)− F(a)− b + a + F(a)− G(a) + G(a)− G(b)− a + b‖
≤ ‖F(b)− F(a)− b + a‖+ ‖F(a)− G(a)‖+ ‖G(a)− G(b)− a + b‖
≤ Kλ‖a− b‖+ ‖F(a)− G(a)‖+ Kλ‖a− b‖ ≺≺ λ.

Recall that Definition 3.2, which defines when a prevector field F realizes a classical
vector field X , involves only standard points. It follows from Lemma 4.10 that if F is
D1 then this determines F up to equivalence. Namely, we have the following.

Corollary 4.11 Let U ⊆ Rn be open, and X : U → Rn a classical vector field. If F,G
are two D1 prevector fields that realize X then F ≡ G. In particular, if X is Lipschitz
and G is a D1 prevector field that realizes X , then F ≡ G, where F is the prevector
field obtained from X as in Example 3.1.

5 The flow of a prevector field

In this section we define and study the flow of global and local prevector fields. In our
definition of a prevector field as a map from ∗M to itself, we wish to view F as its
own flow at time λ. The flow for later time t should thus be defined by iterating F
the appropriate number of times. (Thus the classical notion of a vector field being the
infinitesimal generator of its flow receives literal meaning in our setting.)

Thus, for a global prevector field F : ∗M → ∗M and for 0 ≤ t ∈ ∗R, let n = n(t) = bt/λc
and define the flow Ft of F at time t to be Ft(a) = Fn(a), where Fn is given by the map
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∗Map(M)×∗N→ ∗Map(M) which is the extension of the map Map(M)×N→ Map(M)
taking (f , n) to f n = f ◦ f ◦ · · · ◦ f . The flow of a local prevector field is similarly
defined, only a bit of care is needed regarding its domain. So, for local prevector field
F : ∗U → ∗V , extend F to F′ : ∗V → ∗V by defining F′(a) = a for all a ∈ ∗V − ∗U ,
and let Yn = {a ∈ ∗U : (F′)n(a) ∈ ∗U}. We set the domain of Ft to be Yn(t) , where it
is defined by Ft(a) = F′t(a).

We would also like to consider Ft for t ≤ 0. For global prevector field F which is
bijective on ∗M , or for local prevector field which is bijective in the sense of Remark 4.8,
in particular a D1 local prevector field, we define Ft for t ≤ 0 to be (F−1)−t .

Note that for any global prevector field F , Ft is defined for all t ≥ 0, unlike the situation
for the classical flow of a classical vector field. Similarly Ft is defined for all t ≤ 0 if
F is bijective.

Directly from the definition of a flow, we may immediately notice the following.

Proposition 5.1 A prevector field F is invariant under its own flow Ft , where the
action of a map h on a prevector (a, x) is given, as in Definition 2.11, by (h(a), h(x)).

Proof Let n = bt/λc then Ft((a,F(a))) = Fn((a,F(a))) = (Fn(a),Fn+1(a)) =

(b,F(b)) where b = Fn(a) = Ft(a).

5.1 Dependence on initial condition and on prevector field

We now establish bounds on the distance in coordinates between two flows Ft(a),Ft(b)
of a given D1 prevector field F , and between the flows Ft(a),Gt(a) of two different
prevector fields. These bounds can of course be combined into a bound on the distance
between Ft(a) and Gt(b).

Theorem 5.2 Let F be a local D1 prevector field on ∗U . Given p ∈ U and a coordinate
neighborhood of p with image W ⊆ Rn , let B′ ⊆ B ⊆ W be closed balls of radii
r/2, r around the image of p. Suppose ‖F(a)− a− F(b) + b‖ ≤ Kλ‖a− b‖ for all
a, b ∈ ∗B, with K a finite constant (such finite K exists by Proposition 4.2), then there
is 0 < T ∈ R such that Ft(a) ∈ ∗B for all a ∈ ∗B′ and −T ≤ t ≤ T . Furthermore, for
all a, b ∈ ∗B′ and 0 ≤ t ≤ T : ‖Ft(a)− Ft(b)‖ ≤ eKt‖a− b‖.

If we take a slightly larger constant K′ = K/(1 − Kλ)2 , then for all a, b ∈ ∗B′ and
−T ≤ t ≤ T :

e−K′|t|‖a− b‖ ≤ ‖Ft(a)− Ft(b)‖ ≤ eK′|t|‖a− b‖.
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Proof We first prove the statement for t ≥ 0. Let C be as in Proposition 4.1(1). Take
T = r

2C , then 0 < T ∈ R, and we have by internal induction 6 for a ∈ ∗B′ , 0 ≤ t ≤ T ,
and n = bt/λc, that ‖Fn(a) − a‖ ≤

∑n
m=1 ‖Fm(a) − Fm−1(a)‖ ≤ nCλ ≤ r

2 , and so
Fn(a) ∈ ∗B. By Proposition 4.2(2) we have (1 − Kλ)‖a − b‖ ≤ ‖F(a) − F(b)‖ ≤
(1 + Kλ)‖a− b‖ for all a, b ∈ ∗B, and so by internal induction

(1− Kλ)n‖a− b‖ ≤ ‖Fn(a)− Fn(b)‖ ≤ (1 + Kλ)n‖a− b‖.

For t ≥ 0 we have (1+Kλ)n ≤ eKt since 1+Kλ ≤ eKλ , and letting h = 1
1−Kλ we have

e−hKt ≤ (1−Kλ)n since e−hKλ ≤ 1−hKλ+ h2K2λ2

2 ≤ 1−hKλ+hK2λ2 = 1−Kλ. For
t ≤ 0 we are considering F−1 . The same constant C can be used, and by Proposition 4.9
K should be replace by hK , and so hK is replaced by K′ = h2K .

Theorem 5.3 Let F be a D1 local prevector field on ∗U and let G be any local
prevector field on ∗U . Given a coordinate neighborhood included in U with image
W ⊆ Rn , let A′ ⊆ A ⊆ ∗W be internal sets. Suppose

(1) ‖F(a)− G(a)‖ ≤ βλ for all a ∈ A, with some constant β . (If F ≡ G then an
infinitesimal such β exists by Proposition 4.1(3)),

(2) ‖F(a)− a− F(b) + b‖ ≤ Kλ‖a− b‖ for all a, b ∈ A, with K a finite constant.
(Such finite K exists by Proposition 4.2),

(3) 0 < T ∈ R is such that Ft(a) and Gt(a) are in A for all a ∈ A′ and 0 ≤ t ≤ T .

Then for all a ∈ A′ and 0 ≤ t ≤ T ,

‖Ft(a)− Gt(a)‖ ≤ β

K
(eKt − 1) ≤ βteKt.

If G−1 exists, eg if G is also D1 , and if Ft(a) and Gt(a) are in A for all a ∈ A′ and
−T ≤ t ≤ T , then ‖Ft(a)− Gt(a)‖ ≤ β

K (eK|t| − 1) ≤ β|t|eK|t| for all −T ≤ t ≤ T .

