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Decomposition of terms in Lucas sequences

ABDELMADJID BOUDAOUD

Let P , Q be non-zero integers such that D = P2 − 4Q is different from zero. The
sequences of integers defined by{

Un = PUn−1 − QUn−2; U0 = 0, U1 = 1;
Vn = PVn−1 − QVn−2; V0 = 2, V1 = P.

are called the Lucas sequences associated to the pair (P,Q) [6,7]. In this paper
we prove the following result: If P, Q are such that D is strictly positive, then,
for unlimited n , each of the integers Un and Vn differs by a limited integer from a
product of two unlimited integers.
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1 Introduction

Let N be any large integer. Proceeding directly to the factorization of N is not an
easy task, even unfeasible unless N belongs to a particular family of integers. Then
to surmount this major difficulty we might choose to ask about the factorization of
an integer in a small neighborhood of N instead of N . This is expressed through the
following question: Is there a small integer s such that N = s + µϑ, where µ and ϑ
are two large integers ?

The fact that the integer N − s is a product of two large integers, gives an idea of its
factorization. In the existing literature, the decomposition of integers is an immense
problem which has been posed in several ways and treated by different methods (for
example [1, 3, 8]).

This idea originated in [2], where we chose to work in the framework of nonstandard
analysis [4, 5] to be able to give sense to the words "small", "large", ... and the
question has the formulation: Is every unlimited integer the sum of a limited integer
and a product of two unlimited integers ? To give a partial answer we provided some
examples [2] and we devote the present work to another example concerning Lucas
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sequences. In the final section we give the classical equivalence of the result obtained
and a general remark.

We start with a brief overview of Lucas sequences associated to a pair of integers [6].
Let P, Q be non-zero integers. Consider the polynomial p (x) = x2 − Px + Q; its
discriminant is D = P2 − 4Q and the roots are

(1–1) α =
P +
√

D
2

, β =
P−
√

D
2

.

Suppose that P and Q are such that D 6= 0. The sequences of integers

(1–2)

 Un (P,Q) =
αn − βn

α− β
with U0 (P,Q) = 0 and U1 (P,Q) = 1

Vn (P,Q) = αn + βn with V0 (P,Q) = 2 and V1 (P,Q) = P

are called the Lucas sequences associated to the pair (P,Q). We will note by Un (resp.
Vn ) the element Un (P,Q) (resp. Vn (P,Q)).

It can be proved that for n ≥ 2

(1–3)
Un = PUn−1 − QUn−2; U0 = 0, U1 = 1,
Vn = PVn−1 − QVn−2; V0 = 2, V1 = P .

In the particular case (P,Q) = (1,−1), the sequence (Un)n≥0 begins 0, 1, 1, 2, 3, 5, 8,13
... and was first considered by Fibonacci. The companion sequence of the Fibonacci
numbers, still with (P,Q) = (1,−1), is the sequence of Lucas numbers (Vn)n≥0 and it
begins 2, 1, 3, 4, 7, 11, 18 ... .

We give here some known results [6, 7]

(1–4) V2n = (Vn)2 − 2Qn.

Let p be a prime integer, then

(1–5)

 Up =
(

D
p

)
mod (p) for p ≥ 3,

Vp = P mod (p) for p ≥ 2,

where
(

D
p

)
represents the Legendre symbol which is, according to the relation

between p and D, one of the values −1, 0, +1. In addition, if n, k ≥ 1, then

(1–6) Un | Unk for all k, Vn | Vnk if k is odd.

Moreover

(1–7)
{

Un (−P,Q) = (−1)n−1 Un (P,Q) ,
Vn (−P,Q) = (−1)n Vn (P,Q) .

Journal of Logic & Analysis 1:4 (2009)



Decomposition of terms in Lucas sequences 3

Fermat’s Little Theorem. If p is a prime number and if a is an integer, then

(1–8) ap ≡ a [p] .

In particular, if p does not divide a then ap−1 ≡ 1 [p].

External recurrence principle [4]. For all internal or external formula F (n), we have

(1–9)
[
F (0) and ∀stn (F (n) =⇒ F (n + 1))

]
=⇒ ∀stn F (n) .

Notations. Let x , y be real numbers (not necessarily integers) .

