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Abstract One method to determine the asymptotics of particular solutions of a dif-
ference equation is by solving an associated asymptotic functional equation. Here we
study the behaviour of the solutions in an asymptotic neighbourhood of such indivi-
dual solutions. We identify several types of attraction and repulsion, which range from
almost orthogonality to almost parallelness. Necessary and sufficient conditions for
these types of behaviour are given.
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1 Introduction

Main results

We study first-order difference equations of the type

Y (X + 1) = F(X,Y (X)), (D)

where F is supposed to be continuously partially differentiable in Y . In [7] conditions
were given in terms of F and F ′

2 to determine whether (D) possesses solutions with
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154 I. P. van den Berg

asymptotic behaviour Ŷ (X). The sequence Ŷ can be found by solving F for fixed
points, i.e., F(X, Ŷ (X)) = Ŷ (X), or whenever this is impossible or inconvenient for
“almost fixed points” satisfying the so-called asymptotic functional equation

lim
X→∞

F(X, Ŷ (X))− Ŷ (X)

Ŷ (X)(|F ′
2(X, Ŷ (X))| − 1)

= 0. (A)

If such a weak, asymptotic fixed point for F satisfies some additional regularity condi-
tions (see Definition 2.2) we speak of an approximate solution. The additional condi-
tions express essentially that the solutions of (D) in a sufficiently wide neighbourhood
of Ŷ (X) contract (attract or repel each other), faster than Ŷ (X)moves itself. An Exis-
tence Theorem, repeated here (Theorem 3.1), states that every approximate solution
is asymptotic to a true solution Ỹ of (D). We used nonstandard analysis to prove this
standard theorem.

In the present article we study in a precise asymptotic sense the stability of the
solution Ỹ . We suppose (D), Ŷ and Ỹ to be standard and consider the “asymptotic
halo” HỸ of Ỹ , given by

HỸ = {(ω,Y ) | Y/Ỹ (ω) � 1, ω � ∞}.

The main theorems, Theorem 3.2, Theorem 3.3, and Theorem 3.4, present formulae
for the deviation of solutions on HỸ , compared to the evolution of Ỹ itself. The
formulae are descriptive and precise up to a multiplicative infinitesimal and we state
necessary and sufficient conditions in terms of F ′

2(X, Ŷ (X)) for them to hold on well-
defined segments of HỸ . In a sense we complete the information on stability and
deviation stemming from linearization through the variation equation V (X + 1) =
F ′

2(X, Ŷ (X))V (X) associated to (D) by asymptotic expressions for the solutions of
the original equation when approaching or leaving the distinguished solution Ỹ , and
the domains where they are valid.

There appear to be five kinds of behaviour, linked to the order of magnitude
of F ′

2(ω, Ŷ (ω)), for unlimited ω. We illustrate this informally in the unstable or
repulsive case, with |F ′

2(ω, Ŷ (ω))| > 1; for precise information and exact condi-
tions we refer to the theorems mentioned above. We let � be a second solution such
that �(ω)/Ỹ (ω) � 1.

If F ′
2(ω, Ŷ (ω)) � ∞, one has (�(ω+ 1)− Ỹ (ω+ 1))/(�(ω)− Ỹ (ω)) � ∞ and

Ỹ will be called a strong river. Observe that the repulsion is so strong that �(ω +
1)/Ỹ (ω + 1) may be no longer infinitely close to 1. All other forms of repulsion will
have the property that�(ω+x)/Ỹ (ω+x) is infinitely close to 1 at least for all limited x .

If (�(ω+ x)− Ỹ (ω+ x))/(�(ω)− Ỹ (ω)) � ax for some limited a with |a| � 1,
the solution Ỹ will be called a moderate river, this corresponds to F ′

2(ω, Ŷ (ω)) being
limited, but not infinitely close to ±1.

If |F ′
2(ω, Ŷ (ω))| is infinitely close to 1, it appears that we have to change scale,

which turns the equation almost into a differential equation; its solutions are ade-
quately described by (S-)continuous notions. Put γω = |F ′

2(ω, Ŷ (ω))| − 1, which is
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infinitesimal, and δ(x) = (�(ω+ x/γω)− Ỹ (ω+ x/γω))/(�(ω)− Ỹ (ω)). If γω/ω is
unlimited, one has |δ(x)| � ex for limited x and we call Ỹ a weakly exponential river.
|δ| is not only S-continuous, it is in a sense nearly differentiable, for its difference
quotient (|δ(x + γω)| − |δ(x)|) /γω is also nearly equal to ex . If γω/ω ≡ r is limited,
it is equivalent to rescale at ω with γω or with ω itself, for convenience we use the
latter. If we denote (�(ω + ωx) − Ỹ (ω + ωx))/((�(ω) − Ỹ (ω)) again by δ(x), we
derive that δ now is polynomial and satisfies |δ(x)| � xr for all limited x . Again |δ(x)|
is nearly differentiable, with its difference quotient (|δ(x + 1/ω)| − |δ(x)|) / (1/ω)
nearly equal to the derivative r xr−1 of xr . If r > 0, we call Ỹ a polynomial river.
With this weak form of repulsion the secondary solution� still leaves the river Ỹ , i.e.,
�(ξ)/Ỹ (ξ) is no longer infinitely close to 1 for sufficiently large ξ > ω. The weakest
form of repulsion is observed for r = 0 in case

∑
X≥C γX is converging, where C is

some natural number. Then �(ξ)/Ỹ (ξ) � 1 for all ξ ≥ ω. To express this form of
almost parallelness, Ỹ is called a drain.

In the case of stability or attraction one may make a similar distinction, with
|F ′

2(ω, Ŷ (ω))|< 1 decreasing from values infinitely close to 1 to infinitely close
to 0.

Relation to existing literature

Our work is inspired by the so-called river phenomenon for differential equations.
Computer graphics of the phase-portrait of several types of differential equations
show contractions of trajectories, a striking optical phenomenon similar to rivers and its
confluents on a map. The phenomenon is observed for such familiar equations as linear
equations with constant coefficients, Riccati equations and the Van der Pol equation.
Attempts to modelling were made in, among others, [12] (standard solutions acting
as attractors or repellors of neighbouring solutions), [1] (slow solutions of slow-fast
systems as attractors or repellors of neighbouring fast solutions), [4] (slow solutions of
slow-fast systems as attractors or repellors of neighbouring fast solutions, after change
of scale by macroscope), and [14, Chapter VII]. The latter presents a descriptive model
in terms of exponential deviation from a central river solution, which is similar to the
configurations described above. We observe that a large class of rivers satisfies an
asymptotic functional equation similar to (A), i.e.,

lim
X→∞

F(X, Ŷ (X))

Ŷ (X)F ′
2(X, Ŷ (X))

= 0 (R)

[3,4,14].
The class of equations considered in this article is the class of first-order difference

equations (D). The equations may be nonautonomous and nonlinear and essentially
only continuously partial derivability in order of Y is required. The class is larger than
the classes which are usually studied, which are the class of linear equations [22–24],
sometimes allowing for certain types of perturbations [2,13,20], and the class of
analytic equations [16–18]. It is to be noted that these settings include equations of
higher order and/or in more variables, which may be complex. The theories are more
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developed and notably the analytic theory gives more precision as to the asymptotics
of the river solution. For instance, in the case of analytic equations one may look for
a formal solution Y0 in terms of a power series, for which one may show that it acts
as the asymptotic expansion of an actual solution [16–18], and in the case of linear
equations for expansions in terms of factorial series [22].

Within the limitations of first-order equations in one variable, the main theorems
appear to be more general than the existing theorems on stability. Often they are stated
in terms of eigenvalues in the case of linear homogeneous equations, sometimes
allowing for certain types of generalizations [2,13]. These results are most close to our
results on moderate rivers. The result on perturbations of linear equations presented in
[13, Section 7.6] is perhaps the most general, because no conditions of regularity are
imposed on the function F defining the equation. However only the autonomous case is
considered and a strong condition is imposed on the boundedness of the perturbation.
In our setting this would mean that

∑
X≥A |F ′

2(X, Ŷ (X))| is bounded for some integer

A, while we consider uncertainties of the form o(Ŷ (X)(|F ′
2(X, Ŷ (X))| − 1)), which

may be unbounded. The article [2] considers essentially perturbations of linear homo-
geneous equations and their nonzero eigenvalues, while in our setting F ′

2(X, Ŷ (X))

may be asymptotically zero, or infinite. Still, we need that always |F ′
2(X, Ŷ (X))| < 1,

or always |F ′
2(X, Ŷ (X))| > 1. In a sense this means that Ŷ lies in an attractive tube,

or in an repulsive tube. Also, our descriptive results, in terms of first-order asymptotic
approximations of the solutions and the deviation of solutions, are more direct than
the results using Lyapunov functions, like in [20].

We note some relation to the work [15] on singularly perturbed difference equations,
because for a definite subclass of our equations there may be rescaled by macroscope
to equations of this type.

The use of nonstandard analysis

Due to the distinction between standard and nonstandard, and internal and external
properties, the expressive power of nonstandard analysis is stronger than that of clas-
sical analysis. Thus, behaviour may be modelled in a finer way, more close to the
actual behaviour. We used the possibility to define models and state results in terms of
external properties for the purpose of modelling a mathematical phenomenon which
is necessarily approximate, i.e., the local evolution of a central solution and devia-
tion from this central solution by a nearby family of other solutions. This choice also
facilitates asymptotic calculations and reasoning. In the case of rivers of differential
equations (see [14]) an attempt has been made to translate definitions and theorems
into standard terms, where the natural setting seems to be the theory of regular varia-
tion [8]; this was possible at the price of introducing new parameters (see also [9]),
epsilontics and long proofs based on the Transfer Principle.

The article is written in the axiomatic form IST of nonstandard analysis, which
distinguishes itself from model-theoretic nonstandard analysis by the cohabitation of
standard and nonstandard elements within infinite standard sets. Though a matter of
taste, to our opinion for the purpose of modelling mathematical phenomena which are
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Asymptotics of families of solutions of nonlinear difference equations 157

local and approximate, it is convenient to dispose of different orders of magnitudes
within the set of real numbers.

For an introduction to IST and for terminology and notations we refer to [10,11,21].
We use external sets as in [19]. We denote by ∅ the external set of all infinitesimal num-
bers, £ the external set of all limited numbers, and @ the set of all positive appreciable
(i.e., limited, but not infinitesimal) numbers. These symbols will be used just as o(·)
and O(·) in classical asymptotics; for example, we may write x = ∅ instead of x � 0
and several occurrences of ∅ in one formula may stand for different infinitesimals.

Structure of the article

In Section 2 we give formal definitions for approximate solutions and various kinds of
local asymptotic behaviour of true solutions. Since the latter involve change of scale,
we recall some of its methods, which are telescopes and macroscopes. The notions
will be illustrated in terms of solvable, linear equations. In Section 3 we recall the
existence theorem from [7] and present the three main theorems which characterize
the local behaviour of families of solutions in terms of the partial derivative of the
function defining the difference equation. In Section 4 we present a convenient lemma
which states that though a nonlinear difference equation in general lacks the property
of uniqueness of solutions, it is possible to move back in time for a subclass of its
solutions. We prove also that in our setting repulsive solutions are unique in their
asymptotic direction. Effects of the rescalings on the behaviour of the equation and its
solutions are treated in Section 5. Section 6 contains the proofs of the main theorems.
In Section 7 we consider some examples of quadratic equations (Section 7.1), a natural
class of drains which admits a simple formula for deviations (Section 7.2), an obvious
backward extension of the domains of the various types of behaviour through the
uniqueness theorem of Section 4 (Section 7.3) and finally (Section 7.4) the question
whether the river or drain itself satisfies the asymptotic functional equation (A).