Proof Again it is enough to prove the statement for positive t . We prove by internal
induction that

‖Fn(a)− Gn(a)‖ ≤ β

K

(
(1 + Kλ)n − 1

)
,

which implies the statement. By Proposition 4.2(2) we have

‖Fn+1(a)− Gn+1(a)‖ ≤ ‖F(Fn(a))− F(Gn(a))‖+ ‖F(Gn(a))− G(Gn(a))‖
≤ (1 + Kλ)‖Fn(a)− Gn(a)‖+ βλ,

from which the induction step from n to n + 1 follows.
6If A is an internal subset of ∗N that contains 1 and is closed under the successor function

n 7→ n + 1, then A = ∗N . So, one can prove by induction in ∗N , as long as all objects under
discussion are internal. This is called internal induction.
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Corollary 5.4 For F and T as in Theorem 5.2, if a ≈ b then Ft(a) ≈ Ft(b) for all
0 ≤ t ≤ T .

Corollary 5.5 For F and G as in Theorem 5.3, if F ≡ G, then Ft(a) ≈ Gt(a) for all
0 ≤ t ≤ T .

Proof By Proposition 4.1(3) there is an infinitesimal β for the statement of Theorem 5.3,
which gives ‖Ft(a)− Gt(a)‖ ≤ βteKt , so Ft(a) ≈ Gt(a).

Our flow Ft of a prevector field F induces a classical flow on M as follows.

Definition 5.6 Let F be a D1 local prevector field. On a neighborhood B′ ⊆ Rn and
interval [−T, T] as in Theorem 5.2, we define the standard flow hF

t : B′ → M induced
by F as follows: hF

t (x) = st(Ft(x)).

The following are immediate consequences of Theorems 5.2 and Corollary 5.5.

Theorem 5.7 Given a D1 prevector field F the following hold:

(1) hF
t is Lipschitz continuous with constant eK|t| .

(2) hF
t is injective.

(3) If G is another D1 prevector field and F ≡ G then hF
t = hG

t .

Remark 5.8 If F is obtained from a classical vector field X by the procedure of
Example 3.1 then Keisler [7, Theorem 14.1] shows that our hF

t is in fact the flow of X
in the classical sense. By Theorem 5.7(3) this will be true for any prevector field F that
realizes X .

The results of this subsection have the following application to the standard setting.

Classical Corollary 5.9 For open U ⊆ Rn let X,Y : U → Rn be classical vector
fields, where X is Lipschitz with constant K , and ‖X(x)− Y(x)‖ ≤ b for all x ∈ U . If
x(t), x′(t) are integral curves of X then ‖x(t)− x′(t)‖ ≤ eKt‖x(0)− x′(0)‖. If y(t) is an
integral curve of Y with x(0) = y(0) then ‖x(t)− y(t)‖ ≤ b

K (eKt − 1) ≤ bteKt .

Proof Define prevector fields on ∗U by F(a)− a = λX(a) and G(a)− a = λY(a) as
in Example 3.1, and apply Theorems 5.2, 5.3, and Remark 5.8.
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To conclude this section we look at the flow of a prevector field in an infinitesimal
neighborhood of a fixed point. This corresponds to a zero of a vector field in the classical
setting. In a neighborhood of such zero, one often approximates the given vector field
with a simpler one (eg the linear approximation), to obtain an approximation of the
original vector field’s flow. We present the following approach for prevector fields,
which we apply in Section 5.3 to infinitesimal oscillations of a pendulum.

Corollary 5.10 Let F,G be local D1 prevector fields on ∗U where U is a neighborhood
of p ∈ Rn , and assume F(p) = G(p) = p. Fix an infinitesimal a > 0 and let
Q = {x ∈ ∗U : x− p ≺ a} (an external set).

(1) If F(x)−G(x) ≺≺ λa for all x ∈ Q then Ft(x)−Gt(x) ≺≺ a for all x ∈ Q, and
the appropriate range of t , by which we mean finite t for which Fs(x) ∈ Q for all
0 ≤ s ≤ t .

(2) If F(x)−G(x) ≺≺ ‖F(x)− x‖ for all x ∈ Q, then Ft(x)−Gt(x) ≺≺ ‖Ft(x)− p‖
for all x ∈ Q, and an appropriate range of t as above.

Proof For convenience assume p = 0 so we have F(0) = G(0) = 0 and x ∈ Q simply
means x ≺ a. We first note that F(x)− x = F(x)− x− F(0) + 0 ≺ λ‖x‖ by D1 and
Proposition 4.2. Now let F′(x) = 1

a F(ax), then F′ is defined for all x ≺ 1 (ie x ∈ hRn ).
For x ≺ 1, F′(x)−x = 1

a

(
F(ax)−ax

)
≺ 1

aλ‖ax‖ = λ‖x‖ ≺ λ so F′ is a prevector field.
We have F′(x)−x−F′(y)+y = 1

a

(
F(ax)−ax−F(ay)+ay

)
≺ 1

aλ‖ax−ay‖ = λ‖x−y‖
so F′ is D1 . Similarly define G′ .

For (1) we have F′(x)−G′(x) = 1
a

(
F(ax)−G(ax)

)
≺≺ 1

aλa = λ so F′ ≡ G′ . We thus
get by Corollary 5.5 that F′t(x) ≈ G′t(x) for x ≺ 1 and for appropriate range of t . Now,
for x ≺ a we have 1

a x ≺ 1 so Ft(x)− Gt(x) = a
(
F′t(

1
a x)− G′t(

1
a x)
)
≺≺ a. (We remark

that though our range of t gives F′s(x) ≺ 1 for all 0 ≤ s ≤ t , which is an external
condition, in fact there is a finite ball B such that F′s(x) ∈ ∗B for all 0 ≤ s ≤ t . This
can be seen eg by underspill as in the proof of Proposition 4.1.)

For (2), the statement holds for x = 0 since 0 ≺≺ 0. Given a fixed 0 6= x ≺ a let
b = ‖x‖. Then for all y ≺ b we have F(y) − G(y) ≺≺ ‖F(y) − y‖ ≺ λ‖y‖ ≺ λb,
so by (1) applied to b we have Ft(x) − Gt(x) ≺≺ b for appropriate range of t .
By Theorem 5.2 we have b = ‖x − 0‖ ≺ ‖Ft(x) − Ft(0)‖ = ‖Ft(x)‖, so together
Ft(x)− Gt(x) ≺≺ ‖Ft(x)‖.

Remark 5.11 We can slightly weaken the assumptions in Corollary 5.10 by replacing
the assumption that G is D1 by the weaker assumption that all x ≺ a satisfy G(x)− x ≺
λ‖x‖. The proof remains unchanged.
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Example 5.12 In Corollary 5.10 we take p = 0 ∈ C. We further assume that 0 is
the only fixed point of F,G in Q (this corresponds to an isolated zero in the classical
setting). For 0 6= a, b ∈ ∗C we will say that a and b are adequal if a

b ≈ 1. Then
Corollary 5.10(2) tells us that if F(x)− x and G(x)− x are adequal for all 0 6= x ∈ Q
then Ft(x) and Gt(x) are adequal for all 0 6= x ∈ Q, and an appropriate range of t as in
Corollary 5.10.