(i) x ≈ 0 ( resp. x ≈ +∞) denotes that x is infinitesimal ( resp. x is positive
unlimited). We have an analogous definition for x ≈ −∞.

(ii) x and y are called infinitely close, denoted by x ≈ y, if x− y ≈ 0.

(iii) We say that x is appreciable if it is neither unlimited nor infinitesimal.

(iv) The inequality x � y means that x > y and x 6≈ y. We have an analogous
definition for �.

(v) The Greek letter φ is used for an infinitesimal strictly positive. Two occurrences
of φ are not necessarily equal.

(vi) P represents the set of all prime integers.

2 Main result

Theorem 2.1 If P, Q are such that D > 0, then, for unlimited n, each of the integers
Un and Vn differs by a limited integer from a product of two unlimited integers.

Let P and Q be such that D > 0 and let n ≈ +∞. We put λ =
P√
D

. In order to

prove the main result we need the following lemmas.

Lemma 2.2 (a) α 6= β , max
(
|α| , |β|

)
� 1 and

(2–1)
β

α
=
λ− 1
λ+ 1

.

(b) If P > 0, then

(i) |α| > |β|,

(ii) 1− β

α
is positive infinitesimal ⇐⇒ λ ≈ +∞,
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(iii) 1 +
β

α
is positive infinitesimal ⇐⇒ λ is positive infinitesimal,

(iv)
β

α
6≈ ±1 if and only if λ is appreciable and positive.

(c) If P < 0,

(i) |α| < |β|,
(ii) 1− α

β
is positive infinitesimal ⇐⇒ λ ≈ −∞,

(iii) 1 +
α

β
is positive infinitesimal ⇐⇒ λ is negative infinitesimal,

(iv)
α

β
6≈ ±1 if and only if λ is appreciable and negative.

Proof (a) α 6= β because α =
P +
√

D
2

and β =
P−
√

D
2

. The following are the
possible cases.

(i) P > 1. In this case α � 1.

(ii) P = 1. In this case Q must be strictly negative and therefore α � 1.

(iii) P = −1. In this case Q must be strictly negative and therefore |β| � 1.

(iv) P < −1. In this case |β| � 1.

Hence
max

(
|α| , |β|

)
� 1.

By (1.1),
β

α
=
λ− 1
λ+ 1

.

(b) If P > 0, then it is immediate that |α| > |β|. Furthermore, λ > 0 and the

remainder of the proof can be deduced from the graph of the function
β

α
(λ) =

λ− 1
λ+ 1

which is strictly increasing from [0,+∞[ onto [−1, 1[, where lim
λ−→0+

β

α
(λ) = −1 and

lim
λ−→+∞

β

α
(λ) = 1.

(c) This is similar to (b).

Remark. By (1–7) we need to prove the following lemmas only for P > 0 in which
case α is positive and according to Lemma 2.2 α > |β|. Consequently α � 1.

Lemma 2.3 Each of |Un| and |Vn| is of the form ωn, where ω is unlimited ( ω is not
necessarily the same in each case).
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Proof By (1–2)

(2–2)

 Un = αn−1

(
1−

(
β/α

)n

1−
(
β/α

) ),

Vn = αn
(
1 +

(
β/α

)n) .

We divide the proof into three cases.

(A)
β

α
= 1−φ. Then 0 <

(
β/α

)n
< β/α < 1. Hence 1−

(
β/α

)n
> 1−

(
β/α

)
> 0.

By (2–2) it follows Un = αn−1c with c > 1 and therefore Un = ωn, where ω ≈ +∞.
Also Vn = αnd with d > 1 and consequently Vn = ωn, where ω ≈ +∞.

(B)
β

α
= −1 +φ. According to Lemma 2.2, λ is positive infinitesimal. There are two

subcases.