2 Notations and definitions

Convention 2.1 Unless it is said explicitly to be otherwise, we always consider dif-
ference equations of the form Y (X + 1) = F(X,Y (X)) (D), where F is a real-
valued function which is defined and of class C1 in the second variable on some set
U ⊂ N ×R, such that the projection on N contains a set of the form {X ∈ N | X ≥ A0}
with A0 ∈ N. We say that a sequence Y is a solution if Y (X) is defined and
satisfies (D) on some set {X ∈ N | X ≥ A1} with A1 ∈ N, or Y (X) is defined on
some set {X ∈ N | A2 ≤ X ≤ A3}, with A2, A3 ∈ N, A2 < A3 and satisfies (D) on
{X ∈ N | A2 ≤ X ≤ A3 − 1}; it is supposed that such an interval is maximal.

Definition 2.2 A sequence Ŷ is called an approximate solution of (D) if

1. There exist A ∈ N, B 
= 0 such that
(a) Either (∀X ≥ A) (Ŷ (X) < 0) or (∀X ≥ A) (Ŷ (X) > 0).
(b) {(X,Y ) | X ≥ A, (∃λ) (0 ≤ λ ≤ 1,Y = λ(1 − B)Ŷ (X)+ (1 − λ)

× (1 + B)Ŷ (X))} ⊂ U .
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(c) Either (∀X ≥ A) (|F ′
2(X, Ŷ (X))| < 1) or (∀X ≥ A) (|F ′

2(X, Ŷ (X))| > 1).

2. F(X,Ŷ (X))−Ŷ (X)
Ŷ (X)

= o(|F ′
2(X, Ŷ (X))| − 1) for X → ∞.

3. Ŷ (X+1)−Ŷ (X)
Ŷ (X)

= o(|F ′
2(X, Ŷ (X))| − 1) for X → ∞.

4. Y (X) ∼ Ŷ (X) for X → ∞ implies (|F ′
2(X,Y (X))| − 1) ∼

(|F ′
2(X, Ŷ (X))| − 1) for X → ∞.

Definition 2.3 Let C ∈ N be standard and Z : {C, ··,∞} → R be a standard nonzero
sequence. We call

HZ ≡ {(ω,Y ) | ω � ∞,Y/Z(ω) � 1}

the asymptotic halo of Z .

Assume (D) and Ŷ to be standard. By Transfer U, A and B may be supposed
standard. Then HŶ ⊂ U . We will often use the following equivalent nonstandard
form of the condition expressed in Definition 2.2.4:

(∀ω � ∞)(∀η � 0)

(
|F ′

2(ω, (1 + η)Ŷ (ω))| − 1

|F ′
2(ω, Ŷ (ω))| − 1

� 1

)

. (1)

The equivalence follows from Theorem 4.1(2) of [5]. Using nonstandard terminology,
a geometric motivation of the conditions of Definition 2.2 has been given in [7], see
also Section 7.4.

Definition 2.4 If Ŷ is a standard approximate solution we put for all X such that
F ′

2(X, Ŷ (X)) is defined

gX = |F ′
2(X, Ŷ (X))| − 1, γX = |gX | = ||F ′

2(X, Ŷ (X))| − 1|.

Definition 2.5 (See [8].) Let H, K: N → R, where K is positive. We say that H is
slowly varying at scale K if for x ≥ 0 uniformly on every compact interval

lim
X→∞

H(X + x K (X))

H(X)
= 1.

It follows from the nonstandard characterization of uniform convergence on com-
pact intervals that, if H and K are standard, H is slowly varying at scale K if and only
if for every unlimited ω and limited x

H(ω + x K (ω)) = (1 + ∅)H(ω). (2)

Note that for the definition making sense one must have x K (ω) ∈ N.
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Definition 2.6 Letα � 0, α > 0. Let a, b ∈ R be limited with a ≤ b and (b − a) /α ∈
N. We write

[a · ·b] =
{

a + kα

∣
∣
∣
∣ k ∈ N, 0 ≤ k ≤ b − a

α

}

.

The set [a · ·b] is called a near-interval. A function f : [a · ·b] → R is said to be of class
S0 on [a · ·b] if f is limited and S-continuous on [a · ·b]. Put δ f (x) = f (x+α)− f (x).
The function f is said to be of class S1 on [a · ·b] if f and δ f (x)/α is of class S0 on
[a · ·b] \{b}. The function f is said to be of class |S|1 on [a · ·b] if the function A f

defined by
A f (x) = (−1)(x−a)/α f (x)

is of class S1 on [a · ·b].

The shadow ◦f of a function f of class S0 is a standard function of class C0 [26].
The shadow ◦f of a function f of class S1 is standard and of class C1, and we have
◦
(
δ f
α

)
(x) = (◦f )′ (x) for all x ∈ [◦a,◦b] [10]; sometimes we write with abuse of

language expressions like ◦
(
δ f (x)
α

)
= (◦f )′ (x). Typically, alternating functions f

such that | f | is of class S1 are of class |S|1. It is easy to see that if f is of class |S|1
the function ( f (x + α)+ f (x)) /α is of class S0. Its shadow satisfies

◦
(

f (x + α)+ f (x)

α

)

= − (◦A f
)′
(x) (3)

if (x − a) /α is even, and

◦
(

f (x + α)+ f (x)

α

)

= (◦A f
)′
(x) (4)

if (x − a) /α is odd. In both cases the two-step difference quotient ( f (x + 2α) −
f (x))/2α is of class S0 on

{
a + k · 2α | k ∈ N, 0 ≤ k < b−a

2α

}
. Indeed, if f is of

class S1

f (x + 2α)− f (x)

2α
= 1

2

δ f (x + α)

α
+ 1

2

δ f (x)

α
� δ f (x)

α
, (5)

and if f is of class |S|1, one has for x such that (x − a) /α is even

f (x + 2α)− f (x)

2α
= 1

2

δA f (x + α)

α
+ 1

2

δA f (x)

α
� δA f (x)

α
, (6)

and similarly for x such that (x − a) /α is odd,

f (x + 2α)− f (x)

2α
= −1

2

δA f (x + α)

α
− 1

2

δA f (x)

α
� −δA f (x)

α
. (7)
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We recall the general Stroboscopy Lemma of Callot and Sari [25,27] on the transi-
tion of difference equations to differential equations. Though essentially more general,
when applied to near intervals [a · ·b] it says that the solution of a difference equation

δy(x)

α
= f (x, y), y(a) limited, (8)

with f S-continuous on a standard neighbourhood of (a, f (a)) is of class S1 at least
up to some c with a � c ≤ b; its shadow satisfies the differential equation

d(◦y)(x)
dx

=◦f (x, (◦y)(x)), (◦y)(◦a) = (◦y(a)). (9)

at least on [◦a,◦c].
However, sometimes one wishes more: the solution, say, η, of the initial value

problem (9) should be defined on [◦a,◦b] and be an infinitesimal approximation of the
solution, say, θ , of (8) on [a··b]∩[◦a,◦b]. Then (9) should have existence and uniqueness
of solutions for all x ∈ [◦a,◦b]. The equations considered in this article will always
have this property. Indeed, the function ◦f will be of the form ◦f (x, y) = g(x)y, with
g defined and continuous on [◦a,◦b]. Then the solution η of (9) is defined and is unique
on the whole of [◦a,◦b]. Also θ satisfies θ(x) � η(x) for all x ∈ [a · ·b] ∩ [◦a,◦b].
The latter property may, for instance, be proved along the lines of the proof of the
Strong Short-Shadow Lemma of [11]. This lemma is about infinitely closeness of a
bounded solution φ of a standard differential equation and a solutionψ of an infinitely
close nonstandard differential equation with an infinitely close initial condition, on
the whole domain of definition of φ. Essential in the proof is that both equations have
uniqueness of solutions. Note that if the nonstandard equation is a difference equation
with infinitesimal increments, uniqueness of solutions is automatically satisfied.

We will consider two changes of scale for the set of solutions of difference equations,
telescopes and macroscopes.

Definition 2.7 (Telescope) Let ω ∈ N and Z , L ∈ R be such that ω � ∞, Z 
= 0 and
L > 0, L/ω � 0. We define the telescope Tω,Z ,L: N ×R → R by

Tω,Z ,L(X,Y ) =
(

X − ω

L
,

Y − Z

Z

)

.

Usually we write x = (X − ω)/(L) and y = (Y − Z)/(Z). If � is a sequence, we
write

ϕω,Z ,L(x) = �(ω + Lx)− Z

Z
.

In this notation, the difference equation (D) becomes

yω,Z ,L

(

x + 1

L

)

= fω,Z ,L(x, yω,Z ,L(x)),
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with

fω,Z ,L(x, y) = F(ω + Lx, Z(1 + y))

Z
− 1.

In this article we consider notably the cases L = 1 and L = 1/γω. Note that
∂ fω,Z ,L(x, y)/∂y = ∂F(X,Y )/∂Y.

Definition 2.8 (Macroscope) Let ω ∈ N and Z be such that ω � ∞ and Z 
= 0. We
define the macroscope Mω,Z: N ×R → R by

Mω,Z (X,Y ) =
(

X

ω
,

Y − Z

Z

)

.

Usually we write x = X/ω and y = (Y − Z)/Z . If � is a sequence, we write

ϕω,Z (x) = �(ωx)− Z

Z
.

In this notation, the difference equation (D) becomes

yω,Z

(

x + 1

ω

)

= fω,Z (x, yω(x)),

with

fω,Z (x, y) = F(ωx, Z(1 + y))

Z
− 1.

Note that again ∂ fω,Z (x, y)/∂y = ∂F(X,Y )/∂Y.
When there is no ambiguity with respect to the involved telescopes Tω,Z ,L we

allow for the shorthand notation ϕω for ϕω,Z ,L and fω for fω,Z ,L . Similarly, when
there is no ambiguity with respect to the involved macroscopes Mω,Z we allow also
for the shorthand notation ϕω for ϕω,Z and fω for fω,Z , noting that telescopes and
macroscopes will be used in different settings.