5.2 The canonical representative prevector field

Once we have the standard function hF
t , we can extend it to the nonstandard domain as

usual, and use it to define a new prevector field F̃ as follows.

Definition 5.13 F̃ = hF
λ .

The map F̃ is indeed a prevector field, ie F̃(a)− a ≺ λ for all a. Indeed, for C ∈ R
given by Proposition 4.1(1) we have ‖Fn(a)− a‖ ≤

∑n
m=1 ‖Fm(a)−Fm−1(a)‖ ≤ nCλ,

which implies ‖hF
t (a)− a‖ ≤ Ct , which by transfer implies ‖F̃(a)− a‖ ≤ Cλ.

By Theorem 5.7(3), if F ≡ G then F̃ = G̃. We will show in Theorem 5.19 that F̃ ≡ F ,
and so F̃ is a canonical choice of a representative from the equivalence class of F .
(Perhaps in a smaller neighborhood of a given point, as required by Theorem 5.2.) We
will show in Propositions 5.15, 5.16 that if F is D1 (respectively D2 ) then F̃ is D1

(respectively D2 ). That is, if a given equivalence class contains some member which is
D1 (respectively D2 ) then the canonical representative F̃ of that equivalence class is
also D1 (respectively D2 ). We note that indeed not all members of the given class are
D1 (respectively D2 ), for example for ∗R take F(x) = x for all x ∈ ∗R, and G(x) = x
for all x 6= 0 and G(0) = λ2 . Then F is D2 , F ≡ G, but G is not even D1 , as is seen
by taking a = 0, b = λ2 .

Lemma 5.14 Let F be a local D1 prevector field defined on ∗U . Assume

‖F(a)− F(b)− a + b‖ ≤ Kλ‖a− b‖

for all a, b ∈ ∗U . Then the flow of F satisfies:

‖Fn(a)− Fn(b)− a + b‖ ≤ KλneKλn‖a− b‖.
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Proof We have

‖Fn(a)− Fn(b)− a + b‖ ≤
n∑

i=1

‖Fi(a)− Fi(b)− Fi−1(a) + Fi−1(b)‖

≤
n∑

i=1

Kλ‖Fi−1(a)− Fi−1(b)‖

≤
n∑

i=1

Kλ(1 + Kλ)i−1‖a− b‖ ≤ KλneKλn‖a− b‖.

The third inequality is by internal induction as in the proof of Theorem 5.2.

Proposition 5.15 If F is D1 then F̃ is D1 .

Proof Assume ‖F(a) − F(b) − a + b‖ ≤ Kλ‖a − b‖ for all a, b in some ∗B as in
Proposition 4.2. Then for n = bt/λc we have by Lemma 5.14 ‖Fn(a)−Fn(b)−a+b‖ ≤
KλneKλn‖a−b‖ ≤ KteKt‖a−b‖. So for standard a, b we have ‖hF

t (a)−hF
t (b)−a+b‖ ≤

KteKt‖a− b‖. Extending back to the nonstandard domain and evaluating at t = λ we
get, by transfer, ‖F̃(a)− F̃(b)− a + b‖ ≤ KλeKλ‖a− b‖.

Proposition 5.16 If F is D2 then F̃ is D2 .

Proof Assume ‖∆2
v,wF(a)‖ ≤ Kλ‖v‖‖w‖ for all a, v,w in some ∗B as in Proposi-

tion 4.3. We prove by internal induction that

‖∆2
v,wFn(a)‖ = ‖Fn(a)− Fn(a + v)− Fn(a + w) + Fn(a + v + w)‖

≤ Kλ
2n−2∑

i=n−1

(1 + Kλ)i‖v‖‖w‖.

Let p = Fn(a), x = Fn(a+v)−Fn(a), y = Fn(a+w)−Fn(a). Then ‖x‖ ≤ (1+Kλ)n‖v‖,
‖y‖ ≤ (1 + Kλ)n‖w‖, and

‖F(p + x + y)−Fn+1(a + v + w))‖
≤ (1 + Kλ)‖p + x + y− Fn(a + v + w)‖
= (1 + Kλ)‖ − Fn(a) + Fn(a + v) + Fn(a + w)− Fn(a + v + w)‖

≤ (1 + Kλ)Kλ
2n−2∑

i=n−1

(1 + Kλ)i‖v‖‖w‖ = Kλ
2n−1∑
i=n

(1 + Kλ)i‖v‖‖w‖,
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by the induction hypothesis. Now

‖Fn+1(a)− Fn+1(a + v)− Fn+1(a + w) + Fn+1(a + v + w)‖
≤ ‖F(p)− F(p + x)− F(p + y) + F(p + x + y)‖

+ ‖F(p + x + y)− Fn+1(a + v + w)‖

≤ Kλ‖x‖‖y‖+ Kλ
2n−1∑
i=n

(1 + Kλ)i‖v‖‖w‖

≤ Kλ(1 + Kλ)2n‖v‖‖w‖+ Kλ
2n−1∑
i=n

(1 + Kλ)i‖v‖‖w‖

= Kλ
2n∑

i=n

(1 + Kλ)i‖v‖‖w‖,

which completes the induction.

So for n = bt/λc we have

‖Fn(a)− Fn(a + v)− Fn(a + w) + Fn(a + v + w)‖

≤ Kλ
2n−2∑

i=n−1

(1 + Kλ)i‖v‖‖w‖ ≤ Kλne2Kt‖v‖‖w‖ ≤ Kte2Kt‖v‖‖w‖.

Thus for standard a, v,w we have

‖hF
t (a)− hF

t (a + v)− hF
t (a + w) + hF

t (a + v + w)‖ ≤ Kte2Kt‖v‖‖w‖.
Extending back to the nonstandard domain and evaluating at t = λ we get:

‖F̃(a)− F̃(a + v)− F̃(a + w) + F̃(a + v + w)‖ ≤ Kλe2Kλ‖v‖‖w‖.

Next we would like to prove that F̃ ≡ F . We first need two lemmas.

Lemma 5.17 Let F be a local prevector field defined on ∗U . Assume ‖F(a)−a‖ ≤ Cλ
and ‖F(a)− a−F(b) + b‖ ≤ Kλ‖a− b‖ for all a, b ∈ ∗U . Then the flow of F satisfies
‖Fn(a)− a− n(F(a)− a)‖ ≤ KCn2λ2 .

Proof We have

‖Fn(a)− a− n(F(a)− a)‖ = ‖
n∑

i=1

(
Fi(a)− Fi−1(a)− (F(a)− a)

)
‖

≤
n∑

i=1

‖F(Fi−1(a))− Fi−1(a)− F(a) + a‖ ≤
n∑

i=1

Kλ‖Fi−1(a)− a‖

≤
∑

1≤j<i≤n

Kλ‖Fj(a)− Fj−1(a)‖ ≤ n2KλCλ.
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Lemma 5.18 Let v ∈ ∗Rn with v ≺ λ, let g : [0,∞)→ Rn be the standard function
g(t) = st(bt/λcv), and let V = st(v/λ). Then g(t) = tV and the extension of g back to
the nonstandard domain satisfies g(λ) ≡ v.