(1) n is odd. By (2–2)

Un = αn−1
(

1− (−1 + φ)n

1− (−1 + φ)

)
= αn−1

(
1 + (1− φ)n)

2− φ
= αn−1a,

where a is appreciable and positive. Therefore Un = ωn, where ω ≈ +∞. Concerning

Vn by (2–1) and (2–2), Vn = αn
(

1 +
(
λ− 1
λ+ 1

)n)
. Hence

Vn = αn
(

1−
(

1− λ
λ+ 1

)n)
> αn

(
1− 1

(λ+ 1)n

)

and then Vn > αn nλ
(λ+ 1)n which implies

Vn

n
> αn λ

(λ+ 1)n . Moreover
λ

(λ+ 1)nα
n ≈

+∞, indeed replacing α by
P +
√

D
2

we get

λ

(λ+ 1)nα
n =

λ

(λ+ 1)n (1 + λ)n
(√

D
2

)n

=
P
2

(√
D

2

)n−1

,

where
P
2

(√
D

2

)n−1

≈ +∞ because
√

D ≈ +∞. Therefore Vn is of the form ωn,

where ω ≈ +∞.
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(2) n is even. By (2–2)

Un = αn−1

(
1−

(
β/α

)n

1−
(
β/α

) ) =
αn−1

2− φ
(
1−

(
β/α

)n)
=

αn−1

a

(
1−

(
β/α

)n)
,

where a = 2− φ is appreciable. By (2–1),
β

α
=
λ− 1
λ+ 1

where λ is positive infinitesi-

mal, and since n is even,

Un =
αn−1

a

(
1−

(
1− λ
λ+ 1

)n)
.

From
1

(λ+ 1)n >

(
1− λ
λ+ 1

)n

it follows that 0 < 1 − 1
(λ+ 1)n < 1 −

(
1− λ
λ+ 1

)n

,

hence Un >
αn−1

a

(
1− 1

(λ+ 1)n

)
and then Un >

αn−1

a
nλ

(λ+ 1)n . So

Un

n
>
αn−1

a
λ

(λ+ 1)n .

Replacing α (resp. λ) by
P +
√

D
2

(resp.
P√
D

), we get

αn−1

a
λ

(λ+ 1)n =

(√
D
)n−2

P
2n−1a (1 + λ)

.

Finally, from D ≈ +∞, λ ≈ 0 and a is appreciable we obtain
αn−1

a
λ

(λ+ 1)n ≈ +∞

and it follows that
Un

n
≈ +∞. Therefore Un = ωn, where ω ≈ +∞.

Concerning Vn , the fact that

Vn = αn
(

1 +
(
β

α

)n)
= αn (1 + (−1 + φ)n)

implies Vn = ωn with ω ≈ +∞ because
(
1 + (−1 + φ)n) > 1.

(C)
β

α
6≈ ±1: By (2–2), Un = αn−1

(
1−

(
β/α

)n

1−
(
β/α

) ) hence Un = αn−1a, where a

is appreciable. Therefore Un = ωn, where ω ≈ +∞. Vn = αn
(

1 +
(
β

α

)n)
=

αna where a is appreciable, therefore Vn = ωn with ω ≈ +∞, and the proof is
complete.
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Lemma 2.4 If n is of the form n1n2 with n1 > 1 and n2 > 1, then
|Un1n2 |
|Un1 |

and

|Vn1n2 |
|Vn1 |

are unlimited.

Proof Since n ≈ +∞, at least one of n1 and n2 is unlimited. By (1–2)

(2–3)


Un1n2

Un1

=
αn1n2

αn1

(
1− (β /α )n1n2

1− (β /α )n1

)
,

Vn1n2

Vn1

=
αn1n2

αn1

(
1 + (β /α )n1n2

1 + (β /α )n1

)
.

We have three cases.

(A)
β

α
= 1− φ. By (2–3) and the fact that 1−

(
β

α

)n1n2

> 1−
(
β

α

)n1

> 0 we have

Un1n2

Un1

= αn1(n2−1)c = αn−n1c,

where c > 1. Since (n− n1) ≈ +∞ then
Un1n2

Un1

≈ +∞. Also by (2–3),
Vn1n2

Vn1

=

αn1(n2−1)c = αn−n1c, where c is positive and appreciable. From the fact that (n− n1) ≈
+∞ we have

Vn1n2

Vn1

≈ +∞.

(B)
β

α
= −1+φ. By Lemma 2.2, λ is positive infinitesimal. There are three subcases.

(1) n1 is even. Then n1n2 is even and
Un1n2

Un1

= αn1(n2−1)c with c > 1 because

1 −
(
β

α

)n1n2

> 1 −
(
β

α

)n1

> 0. Hence
Un1n2

Un1

≈ +∞. Concerning Vn we have

Vn1n2

Vn1

=
αn1n2

αn1

(
1 +

(
β/α

)n1n2

1 +
(
β/α

)n1

)
. Since n1 and n1n2 are even and −1 < β/α < 0,

then
Vn1n2

Vn1

=
αn1n2

αn1
c

= αn1(n2−1)c ≈ +∞
because c is positive and appreciable and αn1(n2−1) ≈ +∞.