In the context of standard difference equations it is necessary to consider a whole
family of changes of scale: appropriate focussing depends in an essential way on
the, possibly very individual, local behaviour at ω of the difference equation and the
solution. So we use telescopes and macroscopes to rescale conveniently segments of
the asymptotic halo of a standard nonzero solution Ỹ . Indeed, let ω � ∞ and L > 0
be such that L/ω � 0. Clearly, for the telescope T

ω,Ỹ (ω),L the external set {(x, y) | x

limited, y � 0} corresponds to {(X,Y ) | X − ω = £L , Y/Ỹ (ω) � 1} and for the
macroscope M

ω,Ỹ (ω) the external set {(x, y) | x appreciable, y � 0} corresponds to

{(X,Y ) | X/ω = @, Y/Ỹ (ω) � 1}.
Using the rescalings mentioned above, the next definition describes several types

of local asymptotic behaviour for sets of trajectories. For telescopes the description is
made for positive limited x , but the described type of behaviour will be in fact verified
for all limited x and for macroscopes the description is made for limited x ≥ 1, while
the described type of behaviour will be verified for all positive appreciable x ; see
Section 7.3.
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162 I. P. van den Berg

Definition 2.9 Let (D) be standard and Ỹ be a nonzero solution. Let ω ∈ N.
1. Strong rivers. We call Ỹ a strongly attractive river if for every ω � ∞ under

the telescope T
ω,Ỹ (ω),1 for all limited x ∈ N it holds that ◦ỹω(x) = 0 and whenever�

and � are solutions with ϕω(x) � ψω(x) � 0, ϕω(x) 
= ψω(x)

ϕω(x + 1)− ψω(x + 1)

ϕω(x)− ψω(x)
� 0. (10)

If instead of (10) it holds that ϕω(0) 
= ψω(0) and for all limited x ∈ N such that
ϕω(ξ) � ψω(ξ) � 0 for ξ ∈ {0, ··, x}

ϕω(x + 1)− ψω(x + 1)

ϕω(x)− ψω(x)
� +∞

or for all such x
ϕω(x + 1)− ψω(x + 1)

ϕω(x)− ψω(x)
� −∞,

we call Ỹ a strongly repulsive river.
2. Moderate rivers. We call Ỹ a moderately attractive river if for every ω � ∞

under the telescope T
ω,Ỹ (ω),1 it holds that ◦ỹω(x) = 0 for all limited x ≥ 0 and there

exists standard a with 0 < |a| < 1 such that whenever � and � are solutions with
ϕω(0) � ψω(0) � 0, ϕω(0) 
= ψω(0) one has for all limited x ∈ N

ϕω(x)− ψω(x)

ϕω(0)− ψω(0)
� ax . (11)

If formula (11) holds for some standard a with |a| > 1, the solution Ỹ is called a
moderately repulsive river.

3. Weakly exponential rivers. We call Ỹ a weakly exponentially attractive river if
for every ω � ∞:

(a) γω � 0, ωγω � ∞.
(b) Under the telescope T

ω,Ỹ (ω),1/γω
it holds that ◦ỹω(x) = 0 for all limited x ≥ 0

and whenever � and � are solutions with ϕω(0) � ψω(0) � 0, ϕω(0) 
= ψω(0)
one has for all limited x ≥ 0

◦
∣
∣
∣
∣
ϕω(x)− ψω(x)

ϕω(0)− ψω(0)

∣
∣
∣
∣ = e−x . (12)

Such a river is said to be of class S1 if ỹω(x) and (ϕω(x)− ψω(x)) /(ϕω(0)
−ψω(0)) are of class S1 and of class |S|1 if ỹω(x)− ŷω(x) and (ϕω(x)−ψω(x))/(ϕω(0)
− ψω(0)) are of class |S|1. If the above properties hold with

◦
∣
∣
∣
∣
ϕω(x)− ψω(x)

ϕω(0)− ψω(0)

∣
∣
∣
∣ = ex . (13)

the solution Ỹ is called a weakly exponentially repulsive river (of class S1 or |S|1).
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4. Polynomial rivers. We call Ỹ a polynomially attractive river if for every ω � ∞
under the macroscope M

ω,Ỹ (ω) it holds that ◦ỹω(x) = 0 for all limited x ≥ 1 and
there exists standard r < 0 such that whenever � and � are solutions with ϕω(1) �
ψω(1) � 0, ϕω(1) 
= ψω(1) one has for all limited x ≥ 1

◦
∣
∣
∣
∣
ϕω(x)− ψω(x)

ϕω(1)− ψω(1)

∣
∣
∣
∣ = xr . (14)

Such a river is said to be of class S1 if ỹω(x) and (ϕω(x)− ψω(x)) /(ϕω(1)−ψω(1))
are of class S1 and of class |S|1 if ỹω(x)− ŷω(x) and (ϕω(x)−ψω(x))/(ϕω(1)−ψω(1))
are of class |S|1. If the above properties hold with r > 0 the solution Ỹ is called a
polynomially repulsive river (of class S1 or |S|1).

5. Drains. We call Ỹ a drain if for every ω � ∞ under the macroscope M
ω,Ỹ (ω)

it holds that ◦ỹω(x) = 0 for all limited x ≥ 1, and for every solution Ȳ such that
Ȳ (ω)/Ỹ (ω) � 1 it holds that Ȳ (X)/Ỹ (X) � 1 for all X � ∞. The drain is said to be
of class S1 if for everyω � ∞ the discrete function ỹω(x) is of class S1, and whenever
� and� are solutions with ϕω(1) � ψω(1) � 0, ϕω(1) 
= ψω(1), the discrete function
(ϕω(x)− ψω(x)) /(ϕω(1)−ψω(1)) is of class S1. The drain is said to be of class |S|1
if for every ω � ∞ the discrete function ỹω(x)− ŷω(x) is of class |S|1.

Remarks. 1. The “central solution” Ỹ in Definition 2.9 is always supposed to be
standard. This is in line with the observation in [12], that solutions with standard
initial conditions may act as remarkable solutions, solutions of reference in the phase-
portrait. In our case such solutions are standard solutions, because (D) is standard, and
act as attractors or repellors.

2. In order to be of class |S|1 a discrete function needs to be “smoothly oscillating”.
It appears that ỹω is “smoothly oscillating” around ŷω (Definitions 2.9.3, 2.9.4 and
2.9.5) under the conditions of Theorems 3.2.4, 3.2.6, 3.3.4, 3.3.6 and 3.4.2, where ŷω
itself is of class S1 (Lemmas 5.2 and 5.5).

3. It is interesting to observe the transition of moderate rivers and polynomial rivers
into weakly exponential rivers as a function of F ′

2(ω, Ŷ (ω)). Assume that in Definition
2.9.2 we had viewed the difference of two solutions under the telescope T

ω,Ỹ (ω),1/γω
instead of under the telescope T

ω,Ỹ (ω),1. Then we would have found

◦
∣
∣
∣
∣
ϕω(x)− ψω(x)

ϕω(0)− ψω(0)

∣
∣
∣
∣ = (1 + gω)

x/γω . (15)

By Euler’s formula, as γω is approaching infinitesimal values, formula (15) turns
into formula (12) or formula (13) of Definition 2.9.3, depending on whether
|F ′

2(ω, Ŷ (ω))| < 1 or |F ′
2(ω, Ŷ (ω))| > 1.

Also, if in Definition 2.9.4 we had viewed the difference of two solutions under
the change of scale T

ω,Ỹ (ω),1/γω
(which is formally not a telescope, since γω = (1 +

∅)r/ω), instead of under the macroscope M
ω,Ỹ (ω), we would have found

◦
∣
∣
∣
∣
ϕω(x)− ψω(x)

ϕω(0)− ψω(0)

∣
∣
∣
∣ =

(

1 + x

|r |
)r

(16)

for x ≥ 0.
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Again by Euler’s formula, as r is approaching negative or positive unlimited values,
formula (16) turns into formula (12) or formula (13).

Examples. Using linear equations we give an example of each type of behaviour.
The parameter a is always supposed to be standard.

1. Strong rivers. Consider

Y (X + 1) = XaY (X)− Xa+2 + X2 + 2X + 1.

The solution Ỹ (X) = X2 is a strongly attractive river if a < 0 and a strongly repulsive
river if a > 0.

2. Moderate rivers. Consider

Y (X + 1) = aY (X)− X + 1

a − 1
.

The solution Ỹ (X) = X/(a − 1) is a moderately attractive river if 0 < |a| < 1 and a
moderately repulsive river if |a| > 1.

3. Weakly exponential, polynomial rivers, drains of class S1. Consider

Y (X + 1) =
(

1 − 1

Xa

)

Y (X)+ 1

Xa
.

The solution Ỹ (X) = 1 is a weakly exponentially attractive river of class S1 if 0 <
a < 1 and a polynomially attractive river of class S1 if a = 1. It is a drain of class S1

if a > 1. As for the repulsive case, consider

Y (X + 1) =
(

1 + 1

Xa

)

Y (X)− 1

Xa
.

The solution Ỹ (X) = 1 is a weakly exponentially repulsive river of class S1 if 0 <
a < 1 and a polynomially repulsive river of class S1 if a = 1. It is a drain of class
S1 if a > 1. It will be shown that the solutions in the asymptotic halo of Ỹ satisfy the
more precise formulae (43) and (44).

4. Weakly exponential, polynomial rivers, drains of class |S|1. Consider

Y (X + 1) =
(

−1 + 1

Xa

)

Y (X)+ 2 − 1

Xa
+ (−1)X

(
1

Xa
− 1

(X + 1)a
− 1

X2a

)

.

(17)

An approximate solution is given by Ŷ (X) = 1. The solution Ỹ (X) = 1 + (−1)X/Xa

is a weakly exponentially attractive river of class |S|1, but not of class S1 if 0 < a < 1
and a polynomially attractive river of class |S|1, but not of class S1 if a = 1. It is a
drain of class |S|1, but not of class S1 if a > 1. As for the repulsive case, consider

Y (X + 1) =
(

−1 − 1

Xa

)

Y (X)+ 2 + 1

Xa
+ (−1)X

(
1

Xa
− 1

(X + 1)a
+ 1

X2a

)

.
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Again Ŷ (X) = 1 is an approximate solution and Ỹ (X) = 1+ (−1)X/Xa is a solution.
The latter is a weakly exponentially repulsive river of class |S|1, but not of class S1

if 0 < a < 1 and a polynomially repulsive river of class |S|1, but not of class S1 if
a = 1. It is a drain of class |S|1, but not of class S1 if a > 1. Then the solutions in the
asymptotic halo of Ỹ satisfy also the finer formulae (43) and (44).

In Section 7.1 we consider more examples, then of nonlinear equations.

3 Existence and characterization theorems

The theorems below enable to decide from the properties of the function F defining
the difference equation (D) whether in a given asymptotic direction it admits a family
of solutions exhibiting one of the types of behaviour described in Section 2.

We start by recalling the Existence Theorem of [7], which states that the regularity
conditions of Definition 2.2.1, 2.2.3 and 2.2.4 are sufficient for an approximate solution
Ŷ , found by solving the asymptotic functional equation (A) of definition 2.2.2 to be
asymptotic to a true solution.

Theorem 3.1 (Existence Theorem) Let Ŷ be an approximate solution of (D). Then
(D) has a solution Ỹ such that Ỹ (X) ∼ Ŷ (X) for X → ∞.

By transfer, if (D) and Ŷ are standard, there exists a standard solution Ỹ such that
Ỹ (X) ∼ Ŷ (X) for X → ∞. Then Ỹ (ω)/Ŷ (ω)� 1 for all ω � ∞. The next theorems
characterize the behaviour of the set of solutions of (D) on the asymptotic halo of Ỹ
(or equivalently of Ŷ ) in terms of F ′

2(ω, Ŷ (ω)) (or equivalently of F ′
2(ω, Ỹ (ω))). The

theorems will be proved in Sections 4–6.