Proof Let n = bt/λc. Then

‖tV−nv‖ ≤ ‖tV−t(v/λ)‖+‖t(v/λ)−nλ(v/λ)‖ = t‖V−(v/λ)‖+|t−nλ|‖v/λ‖ ≺≺ 1.

This shows that g(t) = tV . So g(λ) = λV , and we have ‖λV − v‖ = λ‖V − v/λ‖ ≺≺
λ.

We are now ready to prove the following.

Theorem 5.19 If F is a local D1 prevector field then F̃ ≡ F .

Proof By Proposition 5.15 and Lemma 4.10 it is enough to show that F̃(a) ≡ F(a)
for all standard a. So, for standard a let gt(a) = st

(
a + bt/λc(F(a)− a)

)
. Letting

n = bt/λc we have

‖hF
t (a)−gt(a)‖ = ‖st(Fn(a))−st

(
a+n(F(a)−a)

)
‖ = st‖Fn(a)−a−n(F(a)−a)‖ ≤ At2

for some A ∈ R, by Lemma 5.17. Extending and evaluating at t = λ gives ‖F̃(a)−
gλ(a)‖ ≤ Aλ2 ≺≺ λ, ie F̃(a) ≡ gλ(a). Now gt(a)− a = st

(
bt/λc(F(a)− a)

)
so by

Lemma 5.18 we have gλ(a) − a ≡ F(a) − a, so gλ(a) ≡ F(a), and together we get
F̃(a) ≡ F(a).

To conclude, F̃ is a canonically chosen representative from the equivalence class of F
(perhaps in a smaller neighborhood of a given point), and if F is D1 (respectively D2 )
then F̃ is D1 (respectively D2 ).

5.3 Infinitesimal oscillations of a pendulum

We now demonstrate and discuss some of the concepts and results of this section
in relation to a concrete physical problem, that of small oscillations of a pendulum.
(Compare Stroyan [13].)

Let x denote the angle between a pendulum and the downward vertical direction. By
considering the projection of the force of gravitation in the direction of motion, one
obtains the equation of motion

m`ẍ = −mg sin x,
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where m is the mass of the bob of the pendulum, ` is the length of its massless rod, and
g is the constant of gravity. Letting ω =

√
g/` we have ẍ = −ω2 sin x. The initial

condition of releasing the pendulum at angle a is described by x(0) = a, ẋ(0) = 0. We
replace this single second order differential equation with the system of two first order
equations ẋ = ωy, ẏ = −ω sin x, and initial condition (x, y) = (a, 0). The classical
vector field corresponding to this system is X(x, y) = (ωy,−ω sin x).

We are interested in “small” oscillations in the classical setting, ie the limiting behavior
when the parameter a above tends to 0, and correspondingly, infinitesimal oscillations
in the hyperreal setting, ie when a is infinitesimal. To this end, if pa(t) is the
classical motion with initial angle a, we look at the motion rescaled by the factor a,
ie we look at pa(t)

a . This is the x component of the flow of the rescaled vector field
Y(x, y) = 1

a X(ax, ay) = (ωy,−ω sin ax
a ). The initial condition (a, 0) for X corresponds

to initial condition (1, 0) for Y . We can incorporate the parameter a into our manifold
and look at the vector field Z on R3 given by Z(x, y, a) = (ωy,−ω sin ax

a , 0), and initial
condition (1, 0, a). Note that Z is well defined and analytic also for a = 0 (indeed
sin ax

a = x− a2x3

3! + a4x5

5! − · · · ), and its value for a = 0 is Z(x, y, 0) = (ωy,−ωx, 0). The
classical flow for a = 0, ie initial condition (1, 0, 0), is (cosωt, sinωt, 0), and so by
Classical Corollary 5.9 we have pa(t)

a → cosωt (in fact, uniformly on finite intervals).
It follows that for infinitesimal a, pa(t)

a ≈ cosωt , for all finite t .

The above computation was for the classical flow of a classical vector field, and was then
extended to the nonstandard domain. But we may also view the flow itself as occurring
in the nonstandard domain ∗R2 , via the prevector field F(x, y) = (x +λωy, y−λω sin x)
with initial condition (a, 0). This is the prevector field obtained from our classical
vector field X by the procedure of Example 3.1. After rescaling as before, we have the
prevector field G(x, y) = (x + λωy, y− λω sin ax

a ) and initial condition (1, 0). Define
the prevector field E(x, y) = (x + λωy, y − λωx), then for infinitesimal a we have
G ≡ E since E(x, y)−G(x, y) = (0, λω( sin ax

ax − 1)x) and sin ax
ax − 1 ≺≺ 1. Let us define

another prevector field H(x, y) = (x cosλω + y sinλω,−x sinλω + y cosλω), then H
is clockwise rotation of the xy plane by angle λω , so Ht(1, 0) ≈ (cosωt,− sinωt). We
have cosλω − 1 ≺≺ λω and sinλω − λω ≺≺ λω , so E ≡ H . We have G ≡ E ≡ H ,
so by Corollary 5.5, since E is evidently D1 , Gt(1, 0) ≈ (cosωt,− sinωt). (We have
used arguments from the proof of Corollary 5.10 rather than quoting it.) So finally,
the x component of Gt(1, 0) is ≈ cosωt for any infinitesimal a, which means that
the x component of Ft(a,0)

a is ≈ cosωt for any infinitesimal a. We may thus say the
following.

Corollary 5.20 The motion of a pendulum with infinitesimal amplitude a is practically
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harmonic motion, in the sense that if rescaled to appreciable size, it is infinitely close to
standard harmonic motion, for all finite time.

Equivalently, one could say that the motion itself is harmonic with the given infinitesimal
amplitude a, with error which is infinitely smaller than a.

6 Realizing classical vector fields

Given a classical vector field on a smooth manifold M , we seek a prevector field
realizing it. Using Example 3.1 we can do this only locally, while by Proposition 3.3
these local prevector fields are compatible up to equivalence. This leads to the following
definition.

Definition 6.1 A D1 (respectively D2 ) coherent family of local prevector fields on
M is a family {(Fα,Uα)}α∈J where {Uα}α∈J is an open covering of M , and each
Fα is a local D1 (respectively D2 ) prevector field on ∗Uα , such that for α, β ∈ J ,
Fα|∗Uα∩∗Uβ

≡ Fβ|∗Uα∩∗Uβ
.

Definition 6.2 A coherent family {(Gα,Vα)}α∈K is said to be a refinement of
{(Fα,Uα)}α∈J , if for each α ∈ K there is β ∈ J such that Vα ⊆ Uβ and Gα ≡ Fβ|∗Vα .

Definition 6.3 A refinement {(Gα,Vα)}α∈K of {(Fα,Uα)}α∈J is said to be a flowing
refinement if there are 0 < Tα ∈ R for each α ∈ K such that the flow hGα

t is defined
on Vα for 0 ≤ t ≤ Tα .