(2) n1 and n2 are both odd. From
Un1n2

Un1

= αn1(n2−1)

(
1− (−1 + φ)n1n2

)(
1− (−1 + φ)n1

) we have

Un1n2

Un1

= αn1(n2−1)

(
1 + (1− φ)n1n2

)(
1 + (1− φ)n1

)
= αn1(n2−1)a ≈ +∞
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because a is positive and appreciable. Also

Vn1n2

Vn1

= αn1(n2−1)

(
1 + (−1 + φ)n1n2

)(
1 + (−1 + φ)n1

)
= αn1(n2−1)

(
1− (1− φ)n1n2

)(
1− (1− φ)n1

)
Since 1 − (1− φ)n1n2 > 1 − (1− φ)n1 > 0, then

Vn1n2

Vn1

= αn1(n2−1)c with c ≥ 1

which implies
Vn1n2

Vn1

≈ +∞ because αn1(n2−1) ≈ +∞.

(3) n1 is odd, n2 is even. Then
Un1n2

Un1

=
αn1(n2−1)

a

(
1−

(
β

α

)n1n2
)

, where

a =
(

1−
(
β

α

)n1
)

is appreciable and strictly positive because −1 <
(
β

α

)n1

< 0.

Since λ is positive infinitesimal and
β

α
=
λ− 1
λ+ 1

then

Un1n2

Un1

=
αn1(n2−1)

a

(
1−

(
1− λ
1 + λ

)n1n2
)
.

Now
αn1(n2−1)

a

(
1−

(
1− λ
1 + λ

)n1n2
)

>
αn1(n2−1)

a

(
1− 1

(1 + λ)n1n2

)
>

αn1(n2−1)

a
n1n2λ

(1 + λ)n1n2
.

Replacing λ by
P√
D

, we get

αn1(n2−1)

a
n1n2λ

(1 + λ)n1n2
=

n1n2P
(√

D
)n1n2−1

αn1a.2n1n2

which implies
αn1(n2−1)

a
n1n2λ

(1 + λ)n1n2
≥

n1n2P
(√

D
)n1n2−n1−1

a.2n1n2

because α <
√

D. Since
√

D > 23 ,

n1n2P
(√

D
)n1n2−n1−1

a.2n1n2
≥ n1n2P.2n1(2n2−3)−3

a
.

Therefore
αn1(n2−1)

a
n1n2λ

(1 + λ)n1n2
≥ n1n2P.2n1(2n2−3)−3

a
≈ +∞
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and then
Un1n2

Un1

≈ +∞.

Concerning
Vn1n2

Vn1

, we have
Vn1n2

Vn1

= αn1(n2−1)

(
1 + (1− φ)n1n2

)(
1− (1− φ)n1

) . The facts that 1 +

(1− φ)n1n2 is appreciable, 1− (1− φ)n1 ∈ ]0, 1[ and αn1(n2−1) ≈ +∞ lead to
Vn1n2

Vn1

≈
+∞.

(C)
β

α
6≈ ±1. The fact that

Un1n2

Un1

= αn1(n2−1)a,
Vn1n2

Vn1

= αn1(n2−1)b, where

αn1(n2−1) ≈ +∞, a and b are appreciable and positive mean that
Un1n2

Un1

≈ +∞

and
Vn1n2

Vn1

≈ +∞ which finishes the proof.

Lemma 2.5 For every i ≥ 2, |Ui| < |Ui+1| & |Vi| < |Vi+1|.

Proof Let i ≥ 2. We have three cases.

(A)
β

α
= 1 − φ. By Lemma 2.2, λ ≈ +∞ and then α ≈ +∞. Now

Ui+1

Ui
=

αi+1 − βi+1

αi − βi = α

(
1− ri+1

)
(1− ri)

, where r =
β

α
= 1−φ. Since 1− ri+1 > 1− ri > 0 and

α ≈ +∞, then
Ui+1

Ui
> 1. Also we have

Vi+1

Vi
= α

(
1 + ri+1

)
(1 + ri)

. Since

(
1 + ri+1

)
(1 + ri)

is

appreciable and α ≈ +∞, then
Vi+1

Vi
≈ +∞. That is,

Vi+1

Vi
> 1.

