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First order irrationality criteria for series

LEE A. BUTLER

Abstract: Following a question of Brun, we consider the possibility of finding a
first order statement that the rational summands in an infinite series can be checked
against in order to give a sufficient condition for the series to sum to an irrational
value. We show that such a statement can exist in structures that define the integers,
but not in o-minimal structures.
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1 Introduction

A notoriously difficult problem in mathematics is proving that a given real number is
irrational.

Some numbers enjoy special properties which lend themselves to establishing irra-
tionality. The elegant continued fraction for e, for example, immediately implies its
irrationality. The irrationality of square roots of non-square integers follows readily from
the unique factorisation of the integers. In most cases, though, a proof of irrationality
works by appealing to some irrationality criterion. In general these require one to have
a sequence of rational numbers that converges to the real number under consideration.
The criterion will then say: “If this sequence of rational numbers has a certain property
then its limit is irrational.”

The criterion of choice for irrationality proofs is the one based upon Dirichlet’s
approximation theorem. A less popular criterion due to its rarely met hypotheses is one
developed by Brun [2] in 1910. It goes as follows.

Theorem 1.1 Let (xn) and (yn) be two sequences of positive integers and L be a
positive real number such that the following properties hold for all n ≥ 1:

(1) xn+1 > xn
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2 Lee A. Butler

(2) yn+1 > yn

(3)
xn+1

yn+1
>

xn

yn

(4)
xn+2 − xn+1

yn+2 − yn+1
<

xn+1 − xn

yn+1 − yn

(5) lim
n→∞

xn

yn
= L .

Then L is irrational.

By considering the sequence of partial sums, most irrationality criteria such as Brun’s
can be adapted to test some property of the rational summands in an infinite series rather
than terms in a sequence (cf Theorem 2.1). Another thing that irrationality criteria
have in common is that they split up the rational numbers in question, considering the
numerators and denominators in markedly different roles. This is perhaps not surprising
since all known irrationality criteria stem from the same basic geometric observation: if
α is irrational then there are points in Z2 arbitrarily close to the line y = αx . Applying
this observation means finding rational numbers close to α , where “close” is dependent
only on the size of the denominator.

Surprising or not, Viggo Brun asked in a second paper whether this asymmetry in the
treatment of numerators and denominators was really necessary (Brun and Knudsen
[3]). He considered real numbers given by infinite sums of rational numbers, say

L =
∞∑

n=1

an

where an ∈ Q for all n. He then asked if there was some simple combination of
inequalities and limits in functions of finitely many consecutive summands that would
detect irrationality – things like

lim
n→∞

an+1

an
= 0,

which would rule out geometric series, or

1
an+1

>
1
a2

n
− 1

an
+ 1,

which will look promising after Corollary 2.2. For every putative irrationality criterion
of this form Brun’s co-author Finn Faye Knudsen was able to demonstrate a rational
sequence (an) that satisfied all the criteria but summed to a rational value. Worse, he
showed that any criterion of this form that used inequalities and limits in finitely many
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continuous functions would be satisfiable by some rational sequence with a rational
sum.

This rather knocks on the head the notion of an irrationality criterion that doesn’t “see”
the denominators in its input. But an irrationality criterion needn’t necessarily be a list
of inequalities and limits involving continuous functions. In this paper we consider
the possibility of irrationality criteria of the kind that Brun wanted but that are first
order statements in some structure with domain contained in R. We will show that the
existence of such criteria is linked to the tameness of the structure in question.

In the next section we will first derive an irrationality criterion for series using Brun’s
criterion above. Then we will see that in some structures we can get an irrationality
criterion that takes the summands whole, not as numerators and denominators separately.
However, it will be clear that this is a bit of flimflammery since the criterion will either
inspect or control the numerators and the denominators in the summands. This may be
because some special infinite subset of Q is definable, allowing one to check whether
the summands belong to this set. Less directly, if the integers are definable and, for
example, so is the ordering relation, then there is a definable function that extracts
the numerator and denominator of a rational number and this function can be called
upon within the proposed irrationality criterion. In both these cases the problem is the
presence of infinite, discrete definable sets.