By Theorem 5.2 any D1 coherent family of prevector fields has a D1 flowing refinement.
By Theorem 5.7(3), if Vα ∩ Vβ 6= ∅ then hGα

t = hGβ
t on Vα ∩ Vβ for 0 ≤ t ≤

min{Tα,Tβ}. If we can choose a single 0 < T ∈ R which is good for all α ∈ K ,
then we will say that the original family {(Fα,Uα)}α∈J is complete. In that case we
have a global well defined flow ht : M → M for 0 ≤ t ≤ T , and by iteration, for all
0 ≤ t ∈ R. Extending ht back to ∗M , let G = hλ , then G is a global prevector field. By
Proposition 5.15, G is D1 since {Fα} is D1 , and by Proposition 5.16, if {Fα} is D2

then G is D2 . By Theorem 5.19 we have G|∗Uα ≡ Fα for all α ∈ J . We will call G
the globalization of the complete coherent family {(Fα,Uα)}α∈J . By Theorem 5.7(3)
if two complete coherent families have a common refinement, then they define the same
flow ht : M → M , and so they have the same globalization.

We note that if {(Fα,Uα)}α∈J has a finite flowing refinement, ie a flowing refinement
{(Gα,Vα)}α∈J for which J is finite, then {(Fα,Uα)}α∈J is clearly complete.
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Definition 6.4 A coherent family {(Fα,Uα)}α∈J has compact support, if there is a
compact C ⊆ M such that {(Fα,Uα)}α∈J ∪ {(I,M − C)} is coherent, (recall I(a) = a
for all a).

Clearly a coherent D1 family with compact support has a finite flowing refinement, so
the following holds.

Proposition 6.5 A coherent D1 family with compact support is complete.

Given a classical vector field X on M of class C1 or C2 , we would like to realize it by
a global prevector field on ∗M of class D1 or D2 respectively. In Proposition 3.7 we
have shown that this can be done locally. We now state and prove our global realization
result.

In the following proof we use our assumption that our nonstandard extension satisfies
countable saturation. This means that for any sequence {An}n∈N of internal sets such
that An 6= ∅ and An+1 ⊆ An for all n, one has

⋂
n∈N An 6= ∅.

Theorem 6.6 Let X be a classical C1 (respectively C2 ) vector field on M . Then there
is a D1 (respectively D2 ) global prevector field F on ∗M that realizes X , where the
value of F in hM is canonically prescribed. If X has compact support (in the classical
sense), then the value of F throughout ∗M is canonically prescribed, with F(a) = a for
a ∈ ∗M − hM .

Proof Assume first that X has compact support. There is a family Uα of coordinate
neighborhoods for M , on each of which X is realized by Fα as in Example 3.1, and
by Proposition 3.3 the family {(Fα,Uα)} is coherent. By Proposition 3.7, the family
{(Fα,Uα)} is D1 (respectively D2 ) if X is C1 (respectively C2 ). The vector field X
having compact support C ⊆ M in the classical sense implies that {(Fα,Uα)} has
compact support in the sense of Definition 6.4. Thus by Proposition 6.5 it is complete,
and let F be its globalization. We first notice that the flow ht : M → M which defines
F satisfies ht(a) = a for all a ∈ M − C and so by transfer F(a) = hλ(a) = a for
all a ∈ ∗M − ∗C ⊇ ∗M − hM , proving the concluding statement regarding X with
compact support. Furthermore, by Propositions 5.15, 5.16, F is D1 (respectively D2 ) if
{(Fα,Uα)} is D1 (respectively D2 ), which, as mentioned, holds if X is C1 (respectively
C2 ). By Proposition 3.3 and Theorem 5.7(3) F is uniquely determined by X . This
completes the compact support case.

If X does not have compact support, we proceed using countable saturation of our
nonstandard extension. Let {Un}n∈N be a sequence of open sets in M with Un compact,
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Un ⊆ Un+1 , and
⋃

Un = M . Let fn : M → [0, 1] be a sequence of smooth functions
with compact support, such that fn|Un+1 = 1. Now let Gn be the realization of fnX
given by the compact support case. Let An = {F ∈ ∗Map(M) : F|∗Un = Gn|∗Un},
then An is nonempty for each n, since Gn ∈ An . We further have An+1 ⊆ An since
Gn+1|∗Un = Gn|∗Un , which is true since fn+1 and fn are both 1 on Un+1 ⊇ Un and so
the same flow determines Gn+1|∗Un and Gn|∗Un . So, by countable saturation

⋂
An 6= ∅.

An F in this intersection satisfies F ∈ ∗Map(M), ie it is internal. Since
⋃ ∗Un = hM ,

F realizes X . The restriction F|hM is uniquely determined by X , since F|∗Un = Gn|∗Un

is uniquely determined by X , again since fn is 1 on Un+1 ⊇ Un .

In the following example we demonstrate the need for {Un} and {fn} in the proof of
Theorem 6.6, and the fact that the values of F on ∗M − hM may depend on the choice
of {Un}, {fn}.

Example 6.7 Let M = (0, 1), and let X be the classical vector field on M given by
X(x) = −1 for all x ∈ (0, 1). On ∗(0, 1) X does not induce a prevector field via the
procedure of Example 3.1 since for λ > x ∈ ∗(0, 1), x− λ 6∈ ∗(0, 1). However we can
take the coherent family {(Fr, (r, 1))}r>0 where Fr is always defined by Fr(a) = a− λ.
The standard flow hFr

t is defined for 0 ≤ t ≤ r and always given by hFr
t (a) = a − t .

But this family is not complete. There is no common T > 0 for which the flow is
defined on [0,T], and so there is no global flow ht : (0, 1) → (0, 1) in which one
can substitute t = λ. (Note that the global prevector field that may seem to exist by
naively substituting t = λ ignoring the problem of common domain [0,T], would be
a 7→ a− λ, which, as noted, is not defined on ∗(0, 1).)