(B)
β

α
= −1 + φ. By Lemma 2.2, λ is positive infinitesimal. Since P is supposed

positive and λ is positive infinitesimal, we directly get Q ≈ −∞. Therefore, from
Q < 0, we obtain 0 < U2 < U3 < U4 < ... . Similarly, 0 < V2 < V3 < V4 < ... .

(C)
β

α
6≈ ±1. According to Lemma 2.2, λ is appreciable and strictly positive.

Ui+1

Ui
= α

(
1− ri+1

)
(1− ri)

with r =
β

α
=
λ− 1
λ+ 1

, where λ is different from 1 because

otherwise Q = 0. We divide the rest of the proof into the following cases.

(1) λ ∈ ]0, 1[. Then 0 <
P√

P2 − 4Q
< 1 and consequently Q < 0. Hence, as

in the case B) of this lemma, we have 0 < U2 < U3 < U4 < ... and 0 < V2 < V3 <

V4 < ... .
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(2) λ > 1. Then r is appreciable and positive and r < 1. Since
Ui+1

Ui
=

α

(
1− ri+1

)
(1− ri)

and 1 − ri+1 > 1 − ri > 0, then
Ui+1

Ui
> α > 1. Concerning

Vi+1

Vi
,

the fact that λ =
P√

P2 − 4Q
> 1 implies Q > 0 and consequently P ≥ 3 because

D = P2− 4Q > 0. Then α ≥ 2 and β > 0 because β =
P−

√
P2 − 4Q
2

. Therefore,

αi (α− 1) > βi (1− β) .

Indeed, if 0 < β ≤ 1, then βi ≤ 1 and 0 ≤ 1−β < 1 which implies 0 ≤ βi (1− β) <
1. Moreover, αi (α− 1) ≥ 1. Hence

αi (α− 1) > βi (1− β)

which is evidently verified when β > 1. Therefore αi+1 + βi+1 > αi + βi ; i.e.
Vi+1 > Vi and the proof is complete.

Lemma 2.6 If (P,Q) is not standard then
|V2|
|V1|
≈ +∞.

Proof We have two cases.

(A) P ≈ +∞. We divide the proof of A) further into the following cases.

(1) Q standard. Then
V2

V1
=

P2 − 2Q
P

≈ +∞.

(2) Q ≈ −∞. Then
V2

V1
=

P2 − 2Q
P

≈ +∞.

(3) Q ≈ +∞. Suppose that
V2

V1
= l with l being limited. Then

P2 − 2Q
P

= l > 0

( P2−2Q > 0 because D > 0). Hence P2−Pl = 2Q which implies Q =
1
2
(
P2 − Pl

)
.

Then
D = P2 − 4Q = P2 − 2

(
P2 − Pl

)
= −P2 + 2Pl

which means that D < 0 and this is a contradiction. Then
V2

V1
≈ +∞.

(B) P standard. In this case Q ≈ −∞ and we show easily that
V2

V1
≈ +∞. This

finishes the proof.

Lemma 2.7 n may be written according to one and only one of the following forms.
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(i) n = p ≈ +∞ is a prime.

(ii) n = 2sp, where s ≥ 1 is a limited and p ≈ +∞ is a prime.

(iii) n = n1n2 where one of n1 ,n2 is odd greater than or equal to 3, the other is
unlimited.

(iv) n = 2ω+1 with ω ≈ +∞.

Proof It is well-known that n must be written uniquely as tα1
1 tα2

2 ...tαr
r , where 2 ≤

t1 < t2 < .. < tr are prime numbers, αi ≥ 1 (i = 1, 2, ..., r). Two cases arise.

(1) r = 1. Either t1 = 2, in which case n is of the fourth form, or t1 > 2 which implies
that n is of the first form if α1 = 1 because in this case n = t1 , otherwise ( α1 > 1),
n = tα1

1 = t1tα1−1
1 which shows that n is of the third form because the quantities t1

and tα1−1
1 are both odd and obviously at least one of them is unlimited.