In the final section we will consider a class of structures where this kind of trickery
can’t take place, namely o-minimal structures expanding the real field. Here we will
see that any putative irrationality criteria will either reduce to the kind of thing that
Knudsen showed to be impossible or else be so restrictive that it becomes a question on
the exceptional set of definable functions rather than any general criterion.

Throughout this paper the (strictly) positive rational numbers will be denoted Q+ and
similarly R+ will be the positive reals. Recall that given some subset X of the real
numbers the set `1(X) is the set of sequences all of whose terms are in X and whose
series are absolutely convergent. The term “eventually” with respect to sequences (an)
will be shorthand for “there exists N ∈ N such that for all n > N . . .”. Definable will
always mean definable with parameters.

2 Some irrationality criteria for series

While Brun’s criterion ostensibly works only on numbers that are given as the limit of
some sequence of rational numbers, it can be used to find a criterion for sums too, albeit
one even harder to apply than the original.
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4 Lee A. Butler

Theorem 2.1 Let (pn) and (qn) be two sequences of positive integers with qn > 1 for
all n > 1 and such that the series

∑∞
n=1 pn/qn is convergent, say to some real number

L . Suppose that for all n > 1
pn

qn(qn − 1)
>

pn+1

qn+1 − 1
.

Then L is irrational.

Proof We will take xn/yn to be the nth partial sum of the series, and then see what
conditions need to be imposed on pn and qn before Brun’s criterion can be applied. So
let

xn

yn
=

n∑
k=1

pk

qk
.

Note that Brun’s criterion doesn’t require hcf(xn, yn) = 1 so there is no need to worry
about this possibility. Since we’re not cancelling common terms we can explicitly write
down the recursion formulae

yn+1 = qn+1yn

xn+1 = qn+1xn + pn+1yn

with x1 = p1 and y1 = q1 . Clearly the first three conditions in Brun’s criterion are met
by xn and yn , and so it remains to check his fourth condition, namely that

xn+2 − xn+1

yn+2 − yn+1
<

xn+1 − xn

yn+1 − yn
.

Using the recursion formulae one can check that

xn+1 − xn

yn+1 − yn
=

xn

yn
+

pn+1

qn+1 − 1

and so the required inequality is equivalent to
xn+1

yn+1
+

pn+2

qn+2 − 1
<

xn

yn
+

pn+1

qn+1 − 1
.

Since
xn+1

yn+1
− xn

yn
=

pn+1

qn+1

the desired inequality is the same as
pn+2

qn+2 − 1
<

pn+1

qn+1 − 1
− pn+1

qn+1

which is the claimed condition.
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In the simplest case, when pn is identically 1, this criterion says the following.

Corollary 2.2 If qn is a sequence of positive integers with qn+1 > q2
n − qn + 1 for all

n ≥ 1 then
∑∞

n=1 1/qn is irrational.

This applies to sequences qn that grow doubly exponentially, such as with qn = 22n
,

which leads to the Fredholm number
∑

2−2n
. Of course, this number doesn’t require

deep criteria to illuminate its irrationality for it clearly doesn’t have a periodic binary
expansion, so can’t be rational. A less trivial example is if we let Fn be the nth Fibonacci
number and take qn = F2n . The required inequality then follows from d’Ocagne’s
identity. Such fast growth in the denominators might raise fears that any number
that satisfies this latter criterion should be a Liouville number, and so in particular
transcendental. Indeed, it can be shown by relatively elementary arguments that the
Fredholm number is transcendental (see [1, Theorem 13.3.1]). But this isn’t the case in
general. Taking qn = F2n gives the Millin series, which is in fact

∞∑
n=1

1
F2n

=
5−
√

5
2

as shown in Honsberger [5]. So these numbers need not be “very” irrational.

While Theorem 2.1 is indubitably an irrationality criterion for series, it has that property
that Brun wanted to avoid, namely it treats the numerators and denominators of the
summands separately. We now rephrase Brun’s notion of irrationality criteria in the
more general setting of first order structures.