Theorem 3.2 (Characterization Theorem for attractive rivers) Let (D) be a standard
difference equation and Ŷ be a standard approximate solution. Let Ỹ be a standard
solution asymptotic to Ŷ .

1. The solution Ỹ is a strongly attractive river if and only if
(a) limX→∞ F ′

2(X, Ŷ (X)) = 0.

(b) limX→∞ Ŷ (X + 1)/Ŷ (X) = 1.
2. The solution Ỹ is a moderately attractive river if and only if

(a) limX→∞ F ′
2(X, Ŷ (X)) = a for some a with 0 < |a| < 1.

(b) limX→∞ Ŷ (X + 1)/Ŷ (X) = 1.
3. The solution Ỹ is a weakly exponentially attractive river of class S1 if and only if

(a) limX→∞ F ′
2(X, Ŷ (X)) = 1.

(b) limX→∞ X (F ′
2(X, Ŷ (X))− 1) = −∞.

(c) F ′
2(X, Ŷ (X))− 1 is slowly varying at scale 1/||F ′

2(X, Ŷ (X))| − 1|.
4. The solution Ỹ is a weakly exponentially attractive river of class |S|1, but not of

class S1 if and only if
(a) limX→∞ F ′

2(X, Ŷ (X)) = −1.

(b) limX→∞ X (F ′
2(X, Ŷ (X))+ 1) = +∞.

(c) F ′
2(X, Ŷ (X))+ 1 is slowly varying at scale 1/||F ′

2(X, Ŷ (X))| − 1|.
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5. The solution Ỹ is a polynomially attractive river of class S1 if and only if
limX→∞ X (F ′

2(X, Ŷ (X))− 1) = r for some r < 0.
6. The solution Ỹ is a polynomially attractive river of class |S|1, but not of class S1

if and only if limX→∞ X (F ′
2(X, Ŷ (X))+ 1) = r for some r > 0.

Theorem 3.3 (Characterization Theorem for repulsive rivers) Let (D) be a standard
difference equation and Ŷ be a standard approximate solution. Let Ỹ be a standard
solution asymptotic to Ŷ . Repulsive rivers of the various types are characterized by
the conditions of Theorem 3.2 with the following modifications:

1. Strongly repulsive rivers – instead of 1a,

lim
X→∞ F ′

2(X, Ŷ (X)) = +∞ or lim
X→∞ F ′

2(X, Ŷ (X)) = −∞.

2. Moderately repulsive rivers – instead of 0 < |a| < 1 in 2a, |a| > 1.
3. Weakly exponentially repulsive rivers of class S1 – instead of 3b,

lim
X→∞ X(F ′

2(X, Ŷ (X))− 1) = +∞.

4. Weakly exponentially repulsive rivers of class |S|1, but not of class S1 – instead
of 4b,

lim
X→∞ X(F ′

2(X, Ŷ (X))+ 1) = −∞.

5. Polynomially repulsive rivers of class S1 – instead of r < 0 in 5, r > 0.
6. Polynomially repulsive rivers of class |S|1, but not of class S1 – instead of r > 0

in 6, r < 0.

Theorem 3.4 (Characterization Theorem for drains) Let (D) be a standard difference
equation and Ŷ be a standard approximate solution. Let Ỹ be a standard solution
asymptotic to Ŷ .

1. The solution Ỹ is a drain of class S1 if and only if
(a)

∑
X≥C F ′

2(X, Ŷ (X))− 1 is converging, for some C > 0.

(b) limX→∞ X (F ′
2(X, Ŷ (X))− 1) = 0.

2. The solution Ỹ is a drain of class |S|1, but not of class S1 if and only if
(a)

∑
X≥C F ′

2(X, Ŷ (X))+ 1 is converging, for some C > 0.

(b) limX→∞ X (F ′
2(X, Ŷ (X))+ 1) = 0.

4 On the uniqueness of solutions

By no means nonlinear difference equations satisfy the property of uniqueness of
solutions, as is immediately clear by considering quadratic equations. However, uni-
queness may be satisfied locally. We will consider two cases for equations (D) which
admit an approximate solution Ŷ . First we show that uniqueness is satisfied if we
constrain ourselves to solutions within an appropriate tube around Ŷ . Secondly, we
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consider solutions asymptotic to Ŷ which exist by the Existence Theorem. Clearly,
in the attractive case there are an infinity of such solutions. But we show that in the
repulsive case there exists only one.

Next definition and proposition are stated for general difference equations.

Definition 4.1 Let (D) be a difference equation defined on U ⊂ N×R. Let V ⊂ U . We
say that (D) satisfies the property of uniqueness of solutions on V if for all solutions�
and� such that for all X0, X1 with X0 ≤ X1 it holds that if�|{X0,..,X1}, �|{X0,..,X1} ⊂V

�(X1) = �(X1) �⇒ �|{X0,..,X1} = �|{X0,..,X1}.

Note that if �(X1) = �(X1), automatically �(X) = �(X) for X ≥ X1 as long
as �(X) and �(X) are both defined. We allow for nonuniqueness outside V , i.e., it
may happen that for some solution � and X > X0 one has �|{X,..,X1} = �|{X,..,X1},
but �(X − 1) 
= �(X − 1), with (X − 1,�(X − 1)) /∈ V .

Proposition 4.2 Let Y (X + 1) = F(X,Y (X)) (D) be a difference equation defined
on U ⊂ N × R. Let V ⊂ U. Assume for all X ∈ N such that there exists some Y ∈ R
with (X,Y ) ∈ V the function F(X, .) is injective on V ∩ {X} × R. Then (D) satisfies
the property of uniqueness of solutions on V .

Proof Let � and � be solutions and X0, X1 ∈ N with X0 ≤ X1, �|{X0,..,X1},
�|{X0,..,X1} ⊂ V and �(X1) = �(X1). We prove that �|{X0,..,X1} = �|{X0,..,X1}
by downward induction. Let X0 < X ≤ X1 and assume �(X) = �(X). Now
(X − 1,�(X − 1)) ∈ V and (X − 1, �(X − 1)) ∈ V , while F(X − 1,�(X − 1)) =
�(X) = �(X) = F(X −1, �(X −1)). Because F(X, .) is injective on V ∩{X}×R,
one has �(X − 1) = �(X − 1). ��

We apply Proposition 4.2 to an appropriate tube around an approximate solution.

Lemma 4.3 (Uniqueness Lemma) Let (D) be a standard difference equation satisfying
the conditions of convention 2.1 and Ŷ be a standard approximate solution. Assume
lim inf X→∞ |F ′

2(X, Ŷ (X))| 
= 0. Then there exists standard A0, B0 with B0 > 0 such
that (D) satisfies the property of uniqueness on V ≡ {(X,Y ) | X ≥ A0, (∃λ) (0 ≤
λ ≤ 1,Y = λ(1 − B0)Ŷ (X)+ (1 − λ)(1 + B0)Ŷ (X))}.
Proof We have |F ′

2(X, Ŷ (X))| 
� 0 for all X � ∞. Then F ′
2(X,Y ) 
� 0 for all X � ∞

and Y such that Y/Ŷ (X) � 1 by formula (1). By the Fehrele principle [11], applied in
two dimensions we obtain an internal set I ⊃ HŶ such that F ′

2(X,Y ) 
� 0 on I . Such
a set I contains a “rectangle” of type V for some standard A0, B0 with B0 > 0. Then
F(X,Y ) is injective in the second variable as long as (X,Y ) ∈ V . Hence (D) satisfies
the property of uniqueness on V . ��

The next theorem states that within a tube V as given in the Uniqueness Lemma, a
difference equation (D) has only one solution asymptotic to a repulsive approximate
solution Ŷ .
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Theorem 4.4 (Uniqueness Theorem for the repulsive case). Let Ŷ be an approximate
solution of (D). Suppose there exists A ∈ N such that (∀X ≥ A) (|F ′

2(X, Ŷ (X))| > 1).
Let A0 ∈ N, A0 ≥ A, B0 > 0 such that (D) satisfies the property of uniqueness on V ≡
{(X,Y ) | X ≥ A0, (∃λ) (0 ≤ λ ≤ 1,Y = λ(1 − B0)Ŷ (X)+ (1 − λ)(1 + B0)Ŷ (X))}.
Consider the restriction of (D) to V . Within this restriction there exists a unique
solution Ỹ such that Ỹ (X) ∼ Ŷ (X) for X → ∞.

Proof By Transfer, we may suppose (D), A, Ŷ and V to be standard. By the Existence
Theorem there is a solution Ỹ such that Ỹ (X) ∼ Ŷ (X) for X → ∞. Let A1 ≥ A0 be
minimal such that (X, Ỹ (X)) ∈ V for all X ≥ A1. Suppose Ȳ is a (standard) different
solution within V , also asymptotic to Ŷ . By convention 2.1 the solutions Ȳ and Ỹ
are maximal, so Ȳ (X) 
= Ỹ (X) for all X such that they are both defined within V .
In particular Ȳ (X) 
= Ỹ (X) for all X � ∞. Let ω � ∞. Because limX→∞(Ȳ (X) −
Ỹ (X))/Ŷ (X) = 0, there exists ξ > ω such that |(Ȳ (ξ) − Ỹ (ξ))/Ŷ (ξ)| < |(Ȳ (ω) −
Ỹ (ω))/Ŷ (ω)|. Hence for some X with ω ≤ X ≤ ξ one has |(Ȳ (X + 1) − Ỹ (X +
1))/Ŷ (X + 1)| < |(Ȳ (X)− Ỹ (X))/Ŷ (X)|. So

∣
∣
∣
∣
∣

F(X, Ȳ (X))− F(X, Ỹ (X))

Ȳ (X)− Ỹ (X)

∣
∣
∣
∣
∣
− 1 <

∣
∣
∣
∣
∣

Ŷ (X + 1)

Ŷ (X)

∣
∣
∣
∣
∣
− 1. (18)

By the Mean Value Theorem and formula (1) there exists α � 0 such that the left-hand
side of (18) is equal to (1 +α)gX , and by Definition 2.2.3 there exists β � 0 such that
the right-hand side of (18) is equal to −1 + |1 + βgX |. So formula (18) becomes

{
(1 + α − β)gX < 0 1 + βgX ≥ 0
(1 + α + β)gX < −2 1 + βgX < 0.

In both cases we conclude that gX < 0, i.e., |F ′
2(X, Ŷ (X))| < 1, a contradiction.

Hence Ỹ is the only solution asymptotic to Ŷ . ��

5 Rescalings

We derive some approximation lemmas which yield useful information on the beha-
viour of the difference equation (D) viewed under the telescopes or macroscopes. All
lemmas are formulated for the case where (D), the approximate solution Ŷ and the
solution Ỹ asymptotic to Ŷ are standard, andω is a nonstandard integer. The following
approximations hold for Ŷ , Ỹ and F ′

2.

Lemma 5.1 Let limX→∞ Ŷ (X + 1)/Ŷ (X) = 1. Then ◦ŷω = ◦ỹω = 0 under the
telescope T

ω,Ỹ (ω),1.

We omit the proof.