(2) r > 1. Here two subcases arise.

a) t1 = 2.

If α1 is limited, then we divide the proof into two further cases.

(a1) α2 = 1. If r = 2, then n = 2α1 t2 which shows that t2 is unlimited
and consequently n is of the second form, otherwise (i.e. r > 2) the fact that
n = 2α1 t2tα3

3 ...tαr
r where t2 is odd and 2α1 tα3

3 ...tαr
r ≈ +∞ because 2α1 tα3

3 ...tαr
r > t2

and the product t2.2α1 tα3
3 ...tαr

r = n ≈ +∞, shows that n is of the third form.

(a2) α2 > 1. In this case n is of the third form because n = 2α1 tα2
2 tα3

3 ...tαr
r =

t2.2α1 tα2−1
2 tα3

3 ...tαr
r where t2 is odd and by the same reasoning as (a1) above, r > 2 )

2α1 tα2−1
2 tα3

3 ...tαr
r ≈ +∞.

If α1 is unlimited, then the fact that n = 2α1 tα2
2 tα3

3 ...tαr
r = t2.2α1 tα2−1

2 tα3
3 ...tαr

r , where
t2 is odd and 2α1 tα2−1

2 tα3
3 ...tαr

r ≈ +∞ permits us to conclude that n is of the third
form.

(b) t1 > 2. Here also, using the same reasoning as above and the fact that
n = tα1

1 tα2
2 ...tαr

r = t1tα1−1
1 tα2

2 ...tαr
r ≈ +∞, we conclude that n is of the third form.

We now prove that n cannot be written simultaneously according to two of the above
indicated forms. Indeed, we prove this for the second and the third form (the other
cases are trivial). Suppose that n = 2sp where s ≥ 1 is a limited and p ≈ +∞ is a
prime and also n = n1n2 , where for example n1 is odd greater than or equal to 3 and
n2 is unlimited. Since the decomposition of n in prime factors is unique, then n1 = p,
n2 = 2s which is contradictory because n2 is unlimited and cannot be equal to 2s .
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3 Proof of Theorem 2.1.

3.1 Proof for Un .

We consider the following two subcases.

(I) n is a prime. By (1–5), Un =
(

D
n

)
mod (n). Then Un = u + kn, where

u ∈ {−1, 0,+1}. Since |Un| is, according to Lemma 2.3, of the form ωn with ω is
an unlimited real number, the integer k must be unlimited. Consequently the proof is
finished for this case.

(II) n is a composite i.e. n = n1n2 , where n1 ≥ n2 > 1. By (1–6), Un = CUn1 , where
C is an integer which is, according to Lemma 2.4, unlimited. On the other hand since
n1 ≈ +∞, then by Lemma 2.5, Un1 is unlimited. Thus the proof is finished for Un .

3.2 Proof forVn

By Lemma 2.7, we need to consider the following four cases.

(I) n = p ≈ +∞ is a prime. We have two subcases to consider.

(a) P limited. By (1–5), Vp = P mod(p); i.e.Vp = P + kp. Since P is limited, k
must be, according to Lemma 2.3, unlimited.

(b) P unlimited. According to (1–6), V1 | Vp ; i.e Vp = V1N . By Lemma 2.5, we
have

|V2| < |V3| < ... < |Vn| < ... .

By Lemma 2.6,
|V2|
|V1|

≈ +∞ which implies from
|V2|
|V1|

<
|Vp|
|V1|

that
|Vp|
|V1|

≈ +∞ and

then N is unlimited. Thus the proof is finished for this case because V1 = P and
|P| ≈ +∞.

(II) n = 2sp, where s ≥ 1 is a limited and p ≈ +∞ is a prime.

(a) P and Q are both limited. For s ≥ 1 define the formula

A (s) ≡ "For n of the form 2sp, Vn may be written as g1 + g2p where g1 (resp. g2 ) is
a limited (resp. is an unlimited) integer".

We have A (1). Indeed, let n = 2p; by (1–4)

Vn = V2p =
(
Vp
)2 − 2Qp.
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Applying (1–5) and (1–8) yields V2p = (P + kp)2 − 2 (Q + lp). Hence

Vn = V2p = P2 + 2Pkp + k2p2 − 2Q− 2lp

= P2 − 2Q +
(
2Pk + k2p− 2l

)
p.