Definition 2.3 Let M ⊆ R and let M = (M, . . .) be some first order structure with
domain M in the language L . An irrationality criterion in M is a pair (ϕ, f ), where ϕ
is an L-formula in k free variables, ϕ(v1, . . . , vk), f is a definable function with domain
some subset of M` and codomain M , and such that the following property holds: for
any sequence (an) ∈ `1(M ∩Q+), if

(1) eventually M |= ϕ(an+1, an+2, . . . , an+k), and

(2) limn→∞ f (an+1, an+2, . . . , an+`) = 0,

then
∑∞

n=1 an is irrational.

Brun’s original definition was essentially this where the structure in question was
the ordered real numbers expanded by finitely many continuous functions. The limit
statement in the above definition may look out of place amidst this discussion of first
order statements, but Brun allowed such a limit statement with a continuous function
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and we lose nothing by including it since we can always take the function f to be
identically zero, and indeed we will do this for the rest of this section. Note that we can
also check several limits with functions, say f1, . . . , fr , by the usual trick of defining
f = f 2

1 + . . .+ f 2
r .

In fact there are, trivially, irrationality criteria in any structure M, just take some
sentence ϕ such that M 6|= ϕ. Or take a formula that the summands in a convergent
series can’t eventually satisfy, say v > 1. Similarly if M ∩Q+ = ∅ then the definition
holds for any formula ϕ(~x). Situations that fall into any of these camps are clearly
trivial, so for the rest of this paper they will be ignored.

One less trivial way of abusing the above definition is to cherry pick the domain M
so that any mildly controlled sequence of summands gives an irrational sum. For
example, if M = {F−1

2n : n ≥ 1} then any decreasing sequence of terms from M is
both absolutely convergent and, by Corollary 2.2, will lead to an irrational sum. So the
formula v2 < v1 gives an irrationality criterion in (M, <).

This is of course cheating. By picking M in this way one is explicitly controlling the
numerators in the summands, sidestepping Brun’s objection without really addressing
the issue. If one takes a less restrictive domain then one might hope to do better.

Unfortunately, even taking a larger domain can lead to issues. Take, for example,
M = (Q,+, ·), the rational field. It is well established that the integers are definable
in this structure (Robinson [10] gives the earliest definition). Having defined Z one
can use Lagrange’s four squares theorem to define the ordering on Z (or on Q as a
whole, but this won’t be needed). And it is possible to define the set of coprime pairs of
integers in Z since hcf(m, n) = 1 is equivalent to

∃a, b ∈ Z, am + bn = 1.

Armed with these and abusing notation slightly we can write down a formula ϕ(v1, v2)
that says the following:

∃p1, q1, p2, q2 ∈ Z+,

q1v1 = p1 ∧ q2v2 = p2 ∧ hcf(p1, q1) = hcf(p2, q2) = 1

∧ p1(q2 − 1) > p2q1(q1 − 1).

Given a sequence (an) ∈ `1(Q+), if eventually M |= ϕ(an+1, an+2) then all this is
saying is that, ignoring finitely many rational terms from the series, we have an = pn/qn

and
pn

qn(qn − 1)
>

pn+1

qn+1 − 1
.
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Hence, by Theorem 2.1,
∑∞

n=1 an is irrational.

Again, this is blatant cheating. By allowing Z to be defined one may as well write
the sequence (an) as (pn/qn) and feed the two sequences pn and qn to one’s criterion
separately. By increasing the domain to R one can hope to avoid this situation,
although clearly there are still numerous structures with domain R in which the
integers are definable. This may be for trivial reasons, like including a predicate
for the integers. Or there may be less trivial if not exactly subtle reasons, say the
expansion of R by all analytic functions f : R → R in which one can then define
Z = {x : sin(πx) = 0}. What would be ideal is a structure where Z cannot be defined,
nor sets like {F−1

2n : n ≥ 1} that gave trouble earlier, nor in fact any infinite discrete set.
Fortunately a large class of such structures have been extensively studied and are well
understood.

3 O-minimal irrationality criteria

O-minimal structures were introduced in the 1980s to generalise real algebraic geometry
(see Pillay and Steinhorn [8, 9] and Knight, Pillay and Steinhorn [6]). They are
expansions of the real ordered field with a simple requirement that nonetheless makes
them highly congenial to work with.