Lemma 5.2 Let limX→∞ |F ′
2(X, Ŷ (X))| = 1, limX→∞ X · ||F ′

2(X, Ŷ (X))| − 1| =
∞ and |F ′

2(X, Ŷ (X))| − 1 be slowly varying at scale 1/||F ′
2(X, Ŷ (X))| − 1|. Then

◦ŷω = ◦ỹω = 0 under the telescope T
ω,Ỹ (ω),1/γω

. Moreover, ŷω is of class S1.
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Proof Let x ≥ 0 be limited. We have γX/γω � 1 for all X with ω ≤ X < ω+ x/γω.
Applying Definition 2.2.3 and Euler’s formula

Ŷ (ω + x/γω)

Ŷ (ω)
=

∏

ω≤X<ω+x/γω

1 + Ŷ (X + 1)− Ŷ (X)

Ŷ (X)

=
∏

ω≤X<ω+x/γω

1 + ∅γX = (1 + ∅γω)x/γω = exp(∅x) = 1 + ∅.

Also
Ỹ (ω + x/γω)

Ỹ (ω)
= Ỹ (ω + x/γω)

Ŷ (ω + x/γω)

Ŷ (ω + x/γω)

Ŷ (ω)

Ŷ (ω)

Ỹ (ω)
� 1.

So ◦ỹω(x) = 0, hence also ◦ŷω(x) = 0. Further

ŷω(x + γω)− ŷω(x)

γω

= Ŷ (ω+x/γω + 1)−Ŷ (ω+x/γω)

Ŷ (ω+x/γω) γω+x/γω

γω+x/γω

γω
(1+ ŷω(x))=∅(1+∅)(1+∅)=∅.

Hence ŷω is of class S1 for all limited x ≥ 0. Clearly the above formulae hold also for
negative limited x . ��

Lemma 5.3 Let limX→∞ F ′
2(X, Ŷ (X)) = 1, limX→∞ X · ||F ′

2(X, Ŷ (X))| − 1| = ∞
and F ′

2(X, Ŷ (X))− 1 be slowly varying at scale 1/||F ′
2(X, Ŷ (X))| − 1|. Then under

the telescope T
ω,Ỹ (ω),1/γω

one has (∂ fω/∂y)(x, y) = 1 + (1 + ∅)gω for all limited x
and y � 0.

Proof We have

∂F

∂Y
(ω + x/γω, (1 + y)Ỹ (ω)) = 1 +

∂F
∂Y (ω + x/γω, (1 + y)Ỹ (ω))− 1
∂F
∂Y (ω + x/γω, Ŷ (ω + x/γω))− 1

×

×
∂F
∂Y (ω + x/γω, Ŷ (ω + x/γω))− 1

∂F
∂Y (ω, Ŷ (ω))− 1

·
(
∂F

∂Y
(ω, Ŷ (ω))− 1

)

.

Applying Lemma 5.2, formula (1) and the slow variation of F ′
2(X, Ŷ (X))− 1 at scale

1/||F ′
2(X, Ŷ (X))| − 1| we obtain for all limited x and y � 0 that

∂ fω
∂y
(x, y) = 1 + (1 + ∅)(1 + ∅)gω = 1 + (1 + ∅)gω.

��
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Lemma 5.4 Let limX→∞ F ′
2(X, Ŷ (X))=− 1, limX→∞ X (F ′

2(X, Ŷ (X))+ 1)=+∞
and F ′

2(X, Ŷ (X))+ 1 be slowly varying at scale 1/||F ′
2(X, Ŷ (X))| − 1|. Then under

the telescope T
ω,Ỹ (ω),1/γω

one has (∂ fω/∂y)(x, y) = −1 − (1 + ∅)gω for all limited
x and y � 0.

Proof Analogous to the proof of Lemma 5.3. ��
Lemma 5.5 Let limX→∞ X (|F ′

2(X, Ŷ (X))| − 1) = r for some r ∈ R. Then under
the macroscope M

ω,Ỹ (ω) one has ◦ŷω(x) = ◦ỹω(x) = 0 for all positive appreciable x.

Moreover, ŷω is of class S1 for all positive appreciable x.

Proof Similar to the proof of Lemma 5.2. ��
Lemma 5.6 Let limX→∞ X (F ′

2(X, Ŷ (X))− 1) = r for some r ∈ R. Then under the
macroscope M

ω,Ỹ (ω) one has (∂ fω/∂y)(x, y) = 1 + r/ωx + ∅/ω for all positive
appreciable x and y � 0.

Proof We have

∂F

∂Y
(ωx, (1 + y)Ỹ (ω))

= 1 +
∂F
∂Y (ωx, (1 + y)Ỹ (ω))− 1

∂F
∂Y (ωx, Ŷ (ωx))− 1

·
(
∂F

∂Y
(ωx, Ŷ (ωx))− 1

)

.

By Lemma 5.5 and formula (1) we obtain for all positive appreciable x and y � 0 that

∂ fω
∂y
(x, y) = 1 + (1 + ∅)

(
r

ωx
+ ∅
ω

)

= 1 + r

ωx
+ ∅
ω
.

��
Lemma 5.7 Let limX→∞ X (F ′

2(X, Ŷ (X)) + 1) = −r for some r ∈ R. Then under
the macroscope M

ω,Ỹ (ω) one has (∂ fω/∂y)(x, y) = −1−r/ωx +∅/ω for all positive
appreciable x and y � 0.

Proof Similar to the proof of Lemma 5.6. ��

6 Proofs of the characterization theorems

We start with some notation and some conventions used in all of the proofs. We let
ω be an arbitrary unlimited integer. We assume always that � and � are solutions
such that �(ω) = (1 + ∅)�(ω) = (1 + ∅)Ỹ (ω) and �(ω) 
= �(ω), �(ω) 
= Ỹ (ω),
with the exception of the sufficient part of the proof of the strongly attractive case,
where we assume that �(ω + x) = (1 + ∅)�(ω + x) = (1 + ∅)Ỹ (ω + x) and
�(ω + x) 
= �(ω + x) for some limited x ≥ 0. Let X ≥ ω such that still �(X) =
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(1 + ∅)�(X) = (1 + ∅)Ỹ (X) and �(X) 
= �(X). In the case of telescopes T
ω,Ỹ ,L

we define dω and δω by

dω(x) = ϕω(x)− ỹω(x)

ϕω(0)− ỹω(0)
, δω(x) = ϕω(x)− ψω(x)

ϕω(0)− ψω(0)
.

With an abuse of language, we use the same notation for differences of solutions, when
rescaled by macroscopes M

ω,Ỹ (ω); by definition

dω(x) = ϕω(x)− ỹω(x)

ϕω(1)− ỹω(1)
, δω(x) = ϕω(x)− ψω(x)

ϕω(1)− ψω(1)
.

Note that for some η � 0

�(X + 1)−�(X + 1)

�(X)−�(X)
= F ′

2(X, (1 + η)Ŷ (X)). (19)

This implies that under the telescopes T
ω,Ỹ (ω),1/γω

one has

δω(x + γω)

δω(x)
= ∂ fω(x, (1 + η)(1 + ŷω(x))− 1)

∂y
(20)

and similarly under the macroscopes M
ω,Ỹ (ω) one has

δω(x + 1/ω)

δω(x)
= ∂ fω(x, (1 + η)(1 + ŷω(x))− 1)

∂y
. (21)

If we take x = 1 in (21), we find

δω(1 + 1/ω) = ∂ fω(1, θ)

∂y
, (22)

where θ � 0.

Proof of Theorem 3.2.1. Let limX→∞ Ŷ (X +1)/Ŷ (X)=1 and limX→∞ F ′
2(X, Ŷ (X))

= 0. By Lemma 5.1 under the telescope T
ω,Ỹ (ω),1 one has ◦ỹω = 0. Let x ∈ N be

limited. By (20) and (1)

ϕω(x + 1)− ψω(x + 1)

ϕω(x)− ψω(x)
� 0.

Hence Ỹ is a strongly attractive river.
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Conversely, if Ỹ is a strongly attractive river, we have ◦ỹω(1) = 0. So Ỹ (ω +
1)/Ỹ (ω) � 1, hence Ŷ (ω + 1)/Ŷ (ω) � 1 and limX→∞ Ŷ (X + 1)/Ŷ (X) = 1. Also
(ϕω(1)−ψω(1)) /(ϕω(0)−ψω(0))� 0. By formula (19) one has F ′

2(ω, (1+η)Ŷ (ω))
� 0 for some η � 0. Then

F ′
2(ω, Ŷ (ω)) = F ′

2(ω, Ŷ (ω))− 1 + 1 = (1 + ∅)(F ′
2(ω, (1 + η)Ŷ (ω))− 1)+ 1 = ∅.

Hence limX→∞ F ′
2(X, Ŷ (X)) = 0. ��

Proof of Theorem 3.2.2. Similar to the proof of Theorem 3.2.1, noting that for limited
x ≥ 0

δω(x) =
∏

0≤ξ<x

ϕω(ξ + 1)− ψω(ξ + 1)

ϕω(ξ)− ψω(ξ)
� ax .

��

Proof of Theorem 3.2.3. Assume limX→∞ F ′
2(X, Ŷ (X)) = 1, limX→∞ X (F ′

2(X,

Ŷ (X)) − 1) = −∞ and that F ′
2(X, Ŷ (X)) − 1 is slowly varying at scale 1/||F ′

2(X,

Ŷ (X))| − 1|. Firstly, by Lemma 5.2 under the telescope T
ω,Ỹ (ω),1/γω

one has ◦ỹω = 0.
Secondly, we prove that the difference of two solutions which at 0 under the teles-

cope are infinitely close to 0 is of class S1. Let x ≥ 0 be limited. Since

dω(x + γω)− dω(x)

γω
= dω(x)

γω

(
ϕω(x + γω)− ỹω(x + γω)

ϕω(x)− ỹω(x)
− 1

)

, (23)

we derive from (20) and Lemma 5.3 that as long as dω(x) is limited,

dω(x + γω)− dω(x)

γω
= dω(x)

γω
(1 + (1 + ∅)gω − 1) = −dω(x)+ ∅. (24)

By the Stroboscopy Lemma dω(x) � e−x for such x , which also implies that in fact
dω(x) is limited for all limited x . This means that every solution which under the
telescope is infinitely close to zero at x = 0 is infinitely close to zero for all limited
x ≥ 0. Hence δω(x) satisfies (24) for all limited x ≥ 0, i.e.,

δω(x + γω)− δω(x)

γω
� −δω(x) � −e−x .

This implies that δω(x) is of class S1 for all limited x ≥ 0.
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Thirdly, we prove that ỹω is also of class S1 for all limited x ≥ 0. Note that it
satisfies the equation

ỹω(x+γω)− ỹω(x)=
(

fω(x, ỹω(x))− fω(x, ŷω(x))

ỹω(x)− ŷω(x)
− 1

)

ỹω(x)+

−
(

fω(x, ỹω(x))− fω(x, ŷω(x))

ỹω(x)− ŷω(x)
− 1

)

ŷω(x)

+ fω(x, ŷω(x))− ŷω(x)

ŷω(x)(∂ fω(x, ŷω(x))/∂y − 1)
ŷω(x)(∂ fω(x, ŷω(x))/∂y−1).