If g1 = P2−2Q and g2 = 2Pk + k2p−2l, then g1 is limited and, according to Lemma
2.3, g2 is unlimited. Consequently, A (1).

Suppose A (s) for s ≥ 1 a limited integer and prove A (s + 1). Indeed, by (1–4)

V2s+1p = V2(2sp) =
(
V2sp

)2 − 2Q2sp.

From A(s) (resp. (1–8)) we have V2sp = g1 + g2p, where g1 is limited and g2 is
unlimited ( resp. Q2sp =

(
Q2s)p = Q2s

+ fp with f an integer). Replacing by these
values, we get

V2s+1p =
(
V2sp

)2 − 2Q2sp

= (g1 + g2p)2 − 2
(

Q2s
+ fp

)
= g2

1 − 2Q2s
+ f p,

where f = 2g1g2 +g2
2p−2f . Since g1 , Q and s are limited, then g2

1−2Q2s
is limited;

the integer f , according to Lemma 2.3, must be unlimited. Consequently, A(s + 1).

Then by (1–9),
∀sts ≥ 1 A (s) .

(b) P or Q is unlimited. By (1–6), V2s |V2sp , i.e. V2sp = V2sc with c being an
integer. By Lemma 2.4, c is unlimited. By Lemma 2.6, |V2| ≈ +∞ and by Lemma
2.5, |V2| < |V3| < |V4| < ... . Hence V2s is unlimited. This completes the proof for
this case.

(III) n = n1n2 , where one of n1 , n2 is odd greater than or equal to 3, the other is
unlimited.

Suppose n1 ≥ 3 is odd and n2 ≈ +∞. Then

Vn1n2 = Vn2C,

where by (1–6) C is an integer which is, according to Lemma 2.4., unlimited. Since
n2 ≈ +∞, then by Lemma 2.5 Vn2 is unlimited. This finishes the proof for this case.

(IV) n = 2ω+1 with ω ≈ +∞.

(a) Q is even (Q = 2t , t ∈ Z∗ ). By (1–4), we have

Vn = V2ω+1 = V2.2ω = V2
2ω − 2Q2ω

.
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14 Abdelmadjid Boudaoud

Applying the fact that 2ω = 2.2ω−1 and (1–4) yield

V2ω = V2.2ω−1 = V2
2ω−1 − 2Q2ω−1

which, when substituted in Vn = V2
2ω − 2Q2ω

, gives

Vn = V2ω+1 =
(

V2
2ω−1 − 2Q2ω−1

)2
− 2Q2ω

(3–1)

=
(
V2ω−1

)4 mod
(

Q2ω−1
)
.

Similarly, the fact that V2ω−1 = V2.2ω−2 and (1–4) give

(3–2) Vn = V2ω+1 =
(
V2ω−2

)8 mod
(

Q2ω−2
)

and so on.

Let f ≈ +∞ be an integer such that ω − f ≈ +∞. The previous process permits to
write

(3–3) Vn = V2ω+1 =
(
V2ω−f

)2f+1
mod

(
Q2ω−f

)
,

where V2ω−f is unlimited.

Now, if V2ω−f is even then V2ω+1 = 2γ t , where γ = min
(
2f+1,2ω−f

)
≈ +∞ and t is

an integer. This shows that

Vn = V2ω+1 = 2γ12γ2 t,

where γ1 and γ2 are two unlimited integers satisfying γ1 + γ2 = γ . Otherwise (i.e.
V2ω−f is odd), we have

Vn − 1 =
[(

V2ω−f

)2f+1
− 1
]

+ kQ2ω−f
.

Since
(
V2ω−f

)2f+1
− 1 is a difference between squares, then

Vn − 1 =
[(

V2ω−f

)2f

− 1
] [(

V2ω−f

)2f

+ 1
]

+ kQ2ω−f
.

By the same reasoning about the difference
(
V2ω−f

)2f

− 1

Vn − 1 =
[(

V2ω−f

)2f−1
− 1
] [(

V2ω−f

)2f−1
+ 1
] [(

V2ω−f

)2f

+ 1
]

+ kQ2ω−f

and so on. Thus we can write Vn − 1 as

Vn − 1 =
[(

V2ω−f

)2f−t

− 1
] [(

V2ω−f

)2f−t

+ 1
] [(

V2ω−f

)2f−(t−1)
+ 1
]

+ . . .