Definition 3.1 A structure M = (R,+, ·, <, . . .) is called o-minimal if the only
definable subsets of R in this structure are finite unions of points and intervals, where
an interval may have endpoints in R ∪ {±∞}.

By including the ordering in the definition one is guaranteeing that points and intervals
will be definable in R, and so the definition just says that the other functions and
relations one has added haven’t introduced any new definable subsets in the domain.
This doesn’t stop new definable sets from appearing in Rn for n > 1, and indeed there
may be lots of new definable sets in these higher dimensions. Nevertheless, this simple
condition ensures that the structures are tame to work in, yet interesting enough to
warrant the attention. Proofs of all the properties of o-minimal structures that are used
below can be found in Lou van den Dries’ excellent book [4].

If we use the same definition as before for an irrationality criterion in M then the
presence of the first order formula ϕ corresponds to asking that there be a definable
set X ⊆ Rk for some k such that if eventually (an+1, . . . , an+k) ∈ X (and the limit
condition holds) then

∑
an is irrational. This definition is not actually that useful as

will be shown later. Instead we are more faithful to Brun’s original definition as follows.
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8 Lee A. Butler

Definition 3.2 An o-minimal irrationality criterion is a triple consisting of an o-minimal
structure M, an open definable set X ⊂ Rk , and a definable function f : (0,∞)` → R
that is continuous on the (open) set U , with the following properties.

(1) There exists a sequence (an) ∈ `1(Q+) such that eventually (an+1, . . . , an+k) ∈ X ,
(an+1, . . . , an+`) ∈ U , and

lim
n→∞

f (an+1, . . . , an+`) = 0.

(2) For any sequence (an) ∈ `1(Q+) that satisfies the conditions of property (1), the
number

∑∞
n=1 an is irrational.

A sequence (an) that satisfies the conditions of property (1) will be said to satisfy
(M,X, f ).

It’s worth noting that one can take X = R or f = 0 to omit either condition in property
(1), so including the limit only increases one’s options.

Requiring that the summands eventually fall into the open set U upon which f
is continuous may seem overly restrictive, but it is in fact necessary. Allowing
a closed set U can put us back in the situation of the summands being forced to
belong to some distinguished subset, a situation we are trying to rule out. Allowing
discontinuous functions is also problematic, since pathological behaviour can hide
along the discontinuities, thus negating the generically tame behaviour of o-minimal
structures. Examples will be given later to demonstrate these issues, but for now we
concentrate on the definition given above.

Since o-minimal structures forbid the skullduggery used earlier to break rational numbers
into their numerators and denominators, any o-minimal irrationality criterion should be
an honest answer to Brun’s question. Moreover, there are many o-minimal structures out
there; indeed, there is no limit to them, in the sense of there being no largest structure
of which every other o-minimal structure is a reduct (Rolin, Speissesser and Wilkie
[11]). It is thus not without the bounds of reason that somewhere in this vast universe
of well-behaved structures there exists a set and a function that can detect at least some
irrational numbers, if not all of them. But it turns out this is too much to ask.

Theorem 3.3 There are no o-minimal irrationality criteria.

The proof follows the original work of Brun and Knudsen in [3] rather closely. We carry
out the proofs in full to satisfy the reader that no properties not enjoyed by o-minimal
structures are used. The premise of the proof is to show that if (M,X, f ) is a triple
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as in the definition and if (an) ∈ `1(Q+) satisfies this triple, and if moreover
∑

an

is irrational then one can construct a sequence (bn) ∈ `1(Q+) such that (bn) satisfies
(M,X, f ) but where

∑
bn is rational. Hence any putative o-minimal irrationality

criterion that makes it as far as property (1) in the definition will fall at property (2).

First we will show that if (an) satisfies (M,X, 0) then so do sequences sufficiently
close to (an). This is a simple consequence of X being open.

Lemma 3.4 Let X ⊂ (0, 1)k be an open set that is definable in the o-minimal structure
M and let (an) ∈ `1(R+). If eventually

(an+1, . . . , an+k) ∈ X

then there is a sequence (εn) ∈ `1(R+) with the property that for any sequence of real
numbers (δn) with |δn| ≤ εn , eventually

(an+1 + δn+1, . . . , an+k + δn+k) ∈ X.