So, following the proof of Theorem 6.6, let {an} be a strictly decreasing sequence
with an → 0. Let Un = (an, 1− an) and let fn : (0, 1)→ [0, 1] be a smooth function
such that fn(x) = 1 for an+1 ≤ x ≤ 1 − an+1 , and fn(x) = 0 for 0 < x ≤ an+2 and
1− an+2 ≤ x < 1. To realize fnX as in Example 3.1 we do not need a covering {Uα}
as in the general case appearing in the proof of Theorem 6.6, rather we can take one Fn

defined on all (0, 1). For a ∈ ∗(an+1, 1 − an+1) we have Fn(a) = a − λ, and so for
a ∈ (an, 1 − an) and 0 ≤ t ≤ an − an+1 we have hFn

t (a) = a − t , and so finally for
a ∈ ∗Un = ∗(an, 1 − an) the realization Gn of fnX satisfies Gn(a) = a − λ. Thus, a
global F : ∗(0, 1)→ ∗(0, 1) which is obtained from the sequence Gn as in the proof of
Theorem 6.6 will have F(a) = a−λ for all a ∈ h(0, 1) = {a ∈ ∗(0, 1) : 0 < st(a) < 1},
and this fact is independent of all choices involved in the construction. However, the
values on ∗(0, 1)− h(0, 1) may indeed depend on our choice of {Un} and {fn}, as we
now demonstrate.
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Suppose our nonstandard extension is given by the ultrapower construction on the
index set N with a nonprincipal ultrafilter, and elements in the ultrapower are given by
sequences in angle brackets 〈xi〉i∈N . 7 Assume λ = 〈δi〉i∈N where {δi} is a strictly
decreasing sequence with δi → 0. Then Gn = hFn

λ = 〈hFn
δi
〉i∈N . Let F = 〈hFi

δi
〉i∈N , and

we claim that F|∗Un = Gn|∗Un for all n, ie F ∈
⋂

An . Indeed, the elements of ∗Un are
represented by sequences 〈ui〉i∈N such that ui ∈ Un for all i, and so for i sufficiently
large so that i ≥ n and δi < an − an+1 we have hFi

δi
(ui) = ui − δi = hFn

δi
(ui). Now let

x = 〈ai+2〉i∈N and y = 〈ai + δi〉i∈N , then F(x) = x and F(y) = y − λ. If we repeat
our construction with a′n = an−2 + δn−2 in place of an , producing the realization F′ ,
then for the same reason that F(x) = x we will have F′(y) = y 6= F(y), showing that F
indeed depends on our choices.

7 Lie bracket

Given two local prevector fields F,G for which F−1,G−1 exist, eg if F,G are D1 (by
Remark 4.8), we define their Lie bracket [F,G] as follows. Its relation to the classical
Lie bracket will be clarified in Section 7.2.

Definition 7.1 [F,G] = (G−1 ◦ F−1 ◦ G ◦ F)
b 1
λ
c
.

Since our fixed choice of λ was arbitrary, we may have chosen it as 1
N for some infinite

N ∈ ∗N, and so we may assume 1
λ is in fact a hyperinteger and drop the b · c from the

above expression. In Theorem 7.12 below we will justify this definition, ie we will
establish its relation to the classical Lie bracket. We will show that if F,G are D1 then
[F,G] is indeed a prevector field, and if F,G are D2 then [F,G] is D1 . Furthermore,
we will show that if F,G are D2 and F ≡ F′ , G ≡ G′ then [F,G] ≡ [F′,G′]. We will
give an example showing that this is not true if F,G are merely D1 . We will show
that the Lie bracket of two D2 prevector fields is equivalent to the identity prevector
field if and only if their local standard flows commute. In the present section our study
will always be local, and so the quantifier “for all a” will always mean for all a in ∗U
where U is some appropriate coordinate neighborhood, and all computations are in
coordinates.

7.1 Fundamental properties of Lie bracket

Theorem 7.2 If F,G are local D1 prevector fields then [F,G] is a prevector field, that
is, [F,G](a)− a ≺ λ for all a.

7Such an extension always satisfies countable saturation.
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Proof Substituting x = a and y = F−1 ◦G◦F(a) in the relation F(x)− x−F(y) + y ≺
λ‖x− y‖ gives

F(a)− a− G ◦ F(a) + F−1 ◦ G ◦ F(a) ≺ λ‖a− F−1 ◦ G ◦ F(a)‖ ≺ λ2.

Now substituting x = F(a) and y = G−1 ◦ F−1 ◦ G ◦ F(a) in the relation G(x)− x−
G(y) + y ≺ λ‖x− y‖ gives

G ◦ F(a)− F(a)− F−1 ◦ G ◦ F(a) + G−1 ◦ F−1 ◦ G ◦ F(a)

≺ λ‖F(a)− G−1 ◦ F−1 ◦ G ◦ F(a)‖ ≺ λ2.

Adding the above two expressions gives: G−1 ◦F−1 ◦G◦F(a)− a ≺ λ2 . By underspill
in an appropriate ∗U there exists C ≺ 1 such that ‖G−1 ◦ F−1 ◦ G ◦ F(a)− a‖ ≤ Cλ2

for all a ∈ ∗U . And so

‖(G−1 ◦ F−1 ◦ G ◦ F)
1
λ (a)− a‖

≤

1
λ∑

k=1

‖(G−1 ◦ F−1 ◦ G ◦ F)k(a)− (G−1 ◦ F−1 ◦ G ◦ F)k−1(a)‖ ≤ Cλ.

Example 7.3 We give an example of two prevector fields F,G, where F is D2 (so
also D1 ) and [F,G] is not a prevector field. Let M = R2 and let F(x, y) = (x + λ, y),
G(x, y) = (x, y + λ sin π

2λx). Then [F,G](0, 0) = (0, 1) so [F,G](0, 0) − (0, 0) =

(0, 1) 6≺ λ .

To prove that if F,G are D2 then [F,G] is D1 we need the following lemma. A sum of
eight terms appears in its statement, namely(

F(a)− a
)
−
(

F(b)− b
)
−
(

F(G(a))− G(a)
)

+
(

F(G(b))− G(b)
)

which is similar to the sum

∆2
v,w(F − I)(a) =(

F(a)−a
)
−
(

F(a+v)−(a+v)
)
−
(

F(a+w)−(a+w)
)

+
(

F(a+v+w)−(a+v+w)
)

appearing in the general definition of Dk applied to k = 2. As already noticed, the four
terms a, a+v, a+w, a+v+w cancel, leaving the four terms appearing in Definition 3.6.
In the present sum the corresponding four terms a, b,G(a),G(b) do not cancel, and we
remain with all eight terms. We have already encountered a similar eight term sum
∆2

v,w(ϕ ◦ F − ϕ)(a) = ∆2
v,w(G ◦ ϕ− ϕ)(a) where no cancellation occurs, in the proof

of Proposition 3.14.
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Lemma 7.4 Let F be D2 and G be D1 , then for all a, b with a− b ≺ λ,

F(a)− F(b)− F(G(a)) + F(G(b))− a + b + G(a)− G(b) ≺ λ2‖a− b‖.

Proof Let v = b − a and w = G(a) − a. Since F is D1 (by Proposition 3.12) we
have F(a + v + w) − F(G(b)) − (a + v + w) + G(b) ≺ λ‖a + v + w − G(b)‖. But
a + v + w = b + G(a)− a and so we have

F(a+v+w)−F(G(b))−b−G(a)+a+G(b) ≺ λ‖b+G(a)−a−G(b)‖ ≺ λ2‖a−b‖

since G is D1 . So

‖F(a)− F(b)− F(G(a)) + F(G(b))− a + b + G(a)− G(b)‖
= ‖F(a)− F(a + v)− F(a + w) + F(a + v + w)

− F(a + v + w) + F(G(b))− a + b + G(a)− G(b)‖
≤ ‖F(a)− F(a + v)− F(a + w) + F(a + v + w)‖

+ ‖ − F(a + v + w) + F(G(b))− a + b + G(a)− G(b)‖
≺ λ‖b− a‖‖G(a)− a‖+ λ2‖a− b‖ ≺ λ2‖a− b‖.