Now ŷω(x) � 0 by Lemma 5.2. Then for some β � 0

fω(x, ỹω(x))− fω(x, ŷω(x))

ỹω(x)− ŷω(x)
− 1 = ∂ fω(x, β)

∂y
− 1,

which by Lemma 5.3 is of the form (1 + ∅)gω. It follows also from Lemma 5.3 that
∂ fω(x, ŷω(x))/∂y − 1 = (1 + ∅)gω. Definition 2.2.2 implies that

fω(x, ŷω(x))− ŷω(x)

ŷω(x)(∂ fω(x, ŷω(x))/∂y − 1)
� 0.

By these estimations the difference ỹω(x + γω)− ỹω(x) takes the form

ỹω(x + γω)− ỹω(x) = (1 + ∅)gω ỹω(x)− (1 + ∅)gω · ∅ + ∅ · ∅(1 + ∅)gω.

So
ỹω(x + γω)− ỹω(x)

γω
� −ỹω(x) � 0, (25)

hence ỹω is of class S1. Combining, we conclude that Ỹ is a weakly exponentially
attractive river of class S1.

Conversely, we remark first that because T
ω,Ỹ (ω),1/γω

is a telescope, one has 1/γω =
∅ω, and because ω is arbitrary

lim
X→∞ X · ||F ′

2(X, Ŷ (X))| − 1| = +∞. (26)

Next, because δω(x) is of class S1, in particular ◦δω(x) = e−x for x ≥ 0, which
implies that the steps γω of the discrete function δω must be infinitesimal. Hence
limX→∞ |F ′

2(X, Ŷ (X))| − 1 = 0. Let x ≥ 0 be limited. Then

δω(x + γω)− δω(x)

γω
� de−x

dx
= −e−x � −δω(x).

Hence
δω(x + γω)/δω(x) = 1 − (1 + ∅)γω. (27)
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Notice that ŷω(x) � 0, because

ŷω(x) = Ŷ (ω + x/γω)

Ỹ (ω + x/γω)
(1 + ỹω(x))− 1 = (1 + ∅)(1 + ∅)− 1 = ∅. (28)

Then by (20) there exists η̄ � 0 such that ∂ fω(x, η̄)/∂y = δω(x +γω)/δω(x). Hence it
follows from formula (1) and formula (27), applied for x = 0, that ∂ fω(0, 0)/∂y = 1−
(1+∅)γω. Because γω � 0 and γω > 0 we have F ′

2(ω, Ŷ (ω)) � 1, F ′
2(ω, Ŷ (ω)) < 1.

From this and (26) we derive that limX→∞ F ′
2(X, Ŷ (X)) = 1 and limX→∞ X (F ′

2(X,

Ŷ (X)) − 1) = −∞. Finally we prove that F ′
2(X, Ŷ (X)) − 1 is slowly varying at

scale 1/||F ′
2(X, Ŷ (X))| − 1|. Noting that ŷω(x) � 0 we derive as above from (20),

(1) and (27) that ∂ f (x, ŷω(x))/∂y = 1 − (1 + ∅)γω for all limited x ≥ 0. Hence
∂ f (x, ŷω(x))/∂y − 1 = (1 + ∅)(∂ fω(0, 0)/∂y − 1) and

F ′
2

(

ω + x

||F ′
2(ω, Ŷ (ω))| − 1| , Ŷ

(

ω + x

||F ′
2(ω, Ŷ (ω))| − 1|

))

− 1

= (1 + ∅)(F ′
2(ω, Ŷ (ω))− 1),

so F ′
2(X, Ŷ (X))− 1 is slowly varying at scale 1/||F ′

2(X, Ŷ (X))| − 1| by formula (2).
Combining, we see that the three conditions of Theorem 3.2.3 are verified. ��

Proof of Theorem 3.2.4. Assume limX→∞ F ′
2(X, Ŷ (X)) = −1, limX→∞ X (F ′

2(X,

Ŷ (X)) + 1) = +∞ and that F ′
2(X, Ŷ (X)) + 1 is slowly varying at scale 1/||F ′

2(X,

Ŷ (X))| − 1|. Firstly, by Lemma 5.2 under the telescope T
ω,Ỹ (ω),1/γω

one has ◦ỹω = 0.
Secondly, we prove that the difference of two solutions which at 0 under the teles-

cope are infinitely close to 0 is of class |S|1, but not of class S1. Let x ≥ 0 be limited.
We assume first that x/γω is even. Since

dω(x + γω)+ dω(x)

γω
= dω(x)

γω

(
ϕω(x + γω)− ỹω(x + γω)

ϕω(x)− ỹω(x)
+ 1

)

, (29)

we derive from (20) and Lemma 5.4 that as long as dω(x) is limited,

dω(x + γω)+ dω(x)

γω
= dω(x)

γω
(−1 − (1 + ∅)gω + 1) = dω(x)(1 + ∅). (30)

Hence dω(x + γω) = − dω(x)(1 − (1 + ∅)γω). If x/γω is even, formula (30) implies
that

Adω(x + γω)− Adω(x)

γω
= − dω(x + γω)− dω(x)

γω
� − dω(x) = −Adω(x),
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and if x/γω is odd, also

Adω(x + γω)− Adω(x)

γω
= dω(x + γω)+ dω(x)

γω
� dω(x) = −Adω(x).

Hence by the Stroboscopy Lemma Adω(x) � e−x for such x , which also implies that
|dω(x)| is limited for all limited x . This means that every solution which under the
telescope is infinitely close to zero at x = 0 is infinitely close to zero for all limited
x ≥ 0. Then we may apply the formulae above also to Aδω , and find that for all limited
x ≥ 0

Aδω (x + γω)− Aδω (x)

γω
� −Aδω (x) � −e−x . (31)

Hence δω is of class |S|1 for all limited x ≥ 0. Notice that it follows from (31) that

δω(γω)− δω(0)

γω
� − 2

γω
+ 1,

which is unlimited. Hence δω is of not of class S1.
Thirdly, we prove that ỹω − ŷω is of class |S|1 for all limited x ≥ 0. The discrete

function ỹω − ŷω satisfies the equation

ỹω(x + γω)− ŷω(x + γω)+ ỹω(x)− ŷω(x)

=
(

fω(x, ỹω(x))− fω(x, ŷω(x))

ỹω(x)− ŷω(x)
+ 1

)

(ỹω(x)− ŷω(x))

+ fω(x, ŷω(x))− ŷω(x)

ŷω(x)(∂ fω(x, ŷω(x))/∂y + 1)
ŷω(x)(∂ fω(x, ŷω(x))/∂y + 1)+

− (ŷω(x + γω)− ŷω(x)). (32)

By Lemma 5.2 we have ŷω(x +γω)− ŷω(x) = ∅γω and ŷω(x) � 0. The latter implies
that for some β � 0

fω(x, ỹω(x))− fω(x, ŷω(x))

ỹω(x)− ŷω(x)
+ 1 = ∂ fω(x, β)

∂y
+ 1,

which by Lemma 5.4 is of the form −(1 +∅)gω. It follows also from Lemma 5.4 that
∂ fω(x, ŷω(x)/∂y + 1 = −(1 + ∅)gω. Definition 2.2.2 implies that

fω(x, ŷω(x))− ŷω(x)

ŷω(x)(∂ fω(x, ŷω(x))/∂y + 1)
� 0.

By these estimations equation (32) takes the form

ỹω(x + γω)− ŷω(x + γω)+ ỹω(x)− ŷω(x) =
−(1 + ∅)gω(ỹω(x)− ŷω(x))− (1 + ∅)gω · ∅ + ∅ · ∅(1 + ∅)gω.
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So

ỹω(x + γω)− ŷω(x + γω)+ ỹω(x)− ŷω(x)

γω
� ỹω(x)− ŷω(x) � 0, (33)

hence ỹω− ŷω is of class |S|1. Combining, we conclude that Ỹ is a weakly exponentially
attractive river of class |S|1, but not of class S1.

The proof of the converse follows the lines of the converse part of the proof of
Theorem 3.2.3. We remark first that because T

ω,Ỹ (ω),1/γω
is a telescope, one has 1/γω �

∅ω, so (26) holds. Because δω(x) is of class |S|1 in particular ◦|δω(x)| = e−x for x ≥ 0,
which implies that the steps γω of the discrete function δω must be infinitesimal. Hence
limX→∞ |F ′

2(X, Ŷ (X))| − 1 = 0. Let x ≥ 0 be limited. Then

Aδω (x + γω)− Aδω (x)

γω
� de−x

dx
= −e−x � −Aδω (x).

Hence
δω(x + γω)/δω(x) = −1 + (1 + ∅)γω. (34)

One shows as in (28) that ŷω(x) � 0. Then by (20) there exists η̄ � 0 such that
∂ fω(x, η̄)/∂y = δω(x + γω)/δω(x). Hence it follows from formula (1) and formula
(34), applied for x = 0, that ∂ fω(0, 0)/∂y = −1 + (1 + ∅)γω. Because γω � 0 and
γω > 0 we have F ′

2(ω, Ŷ (ω)) � −1, F ′
2(ω, Ŷ (ω)) > −1. From this and (26) we derive

that limX→∞ F ′
2(X, Ŷ (X)) = −1 and limX→∞ X (F ′

2(X, Ŷ (X))+1) = +∞. Finally
we prove that F ′

2(X, Ŷ (X)) + 1 is slowly varying at scale 1/||F ′
2(X, Ŷ (X))| − 1|.

Noting that ŷω(x) � 0 for all limited x ≥ 0 we derive as above from formula (20),
formula (1) and formula (34) that ∂ f (x, ŷω(x))/∂y = −1 + (1 + ∅)γω for all limited
x ≥ 0. Hence

F ′
2

(

ω + x

||F ′
2(ω, Ŷ (ω))| − 1| , Ŷ

(

ω + x

||F ′
2(ω, Ŷ (ω))| − 1|

))

+ 1

= (1 + ∅)(F ′
2(ω, Ŷ (ω))+ 1),

so F ′
2(X, Ŷ (X))+ 1 is slowly varying at scale 1/||F ′

2(X, Ŷ (X))| − 1| by formula (2).
Combining, we see that the three conditions of Theorem 3.2.4 are verified. ��

Proof of Theorem 3.2.5. The proof is similar to the proof of Theorem 3.2.3. Let r < 0
be such that limX→∞ X(F ′

2(X, Ŷ (X)) − 1) = r . Firstly, by Lemma 5.5 under the
macroscope M

ω,Ỹ (ω) one has ◦ỹω = 0.
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Secondly, we prove that δω is of class S1 for limited x ≥ 1. We may adapt slightly
the argument of the proof of Theorem 3.2.3 leading to formula (24), now using (21)
and Lemma 5.6, to obtain that as long as dω(x) is limited,

dω(x + 1/ω)− dω(x)

1/ω
= dω(x)

1/ω

(

1 + r

ωx
+ ∅
ω

− 1

)

= r

x
dω(x)+ ∅. (35)

By the Stroboscopy Lemma dω(x) � xr for such x , which implies that in fact dω(x)
is limited for all limited x ≥ 1. This means that every solution which under the
macroscope is infinitely close to zero at x = 1 is infinitely close to zero for all limited
x ≥ 1. Hence δω(x) satisfies (35) for all limited x ≥ 1, i.e.,

δω(x + 1/ω)− δω(x)

1/ω
� r

x
δω(x) � r xr−1.