Proof Let N > k be a natural number for which (an+1, . . . , an+k) ∈ X whenever
n > N . Set ε̄n = 1 for 1 ≤ n ≤ N . Since X is open, for each n > N there is a closed
cube around the point (an+1, . . . , an+k) that is contained in X , say

Bn+1 = {(b1, . . . , bk) ∈ Rk : |an+i − bi| ≤ wn+1, 1 ≤ i ≤ k} ⊂ X

with wn > 0 for all n. If we set ε̄n = min(wn,wn−1, . . . ,wn−k+1, 1) for n > N and
then let εn = 2−nε̄n then clearly (εn) ∈ `1(R+) and moreover if |δn| ≤ εn then for
n > N we have

(an+1 + δn+1, . . . , an+k + δn+k) ∈ Bn+1 ⊂ X

as required.

The next stage is to show the same kind of result when (an) satisfies (M,R, f ). Note
that while definable functions are mostly continuous, they can be discontinuous on a
lower-dimensional subset of their domain. As alluded to above, the continuity condition
in the lemma below (and so in the definition above) prevent one finding a sequence (an)
that will ride along such a discontinuity, while any sequence near (an), but not on the
discontinuous part of the function’s domain, will have, essentially, nothing to do with
(an). This is not such a big restriction on f since definable functions will, generically,
be continuous near the origin. In the following lemma we restrict f to the open subset
of its domain where it is continuous since the discontinuous part is not involved anyway.
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Lemma 3.5 Let f : U → R be a definable continuous function inM with U ⊂ (0,∞)`

an open set. Let (an) ∈ `1(R+) be such that eventually (an+1, . . . , an+`) ∈ U and

lim
n→∞

f (an+1, . . . , an+`) = 0.

Then there is a sequence (εn) ∈ `1(R+) with the property that for any sequence of real
numbers (δn) with |δn| ≤ εn , we eventually have (an+1 + δn+1, . . . , an+` + δn+`) ∈ U
and

lim
n→∞

f (an+1 + δn+1, . . . , an+` + δn+`) = 0.

Proof Let N > ` be such that (an+1, . . . , an+`) ∈ U for n ≥ N . Since f is
continuous in the open set U , around each of the points (an+1, . . . , an+`) there is an
open neighbourhood Vn+1 ⊂ U such that for any (vn+1, . . . , vn+`) ∈ Vn+1 we have

|f (an+1, . . . , an+`)− f (vn+1, . . . , vn+`)| < 2−n.

Within each open set Vn+1 there is of course a closed cube Bn+1 , say

Bn+1 = {(b1, . . . , b`) ∈ R` : |an+i − bi| ≤ wn+1, 1 ≤ i ≤ `} ⊂ Vn+1

with all wn > 0. For convenience we let wi = 1 for i < N . Now let ε̄n =

min(wn,wn−1, . . . ,wn−`+1, 1), and finally set εn = 2−nε̄n . Clearly (εn) ∈ `1(R+).
Now if |δn| ≤ εn for all n then we eventually have

(an+1 + δn+1, . . . , an+` + δn+`) ∈ Vn+1 ⊂ U

and
|f (an+1 + δn+1, . . . , an+` + δn+`)| ≤ |f (an+1, . . . , an+`)|+ 2−n.

Taking the limit as n→∞ proffers the result.

These last two lemmas are combined in the obvious way.

Corollary 3.6 LetM be an o-minimal structure, X ⊂ Rk be an open set that is definable
inM, and f : U → R be a continuous definable function with U ⊂ (0,∞)` an open set.
Suppose that (an) ∈ `1(R+) is a sequence such that eventually (an+1, . . . , an+k) ∈ X ,
(an+1, . . . , an+`) ∈ U , and

lim
n→∞

f (an+1, . . . , an+`) = 0.