Theorem 7.5 If F,G are D2 then [F,G] is D1 .

Proof By Propositions 3.12, 4.9, and 3.16, F−1 ◦ G ◦ F is D1 . Now in Lemma 7.4
take G to be F−1 ◦ G ◦ F then we get for a− b ≺ λ:

F(a)−F(b)−G◦F(a)+G◦F(b)−a+b+F−1◦G◦F(a)−F−1◦G◦F(b) ≺ λ2‖a−b‖.

As above G−1 ◦ F−1 ◦G is D1 and now take in Lemma 7.4 a, b,F,G to be respectively
F(a),F(b),G,G−1 ◦ F−1 ◦ G then we get

G ◦ F(a)− G ◦ F(b)− F−1 ◦ G ◦ F(a) + F−1 ◦ G ◦ F(b)

−F(a)+F(b)+G−1◦F−1◦G◦F(a)−G−1◦F−1◦G◦F(b) ≺ λ2‖F(a)−F(b)‖ ≺ λ2‖a−b‖

by Proposition 3.9. Adding these two inequalities we get

G−1 ◦ F−1 ◦ G ◦ F(a)− G−1 ◦ F−1 ◦ G ◦ F(b)− a + b ≺ λ2‖a− b‖

Denote H = G−1 ◦ F−1 ◦ G ◦ F then [F,G] = H
1
λ and so we must show H

1
λ (a) −

H
1
λ (b) − a + b ≺ λ‖a − b‖ and we know H(a) − H(b) − a + b ≺ λ2‖a − b‖. By

underspill in an appropriate ∗U there exists C ≺ 1 such that ‖H(a)−H(b)− a + b‖ ≤
Cλ2‖a− b‖ for all a, b ∈ ∗U . So by Lemma 5.14 with K = Cλ and n = 1

λ , we get

‖H
1
λ (a)− H

1
λ (b)− a + b‖ ≤ CλeCλ‖a− b‖.
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Example 7.6 We give an example of two prevector fields F,G, where F is D2 , G
is D1 and [F,G] is not D1 . Let M = R2 and let F(x, y) = (x + λ, y), G(x, y) =

(x, y + λ2 sin π
2λx). Clearly F is D2 , and we show G is D1 :

‖G(x1, y1)− (x1, y1)− G(x2, y2) + (x2, y2)‖ = λ2| sin
π

2λ
x1 − sin

π

2λ
x2|

= λ
π

2
|(x1 − x2) cos

π

2λ
θ| ≺ λ|x1 − x2| ≺ λ‖(x1, y1)− (x2, y2)‖,

where x1 ≤ θ ≤ x2 . Finally we show [F,G] is not D1 : [F,G](0, 0) = (0, λ),
[F,G](λ, 0) = (λ,−λ), so [F,G](0, 0) − (0, 0) − [F,G](λ, 0) + (λ, 0) = (0, 2λ) 6≺
λ‖(0, 0)− (λ, 0)‖.

Our definition of Lie bracket involves an iteration 1
λ times of the commutator G−1 ◦

F−1 ◦ G ◦ F . The following Proposition compares this with multiplication by 1
λ in

coordinates. It will be used in the proofs of Theorems 7.10, 7.12, 7.13.

Proposition 7.7 Let F,G be D2 , then [F,G](a) ≡ a + 1
λ

(
G−1 ◦ F−1 ◦G ◦ F(a)− a

)
for all a.

Proof Let H = G−1 ◦ F−1 ◦G ◦ F . The proof of Theorems 7.2 provides C′ ≺ 1 such
that ‖H(a)− a‖ ≤ C′λ2 for all a. The proof of Theorem 7.5 provides C′′ ≺ 1 such
that ‖H(a)− H(b)− a + b‖ ≤ C′′λ2‖a− b‖ for all a, b. Taking C = C′λ, K = C′′λ

and n = 1
λ in Lemma 5.17 we get ‖H

1
λ (a)− a− 1

λ (H(a)− a)‖ ≤ C′C′′λ2 ≺≺ λ.

Next we would like to show that if F,F′,G,G′ are D2 and F ≡ F′ , G ≡ G′ then
[F,G] ≡ [F′,G′]. We will need the following two lemmas.

Lemma 7.8 If G,H are D2 and G ≡ H , (ie G(a)− H(a) ≺≺ λ for all a) then(
G(a)− H(a)

)
−
(

G(b)− H(b)
)
≺≺ λ‖a− b‖

for all a, b with a− b ≺ λ.

Proof Let F(x) = G(x)− H(x) so F(x) ≺≺ λ for all x. Assume F(a)− F(b) is not
≺≺ λ‖a − b‖ for some a, b with a − b ≺ λ, then λ‖a − b‖ ≺ ‖F(a) − F(b)‖. Let
v = b − a then λ‖v‖2 ≺ ‖v‖‖F(a) − F(a + v)‖, and since G,H are D2 , F satisfies
∆2

v,vF(x) ≺ λ‖v‖2 for all x. Together we have ∆2
v,vF(x) ≺ ‖v‖‖F(a) − F(a + v)‖,

so by Lemma 3.11 (taking some ball around st(a)), there is m ∈ ∗N such that
F(a)−F(a+v) ≺ ‖v‖‖F(a)−F(a+mv)‖ ≤ ‖v‖

(
‖F(a)‖+‖F(a+mv)‖

)
≺≺ ‖v‖λ.
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Lemma 7.9 If G,H are prevector fields with G ≡ H and G is D1 , then G−1 ≡ H−1

(assuming H−1 exists).

Proof Given a let x = G−1(a) and y = H−1(a) then we must show x− y ≺≺ λ. We
have G(x) = a = H(y) so ‖G(x)− G(y)‖ = ‖H(y)− G(y)‖ = βλ for some β ≺≺ 1.
Since G is D1 , ‖G(x)− G(y)− x + y‖ = Kλ‖x− y‖ for some K ≺ 1. So

‖x− y‖ ≤ ‖G(x)− G(y)− x + y‖+ ‖G(x)− G(y)‖ = Kλ‖x− y‖+ βλ.

So (1− Kλ)‖x− y‖ ≤ βλ or ‖x− y‖ ≤ β
1−Kλλ ≺≺ λ.

We are now ready to prove the following.

Theorem 7.10 If F,E,G,H are D2 , F ≡ E and G ≡ H then [F,G] ≡ [E,H].

Proof We first claim that it is enough to establish the statement with F = E , that is, to
show [F,G] ≡ [F,H]. Indeed it is clear from the definition that [G,F] = [F,G]−1 , so
if we know [F,G] ≡ [F,H] and similarly [H,F] ≡ [H,E] then by Theorem 7.5 and
Lemma 7.9 we have [F,G] ≡ [F,H] = [H,F]−1 ≡ [H,E]−1 = [E,H].