This implies that δω(x) is of class S1 for all limited x ≥ 1.
Thirdly, we prove that ỹω is of class S1 for limited x ≥ 1. A slight adaptation of

the argument used in the proof of Theorem 3.2.3 leading to formula (25) yields the
estimation

ỹω(x + 1/ω)− ỹω(x)

1/ω
� r

x
ỹω(x) � 0.

Hence ỹω is of class S1 for x ≥ 1. Combining, we conclude that Ỹ is a polynomially
attractive river of class S1.

Conversely, assume under the macroscope M
ω,Ỹ (ω) one has ◦δω(x) = xr for x ≥ 1,

with r < 0. Because δω is of class S1

δω(x + 1/ω)− δω(x)

1/ω
� dxr

dx
� r

x
δω(x).

Hence
δω(1 + 1/ω) = 1 + r

ω
+ ∅
ω
. (36)

By (22) there exists θ � 0 such that ∂ fω(1, θ)/∂y = δω(1 + 1/ω). Then it fol-
lows from formula (1) and formula (34) that ∂ fω(1, 0)/∂y = 1 + r

ω
+ ∅

ω
. Hence

limX→∞ X (F ′
2(X, Ŷ (X))− 1) = r . ��

Proof of Theorem 3.2.6. We follow the lines of the proof of Theorem 3.2.4, adapting
it as has been done in the proof of Theorem 3.2.5. Assume limX→∞ X (F ′

2(X, Ŷ (X))+
1) = −r with r > 0.

Firstly, by Lemma 5.5 under the macroscope M
ω,Ỹ (ω) one has ◦ỹω = 0.

Secondly, in order to prove that the difference of two solutions which at 1 under
the macroscope are infinitely close to 0 is of class |S|1, but not of class S1, by an
appropriate adaptation of the argument in the proof of Theorem 3.2.4 leading to (31)
one obtains for limited x ≥ 1 that Aδω (x) � x−r and

Aδω (x + 1/ω)− Aδω (x)

1/ω
� r

x
Aδω (x) � r x−r−1. (37)
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This implies that δω(x) is of class |S|1 for all limited x ≥ 1. Notice that it follows
from (37) that

δω(1 + 1/ω)− δω(1)

1/ω
� −2ω + r,

which is unlimited. Hence δω is of not of class S1.
Thirdly, we prove that ỹω− ŷω is of class |S|1 for limited x ≥ 1. A slight adaptation

of the argument in the proof of Theorem 3.2.4 leading to (33) shows that

ỹω(x + 1/ω)− ŷω(x + 1/ω)+ ỹω(x)− ŷω(x)

1/ω
� r

x
(ỹω(x)− ŷω(x)) � 0,

hence ỹω(x)− ŷω(x) is of class |S|1 for limited x ≥ 1. Combining, we conclude that
Ỹ is a polynomially attractive river of class |S|1.

Conversely, assume under the macroscope M
ω,Ỹ (ω) one has ◦|δω(x)| = x−r for

x ≥ 1, with r > 0. Because δω is of class |S|1,

Aδω (x + 1/ω)− Aδω (x)

1/ω
� dx−r

dx
� − r

x
Aδω (x).

Hence
δω(1 + 1/ω)

1/ω
= −1 + r

ω
+ ∅
ω
. (38)

By (22) there exists η � 0 such that ∂ fω(1, η)/∂y = δω(1 + 1/ω). Then it follows
from formula (1) and formula (38) that ∂ fω(1, 0)/∂y = (1 + ∅) (δω(1 + 1/ω)) =
−1 + r

ω
+ ∅

ω
. Hence limX→∞ X (F ′

2(X, Ŷ (X))+ 1) = r . ��

Finally we consider the proof of Theorem 3.4. We prove first a lemma.

Lemma 6.1 Let (D) be a standard difference equation, Ŷ be a standard approximate
solution and Ỹ be a standard solution asymptotic to Ŷ . Then there exist standard
A0, B0 with B0 > 0 such that (|F ′

2(X,Y )| − 1)/(|F ′
2(X, Ỹ (X))| − 1) is appreciable

on {V ≡ (X,Y ) | X ≥ A0, (1 − B0)Ỹ (X) ≤ Y ≤ (1 + B0)Ỹ (X)}.

Proof We may apply (1) to Ỹ as well as to Ŷ and weaken it to obtain that (|F ′
2(X,Y )|

− 1)/(|F ′
2(X, Ỹ (X))| − 1) = @ for all X � ∞ and Y such that Y/Ỹ (X) � 1.

Applying permanence in the same manner as in the proof of Theorem 4.3 we derive
that (|F ′

2(X,Y )| − 1)/(|F ′
2(X, Ỹ (X))| − 1) = @ on some set standard set V of the

above form. ��

Proof of Theorem 3.4. Firstly, we prove that Ỹ is a drain if and only if there exists
some standard C such that

∑
X≥C |F ′

2(X, Ŷ (X))| − 1 converges.

Assume the latter property holds. Now |F ′
2(X, Ŷ (X))| > 1 for all X � ∞ or

|F ′
2(X, Ŷ (X))| < 1 for all X � ∞ by Definition 2.2.1. So

∑
X≥C γX converges.

123



Asymptotics of families of solutions of nonlinear difference equations 179

Then γX � 0 for all X � ∞. Let ω, ξ � ∞ with ξ > ω. Consider the product∏
ω≤X<ξ 1 + £γX . We have

∏

ω≤X<ξ

1 + £γX = exp
∑

ω≤X<ξ

log(1 + £γX ) = exp £
∑

ω≤X<ξ

γX = exp ∅ = 1 + ∅.

(39)
By Definition 2.2.3 we have Ŷ (X + 1)/Ŷ (X) = 1 + ∅γX , so by (39)

Ŷ (ξ)

Ŷ (ω)
=

∏

ω≤X<ξ

Ŷ (X + 1)

Ŷ (X)
=

∏

ω≤X<ξ

1 + ∅γX = 1 + ∅.

Because Ŷ is standard we derive from the nonstandard characterization of the conver-
gence of Cauchy sequences that limX→∞ Ŷ (X) = D for some (standard) D 
= 0.
Then also limX→∞ Ỹ (X) = D.

Let B0 be as in the above lemma. Let Ȳ be another solution such that
|Ȳ (ω) − Ỹ (ω)| ≤ B0/2. We show that |Ȳ (X) − Ỹ (X)| � |Ȳ (ω) − Ỹ (ω)| for all
X � ∞. Assume X ≥ ω is such that still |Ȳ (X) − Ỹ (X)| ≤ B0. By (19) and the
lemma, for all Z with ω ≤ Z ≤ X

∣
∣
∣
∣
∣

Ȳ (Z + 1)− Ỹ (Z + 1)

Ȳ (Z)− Ỹ (Z)

∣
∣
∣
∣
∣
= 1 + @γZ .

By (39) in fact |Ȳ (X + 1) − Ỹ (X + 1)| = (1 + ∅)|Ȳ (ω) − Ỹ (ω)|. Then
|Ȳ (X) − Ỹ (X)| � |Ȳ (ω) − Ỹ (ω)| for all X ≥ ω by nested induction [6, Lemma
3.1]. This implies that |Ȳ (X)− Ỹ (X)| � |Ȳ (ω)− Ỹ (ω)| also for all X � ∞, X < ω

as long as |Ȳ (X)− Ỹ (X)| ≤ B0/2, if not the above argument applied to X and ω > X
yields |Ȳ (ω) − Ỹ (ω)| � |Ȳ (X) − Ỹ (X)| 
� |Ȳ (ω) − Ỹ (ω)|. If we take Ȳ such that
Ȳ (ω) � Ỹ (ω), we see that Ỹ is a drain; indeed for all X � ∞ the near-equality
Ȳ (X) � Ỹ (X) implies Ȳ (X)/Ỹ (X) � 1, since Ỹ (X) � D 
� 0.

Conversely, let ω � ∞ and Ȳ be a solution such that Ȳ (ω) 
= Ỹ (ω), with
Ȳ (ω)/Ỹ (ω) � 1. Let ξ > ω be arbitrary. By (19) and (1), for all X with ξ ≤ X < ω

1 �
∣
∣
∣
∣
∣

Ȳ (X + 1)− Ỹ (X + 1)

Ȳ (X)− Ỹ (X)

∣
∣
∣
∣
∣
= 1 + (1 + ∅)gX .

So gX � 0 for all X with ξ ≤ X < ω. Also

1 �
∣
∣
∣
∣
∣

Ȳ (ξ)− Ỹ (ξ)

Ȳ (ω)− Ỹ (ω)

∣
∣
∣
∣
∣
=

∏

ω≤X<ξ

1 + (1 + ∅)gX = exp(1 + ∅)
∑

ω≤X<ξ

gX .

Then
∑
ω≤X<ξ gX � 0 and by the nonstandard version of the Cauchy characterization

of convergence
∑

X≥C gX converges for some standard C .
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In order to prove that the drain Ỹ is of class S1 if and only if limX→∞ X (F ′
2(X,

Ŷ (X)) − 1) = 0 one may adapt in an obvious way the corresponding part of the
proof of Theorem 3.2.5 to the case r = 0; note that if limX→∞ X (F ′

2(X, Ŷ (X))

− 1) = 0, the sum
∑

X≥C gX is transformed into
∑

X≥C (F
′
2(X, Ŷ (X)) − 1), which

thus converges. Similarly, in order to prove that the drain Ỹ is of class |S|1, but not
of class S1, if and only if limX→∞ X (F ′

2(X, Ŷ (X)) + 1) = 0, one may adapt in an
obvious way the corresponding part of the proof of Theorem 3.2.6 to the case r = 0;
finally, if limX→∞ X (F ′

2(X, Ŷ (X))+ 1) = 0, the convergence of
∑

X≥C gX implies

the convergence of
∑

X≥C (F
′
2(X, Ŷ (X))+ 1). ��

7 Further remarks

7.1 Examples of rivers of quadratic equations

In [7] some quadratic equations were solved for approximate solutions and solutions
asymptotic to them. We investigate here the nature of these solutions.

Example 7.1 Consider the equation

Y (X + 1) = Y (X)2 − Xa . (40)

1. a > 0. The sequences Ŷ1(X) = Xa/2 and Ŷ2(X)= − Xa/2 are solutions of the
associated asymptotic functional equation (A). By the Existence Theorem the equation
(40) has a solution Ỹ1(X) ∼ Xa/2 for X → ∞ and a solution Ỹ2(X) ∼ −Xa/2 for
X → ∞. One has F ′

2(X, Ŷ1(X)) = 2Xa/2 and F ′
2(X, Ŷ2(X)) = −2Xa/2. Hence both

solutions are strongly repulsive rivers.
2. a < 0. The sequences Ŷ1(X) = 1 and Ŷ2(X) = −Xa are solutions of the

associated asymptotic functional equation (A). By the Existence Theorem the equation
(40) has a solution Ỹ1(X) with limX→∞ Ỹ1(X) = 1 and a solution Ỹ2(X) ∼ −Xa for
X → ∞. One has F ′

2(X, Ŷ1(X)) = 2, so Ỹ1 is a moderately repulsive river. Further
F ′

2(X, Ŷ2(X)) = −2Xa . Hence Ỹ2 is a strongly attractive river.