Then there is a sequence (εn) ∈ `1(R+) with the property that for any sequence of real
numbers (δn) with |δn| ≤ εn , we eventually have (an+1 + δn+1, . . . , an+k + δn+k) ∈ X ,
(an+1 + δn+1, . . . , an+` + δn+`) ∈ U and

lim
n→∞

f (an+1 + δn+1, . . . , an+` + δn+`) = 0.
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So if we have a sequence (an) ∈ `1(R+) that satisfies the triple (M,X, f ) then we can
perturb the sequence slightly term-by-term to get a new sequence that also satisfies the
triple. It remains to show that arbitrarily close to any rational sequence (an) with

∑
an

irrational, there is a rational sequence (bn) with
∑

bn rational. This is not difficult to
achieve using telescoping sums, as in Brun and Knudsen [3]. We use a slightly different
form of their argument below.

Lemma 3.7 Let (εn) ∈ `1(R+) with
∑
εn = ε. Then for any γ ∈ [0, ε) there is a

sequence (γn) ∈ `1(Q) with, eventually, γn ∈ [0, εn) and with
∑
γn = γ .

This suffices for our purpose, since if
∑

an = a is irrational and (εn) is the sequence
given by Corollary 3.6 and

∑
εn = ε then we can take some rational number

b with a < b < a + ε and find a rational sequence (γn) with γn ∈ [0, εn) for
large n and with

∑
γn = b − a < ε. Then (an + γn) is a rational sequence with∑

(an + γn) = a + b− a = b ∈ Q.

Proof The “eventually” in the statement of the lemma allows the first N terms of the
sequence (γn) to be picked however we want without worrying about the sequence (εn).
In fact we only need to pick γ1 this way, the rest of the sequence will satisfy the other
conditions.

If γ is rational then just take γ1 = γ and γn = 0 for n ≥ 2. This clearly satisfies the
conclusion of the lemma.

Now suppose that γ is irrational and let the continued fraction expansion of γ be

γ = [c0; c1, c2, . . .].

Let pn/qn be the 2nth convergent to γ , that is

pn

qn
= [c0; c1, c2, . . . , c2n].

These even convergents pn/qn form an increasing sequence of rational numbers that
converges to γ . Using the standard properties of the convergents we have

0 < α− pn

qn
<

1
c2n+1q2

n
≤ 1

q2
n
.

So in particular for any n < m we have

0 <
pm

qm
− pn

qn
<

1
q2

n
.
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12 Lee A. Butler

Given the sequence (εn) we thus pick an increasing sequence of positive integers r(k)
such that for all k

1
q2

r(k)
≤ εk

so that if we let γ1 = pr(1)/qr(1) and for n > 1 let

γn =
pr(n+1)

qr(n+1)
− pr(n)

qr(n)

then for n ≥ 2 we have 0 < γn < εn and
n∑

k=1

γk =
pr(n+1)

qr(n+1)
→ γ.

This proves Theorem 3.3. However, we should properly address the aforementioned
issues with the definition given of an o-minimal irrationality criterion.

Two of the lesser issues are to do with the function f . Including the limit may be a point
of contention, but as mentioned earlier one can always ignore it, so including it only
rules out a wider class of possible criteria. A less clear cut issue is the way that the
discontinuities of f are dealt with, namely ignoring them altogether. We will give an
example at the end of the paper as to why this is necessary, but it is also not such a large
issue due to the well-behaved nature of definable functions.

The third and final issue is the use of only open definable sets X . This renders our
Lemma 3.4 into an exercise in remembering the definition of “open". One might hope
that o-minimal structures allow one to relax this condition. But as we said earlier this is
not the case. The simplest case of non-open sets are just graphs of functions, and we
will see below that even in the one-dimensional case these are problematic. By cell
decomposition, all definable sets are the union of finitely many open sets and graphs
of various dimensions. By the above if a definable set contains an open piece near the
origin so that a rational sequence can stay in the set and have a convergent series, then
the set can’t belong to an irrationality criterion. This really leaves the situation where
the set is the graph of a function that gets close to the origin. In the lowest dimensional
case we can get the following result that is partly analogous to the above lemmas.

Lemma 3.8 Let f : R+ → R+ be a definable function in an o-minimal structure M.
Suppose (an) ∈ `1(R+) satisfies an+1 = f (an) for n ≥ 1. Suppose further that

∑
an is

irrational. Then for any ε > 0 there is a sequence (bn) ∈ `1(R+) with |a1 − b1| < ε

such that bn+1 = f (bn) for all n ≥ 1 and with
∑

bn rational.
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Proof Let f1(x) = x and for n ≥ 1 let fn+1(x) = f ◦ fn(x). Observe that an = fn(a1).