So we proceed to show [F,G] ≡ [F,H]. Given x let a = G(F(x)), b = H(F(x)), then
by assumption a− b ≺≺ λ. By Propositions 3.12, 4.9,

F−1(a)− F−1(b)− a + b ≺ λ‖a− b‖ ≺≺ λ2.

Denote c = G−1 ◦ F−1 ◦ G ◦ F(x). By Lemma 7.8

F−1(a)−H(c)−a+b =
(

G(c)−H(c)
)
−
(

G(F(x))−H(F(x))
)
≺≺ λ‖c−F(x)‖ ≺ λ2.

Combining the last two inequalities we get H(c)− F−1(b) ≺≺ λ2 and so

G−1 ◦ F−1 ◦ G ◦ F(x)− H−1 ◦ F−1 ◦ H ◦ F(x) =

H−1(H(c))− H−1(F−1(b)) ≺ ‖H(c)− F−1(b)‖ ≺≺ λ2

by Propositions 3.12, 4.9, 3.9. So we have
1
λ

(
G−1 ◦ F−1 ◦ G ◦ F(x)

)
− 1
λ

(
H−1 ◦ F−1 ◦ H ◦ F(x)

)
≺≺ λ

and so by Proposition 7.7 [F,G](x) ≡ [F,H](x).

Example 7.11 We give an example of F,H which are D2 , G is D1 and G ≡ H ,
and yet [F,G] 6≡ [F,H]. Let M = R2 and let F(x, y) = (x + λ, y), H(x, y) = (x, y),
and G(x, y) = (x, y + λ2 sin π

2λx). Then [F,H](0, 0) = (0, 0) whereas [F,G](0, 0) =

(0, λ) 6≡ (0, 0). Clearly F,H are D2 , and it has been shown in Example 7.6 that G is
D1 .
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7.2 Relation to classical Lie bracket

The following theorem justifies our definition of [F,G], by relating it to the classical
notion of Lie bracket.

Theorem 7.12 Let X, Y be two classical C2 vector fields and let [X, Y]cl denote their
classical Lie bracket. Let F,G be D2 prevector fields that realize X,Y respectively.
Then [F,G] realizes [X,Y]cl .

Proof By Remark 5.8, the flows hF
t , hG

t coincide with the classical flows of X , Y . It
is well known that [X,Y]cl is related in coordinates to the classical flow as follows:

[X,Y]cl(p) = lim
t→0

1
t2

(
(hG

t )−1 ◦ (gF
t )−1 ◦ hG

t ◦ hF
t (p)− p

)
.

By the equivalent characterization of limits via infinitesimals we thus have

[X,Y]cl(p) ≈ 1
λ2

(
G̃−1 ◦ F̃−1 ◦ G̃ ◦ F̃(p)− p

)
.

Now, if v ≈ w then λv ≡ λw, so by Example 3.1, [X,Y]cl can be realized by the
prevector field

A(a) = a +
1
λ

(
G̃−1 ◦ F̃−1 ◦ G̃ ◦ F̃(a)− a

)
.

Thus it remains to show that [F,G] ≡ A. By Proposition 5.16 F̃, G̃ are D2 , and so by
Proposition 7.7 [F̃, G̃] ≡ A. By Theorem 5.19 F ≡ F̃,G ≡ G̃, and so by Theorem 7.10
[F,G] ≡ A.

The following theorem corresponds to the classical fact that the bracket of two vector
fields vanishes if and only if their flows commute.

Theorem 7.13 Let F,G be two D2 prevector fields. Then [F,G] ≡ I (recall I(a) = a
for all a), if and only if hF

t ◦ hG
s = hG

s ◦ hF
t for all 0 ≤ t, s ≤ T for some 0 < T ∈ R.

Proof Assume first that [F,G] ≡ I , ie [F,G](a) − a ≺≺ λ for all a. So by
Proposition 7.7 1

λ

(
G−1◦F−1◦G◦F(a)−a

)
≺≺ λ, so G−1◦F−1◦G◦F(a)−a ≺≺ λ2 ,

which implies by Proposition 3.9 that G ◦ F(a) − F ◦ G(a) ≺≺ λ2 for all a. Now
let n = bt/λc and m = bs/λc, then we need to show Fn ◦ Gm(a) ≈ Gm ◦ Fn(a)
for all a. This involves nm interchanges of F and G, where a typical move is
from Fk ◦ Gr ◦ F ◦ Gm−r ◦ Fn−k−1 to Fk ◦ Gr+1 ◦ F ◦ Gm−r−1 ◦ Fn−k−1 . Applying
F ◦ G(p)− G ◦ F(p) ≺≺ λ2 to p = Gm−r−1 ◦ Fn−k−1(a) we get

F ◦ Gm−r ◦ Fn−k−1(a)− G ◦ F ◦ Gm−r−1 ◦ Fn−k−1(a) ≺≺ λ2.
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By Propositions 3.12, 4.2 there is K ∈ R such that ‖F(a)−a−F(b) + b‖ ≤ Kλ‖a−b‖
and ‖G(a)− a− G(b) + b‖ ≤ Kλ‖a− b‖ for all a, b in an appropriate domain. Then
by Theorem 5.2 applied to Gr and then to Fk ,

‖Fk ◦ Gr ◦ F ◦ Gm−r ◦ Fn−k−1(a)− Fk ◦ Gr+1 ◦ F ◦ Gm−r−1 ◦ Fn−k−1(a)‖
≤ eK(t+s)‖F ◦ Gm−r ◦ Fn−k−1(a)− G ◦ F ◦ Gm−r−1 ◦ Fn−k−1(a)‖ ≺≺ λ2.

Adding the nm contributions when passing from Fn ◦ Gm(a) to Gm ◦ Fn(a) we get

Fn ◦ Gm(a)− Gm ◦ Fn(a) ≺≺ 1.

This is because among the nm differences that we add, there is a maximal one, which is
say βλ2 with β ≺≺ 1, and so the sum of all nm contributions is ≤ nmβλ2 ≤ tsβ ≺≺ 1.

Conversely, assume hF
t ◦ hG

t = hG
t ◦ hF

t . Then by transfer F̃ ◦ G̃ = G̃ ◦ F̃ , so
G̃−1 ◦ F̃−1 ◦ G̃ ◦ F̃ = I , and so [F̃, G̃] = I . By Proposition 5.16 and Theorems 5.19,
7.10 we get [F,G] ≡ I .

We have the following application to the standard setting.

Classical Corollary 7.14 Let X, Y be classical C2 vector fields. Then the flows of X
and Y commute if and only if their Lie bracket vanishes.

It follows that if X1, . . . ,Xk are k independent vector fields with [Xi,Xj]cl = 0 (classical
Lie bracket) for 1 ≤ i, j ≤ k , then there are coordinates in a neighborhood of any given
point such that X1, . . . ,Xk are the first k coordinate vector fields.

Proof Define prevector fields by F(a) = a + λX(a) and G(a) = a + λY(a) as in
Example 3.1, and apply Proposition 3.7, Remark 5.8, and Theorems 7.12, 7.13. The
final statement is a straightforward conclusion in the classical setting.
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