Example 7.2 Consider the equation

Y (X + 1) = Y (X)2 + Y (X)− Xa . (41)

The sequences Ŷ1(X) = Xa/2 and Ŷ2(X) = −Xa/2 are obvious solutions of the
associated asymptotic functional equation (A). We have F ′

2(X, Ŷ1(X)) = 2Xa/2 + 1
and F ′

2(X, Ŷ2(X)) = −2Xa/2 + 1. Also, if i = 1, 2,

Ŷi (X + 1)− Ŷi (X)

Ŷi (X)
∼ a

2X
for X → ∞.
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We investigate first the cases where Ŷ1 or Ŷ2 are not approximate solutions. First,

Ŷi (X + 1)− Ŷi (X)

Ŷi (X)
= o(|F ′

2(X, Ŷi (X))| − 1) for X → ∞

only for a > −2, so Ŷ1 or Ŷ2 are not approximate solutions for a ≤ −2. Applying
the macroscope Mω,ωa/2 it has been shown in [7] that indeed there are no solutions

asymptotic to ±Xa/2 for X → ∞. For a = 0, one has Ŷ2(X) = −1. Because
F ′

2 (X,−1) = 1, the sequence Ŷ2 is not an approximate solution, though it is obviously
a true solution for X ≥ 1.

Let a > −2. Then we distinguish the following three cases.
1. −2 < a < 0. The equation (41) has a weakly exponentially repulsive river

Ỹ1(X) ∼ Xa/2 for X → ∞ of class S1 and a weakly exponentially attractive river
Ỹ2(X) ∼ −Xa/2 for X → ∞ of class S1.

2. a = 0. The solution Ỹ1 = 1 is a moderate repulsive river. The fact that
F ′

2 (X,−1) = 1 suggests that there is little contraction very close to the solution
Ỹ2 = −1, still Ỹ2 = −1 is not a drain. Indeed, let Y be a solution and put D = Y + 1.
Let X ≥ 1. Then D satisfies D(X+1) = D(X)(D(X)−1) and D(X+2) = D(X)(1−
2D(X)2 (1 − D(X)/2)). Assume 0 < D(X) ≤ 1

2 . Clearly 0 < D(X + 2) < D(X),
so by induction 0 < D(X + 2N ) ≤ 1

2 for all N ∈ N. For such N

D(X + 2N )

D(X)
≤

∏

0≤K<N

(

1 − 3

2
D(X + K )2

)

. (42)

If N � ∞ and D(X + K ) � 0 for all K with 0 ≤ K ≤ N , formula (42) implies that
D(X+2N )

D(X) � 0, a contradiction. This implies that D(X + N ) � 0 whenever N � ∞.

For X � ∞, one thus concludes that Ỹ2 is not a drain. Applied to standard X , one
concludes in fact that Ỹ2 is asymptotically stable.

3. a > 0. There are strongly repulsive rivers Ỹ1(X) ∼ Xa/2 for X → ∞ and
Ỹ2(X) ∼ −Xa/2 for X → ∞.

7.2 A special class of drains

If a solution Ỹ is a drain, on HỸ one observes a sort of almost parallelness, i.e., if

limX→∞ X (|F ′
2(X, Ŷ (X))| − 1) = 0, every solution Ȳ which enters HỸ satisfies

Ȳ (X) � Ỹ (X) for all X � ∞. On a microlevel we may still have attraction or
repulsion. We investigate here the natural case where |F ′

2(X, Ŷ (X))| − 1 ∼ c/Xs for
X → ∞, where c 
= 0, s > 1.

Proposition 7.3 Let (D) be a standard difference equation and Ŷ be a standard
approximate solution. Assume for some (standard) s > 1 and c 
= 0

|F ′
2(X, Ŷ (X))| − 1 ∼ c/Xs for X → ∞.
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Let Ỹ be a standard solution asymptotic to Ŷ (i.e., with the same limit as Ŷ , since
lim Ŷ (X) 
= 0). Let ω � ∞ and �,� be two solutions such that �(ω)/Ỹ (ω) �
�(ω)/Ỹ (ω) � 1 (i.e., such that �(ω) � �(ω) � Ỹ (ω), since Ỹ (ω) is appreciable).
Let x ≥ 1 be limited. Then

∣
∣
∣
∣
�(ωx)−�(ωx)

�(ω)−�(ω)

∣
∣
∣
∣ = 1 + c + ∅

s − 1

(

1 − 1

xs−1

)

· 1

ωs−1 . (43)

Proof Let 1 ≤ ξ < x be such that ωξ ∈ N. Applying formulae (19) and (1) we find

∣
∣
∣
∣
�(ωξ + 1)−�(ωξ + 1)

�(ωξ)−�(ωξ)

∣
∣
∣
∣ = (|F ′

2(ωξ, (1 + ∅)Ŷ (ωξ))| − 1)+ 1

= (1 + ∅)(|F ′
2(ωξ, Ŷ (ωξ))| − 1)+ 1

= 1 + c + ∅
ξ s

· 1

ωs
.

Hence
∣
∣
∣
∣
�(ωx)−�(ωx)

�(ω)−�(ω)

∣
∣
∣
∣ =

∏

1≤ξ<x

∣
∣
∣
∣
�(ωξ + 1)−�(ωξ + 1)

�(ωξ)−�(ωξ)

∣
∣
∣
∣

=
∏

1≤ξ<x

1 + c + ∅
ξ s

· 1

ωs

= exp
c + ∅
ωs−1

∑

1≤ξ<x

1

ξ s
· 1

ω

= exp
c + ∅
ωs−1

x∫

1

1

us
du

= 1 + c + ∅
s − 1

(

1 − 1

xs−1

)

· 1

ωs−1 .

��
It is not difficult to show that formula (43) holds also for unlimited x , otherwise

said, if ω,ω′ � ∞ are such that ω′/ω � ∞,

∣
∣
∣
∣
�(ω′)−�(ω′)
�(ω)−�(ω)

∣
∣
∣
∣ = 1 + c + ∅

s − 1
· 1

ωs−1 . (44)

7.3 Moving backwards under telescopes and macroscopes

In Definition 2.9.1–3, strong, moderate and exponentially weak rivers Ỹ are defined by
specifying the behaviour of Ỹ and neighbouring solutions on the asymptotic halo HỸ

123



Asymptotics of families of solutions of nonlinear difference equations 183

of Ỹ as viewed by appropriate telescopes T
ω,Ỹ ,L(ω), but exclusively for positive limited

arguments x . These behaviours are characterized by properties of the partial derivative
in the second variable of the function F which defines the difference equation. In fact
these behaviours extend to negative limited values of x , as long as we confine ourselves
to solutions which for all limited x belong to HỸ . This follows easily by recentering
the telescope from (ω, Ỹ (ω)) to (ω+ L(ω)x, Ỹ (ω+ L(ω)x)), and by the Uniqueness
Lemma 4.3 (with the exception of strong attraction, where uniqueness is not needed).
For instance, under the conditions of Theorem 3.2.2 formula (11) holds for positive
and negative limited x , just as formula (12) holds for all limited x under the conditions
of Theorem 3.2.3.

A similar remark may be made for polynomial behaviour and drain behaviour under
macroscopes for positive appreciable x < 1.

7.4 The river and the asymptotic functional equation

Rivers and drains Ỹ may be found in practice by solving the asymptotic functional
equation (A), i.e.,

lim
X→∞

F(X, Ŷ (X))− Ŷ (X)

Ŷ (X)(|F ′
2(X, Ŷ (X))| − 1)

= 0

The standard solutions Ỹ may or may not satisfy this equation. Indeed, let ω � ∞.
When applied to Ỹ at ω, equation (A) is equivalent to

Ỹ (ω + 1)− Ỹ (ω)

Ỹ (ω)
= ∅ · (|F ′

2(ω, Ỹ (ω))| − 1). (45)

If Ỹ is a strong or moderate river, one has (Ỹ (ω + 1) − Ỹ (ω))/Ỹ (ω) � 0, while
|F ′

2(ω, Ỹ (ω))| − 1 
� 0, hence (45) is satisfied. If Ỹ is a weakly exponential river of
class S1, the equation (45) is also satisfied since, when transformed by the telescope
T
ω,Ỹ (ω),1/γω

, it expresses near-differentiability in 0, i.e.,

ỹω(γω)− ỹω(0)

γω
� 0.

This means that (45) is satisfied if F ′
2(ω, Ỹ (ω)) is positive. But rivers need not be

S-differentiable under telescopes, an example is given by equation (17) with a standard
and 0 < a < 1. We have γω = 1/ωa � 0, while Ỹ (X) = 1 + (−1)X/Xa satisfies

ỹω(γω)− ỹω(0)

γω
= (−1)ω+1 · 2.
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With a = 1 we have thus an example of a polynomial attractive river which does not
satisfy equation (45). Note however that if one admits two steps for Ỹ instead of one,
equation (45) is satisfied, i.e., we always have

Ỹ (ω + 2)− Ỹ (ω)

Ỹ (ω)
= ∅ · (|F ′

2(ω, Ỹ (ω))| − 1). (46)

In case F ′
2(ω, Ỹ (ω)) > 0, the formula follows from the fact that ỹω is of class S1

under T
ω,Ỹ (ω),1/γω

, respectively M
ω,Ỹ (ω), and formula (5). In case F ′

2(ω, Ỹ (ω)) < 0,
we use the equality

Ỹ (ω + 2)− Ỹ (ω)

Ỹ (ω)
= (Ỹ (ω + 2)− Ŷ (ω + 2))− (Ỹ (ω)− Ŷ (ω))

Ỹ (ω)
(47)

+ Ŷ (ω + 2)− Ŷ (ω)

Ỹ (ω)
.

Now (Ŷ (ω + 2)− Ŷ (ω))/Ỹ (ω) = ∅ · (|F ′
2(ω, Ỹ (ω))| − 1) because ŷω is of class S1

under T
ω,Ỹ (ω),1/γω

, respectively M
ω,Ỹ (ω), and by formula (6), and ((Ỹ (ω+2)− Ŷ (ω+

2))− (Ỹ (ω)− Ŷ (ω)))/Ỹ (ω) = ∅ · (|F ′
2(ω, Ỹ (ω))| − 1) because ỹω − ŷω is of class

|S|1 under T
ω,Ỹ (ω),1/γω

, respectively M
ω,Ỹ (ω), and by formula (6) or formula (7).

The formulae (45) and (46) have obvious geometric interpretations. Let � be a
solution such that �(ω)/Ỹ (ω) � 1 and �(ω) 
= Ỹ (ω). Put � = � − Ỹ . Applying
(19) and (1) we see that (45) expresses that

Ỹ (ω + 1)− Ỹ (ω)

Ỹ (ω)
= ∅ · |�(ω + 1)| − |�(ω)|

|�(ω)| ,

i.e., slow evolution of the individual solution Ỹ with respect to the deviation of any
solution within its asymptotic halo. In the nonalternating case verified for one step, by
(46) it is true for all considered cases when we allow for two steps of the solution Ỹ .

Acknowledgment I thank B.L.J Braaksma for stimulating discussions and several invitations to the
University of Groningen.
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