First we claim that for some suitably small η > 0, f ′ exists on (0, η) and moreover
0 < f ′(x) < 1 for all x ∈ (0, η). Indeed, by cell decomposition there is η1 such that f ′

exists on (0, η1), and since the set {x : f ′(x) = 0} is definable there is η2 ∈ (0, η1) such
that on (0, η2) either f ′ < 0 or f ′ = 0 or f ′ > 0.

If f ′ = 0 then f is constant on (0, η2). Since an → 0, eventually an < η2 and
thenceforth an+1 = f (an) = an . But this contradicts an tending to zero.

If f ′ < 0 then since limx→0+ f (x) = 0 we have by the mean value theorem that, for
large enough n,

f (an)
an

= f ′(ξn) < 0

for some ξn < η2 . So either an < 0 or f (an) < 0. But by definition an > 0 and
f (an) = an+1 > 0, so this can’t happen.

This establishes that f ′ > 0 on (0, η2). The set {x : f ′(x) ≥ 1} is definable, so there
must be η ≤ η2 such that on (0, η) either f ′ < 1 or f ′ ≥ 1. Suppose the latter holds,
then by the mean value theorem for all large n there is ξ′n ∈ (0, η) with

f (an)
an

= f ′(ξ′n) ≥ 1.

In other words, for all large n we have an+1 ≥ an . But (an) is a positive sequence that
tends to zero, so this can’t happen.

This gives an interval (0, η) on which 0 < f ′(x) < 1, hence on this interval we have that
if x < y then f (x) < f (y), and so by induction if x < y then fn(x) < fn(y) for any n ≥ 0.
Without loss of generality we may assume the sequence (an) lies only in this interval.
In particular, for any x ∈ (0, a1) we have fn(x) < fn(a1) = an . But by hypothesis

∑
an

converges, so by the Weierstrass M-test the function F(x) =
∑∞

n=1 fn(x) converges
uniformly to a continuous function on (0, a1). Note that this resulting function is not
constant due to the aforementioned fact that fn(x) < fn(y) whenever x < y < a1 . So in
particular for any ε > 0 there exists b1 ∈ (a1 − ε, a1) for which F(b1) is rational. But
F(b1) =

∑
fn(b1) so setting bn = fn(b1) gives the required sequence.

The reason this result is only a partial analogue to the preceding lemmas is that the
resulting sequence (bn) is only guaranteed to have real terms, not rational ones. The
problem is that we only really get to pick one term in the sequence: b1 . The rest of the
terms are determined by the function f . There are very simple functions f for which
the function F as constructed above returns irrational values for any rational argument.

Journal of Logic & Analysis 7:1 (2015)



14 Lee A. Butler

Indeed, Mahler proved in [7] that if one takes f (x) = x2 and constructs F as above, then
for any rational x ∈ (0, 1) the value F(x) is transcendental, that is

∞∑
n=0

(
p
q

)2n

is transcendental for any natural numbers p < q.

This example of Mahler also reveals why, when looking at o-minimal irrationality criteria
(M,X, f ), we needed to take pains to avoid the discontinuous part of f . Consider, say,
the function f : (0, 1)2 → R given by

f (x1, x2) =

{
x2

2 if x2 = x2
1,

1 otherwise.

For almost any sequence (an) ∈ `1(Q+), we will have lim f (an, an+1) = 1 and so the
sequence won’t satisfy (M,R, f ). However, if an satisfies an+1 = a2

n for all large n
then

lim
n→∞

f (an, an+1) = lim
n→∞

a2
n+1 = 0.

But these are precisely the sequences that Mahler proved always summed to transcen-
dental numbers. Hence if we include such a function f and don’t demand that sequences
stay away from their discontinuous part then (M,R, f ) fulfills all the conditions to be
an o-minimal irrationality criteria. We discount these since, as evinced above, they are
really descriptions of functions that map Q into the irrational numbers rather than being
an actual criterion we can check arbitrary series against.
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