+
[(

V2ω−f

)2f−1
+ 1
] [(

V2ω−f

)2f

+ 1
]

+ kQ2ω−f
,
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Decomposition of terms in Lucas sequences 15

where t is an integer satisfying 1 ≤ t < f . Now choose t0 ≈ +∞ such that t0 < f
and t0 + 2 < 2ω−f . This is possible because, from the fact that min

(
f , 2ω−f

)
≈

+∞, we can choose an integer s ≈ +∞ such that s ≤ min
(
f , 2ω−f

)
and take

thereafter t0 = s − 3. Since Q2ω−f
contains the factor 22ω−f

and the product[(
V2ω−f

)2f−t0 − 1
] t0∏

i=0

[(
V2ω−f

)2f−i

+ 1
]

contains 2k with k ≥ t0 + 2, then

Vn − 1 = 2t0+2N,

where N is an integer. Therefore

Vn − 1 = V2ω+1 − 1 = 2t12t2N,

where t1 and t2 are two unlimited integers satisfying t1 + t2 = t0 + 2.

(b) Q is odd (Q = 2t +1, t ∈ Z). We put no = 2ω . If Q = ±1, then by (1–4)

Vn = V2n0 =
(
Vn0

)2 − 2Qn0

=
(
Vn0

)2 − 2

because n0 is even. Vn0 is, by Lemma 2.3, unlimited. Otherwise (i.e. Q 6= ±1) we
divide the proof into the following cases.

(1) P is even. By (1–3) and the induction, we show easily that each Vl (l ≥ 0)
is even. Moreover V2 6= 2, because otherwise P2 − 2Q = 2 which implies D =
P2− 4Q = 2− 2Q. The fact that D > 0 implies that 2− 2Q > 0 i.e. Q < 0 (because
Q ∈ Z∗ ) and this contradicts P2 − 2Q = 2. In the same way V2 6= −2.

Now, we prove that Vn − 2 is the product of two unlimited integers. Indeed, by (1–4)

Vn = V2ω+1 = V2n0 = V2
n0
− 2Qn0 .

Then

Vn − 2 = V2
n0
− 4− 2Qn0 + 2

=
(
Vn0 − 2

) (
Vn0 + 2

)
− 2

(
Qn0 − 1

)
which implies

(3–4) Vn − 2 =
(
Vn0 − 2

) (
Vn0 + 2

)
− 2

(
Qn0/2 − 1

)(
Qn0/2 + 1

)
.

Because n0 is divisible by 2, then applying (1–4) shows that Vn0 − 2 can be written as

Vn0 − 2 = V2(n0/2) − 2 = V2
(n0/2) − 4− 2

(
Qn0/2 − 1

)
which, when substituted in (3–4), gives

Vn − 2 =
[
V2

(n0/2) − 4− 2
(

Qn0/2 − 1
)] (

Vn0 + 2
)
− 2

(
Qn0/2 − 1

)(
Qn0/2 + 1

)
.
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Hence,

(3–5)
Vn − 2 =

(
V(n0/2) − 2

)(
V(n0/2) + 2

) (
Vn0 + 2

)
−2
(
Qn0/4 − 1

) (
Qn0/4 + 1

) (
Vn0 + 2

)
−2
(
Qn0/4 − 1

) (
Qn0/4 + 1

) (
Qn0/2 + 1

)
.

Because n0/2 is divisible by 2, then applying (1–4) shows that Vn0/2 − 2 can be
written as

V(n0/2) − 2 = V2
(n0/4) − 2Qn0/4 − 4 + 2

=
(

V2
(n0/4) − 4

)
− 2

(
Qn0/4 − 1

)
which, when substituted in (3–5), gives

(3–6)

V2n0 − 2 =
(

V(n0/4) − 2
)(

V(n0/4) + 2
)(

V(n0/2) + 2
) (

Vn0 + 2
)

−2
(
Qn0/8 − 1

) (
Qn0/8 + 1

) (
V(n0/2) + 2

) (
Vn0 + 2

)
−2
(
Qn0/8 − 1

) (
Qn0/8 + 1

) (
Qn0/4 + 1

) (
Vn0 + 2

)
−2
(
Qn0/8 − 1

) (
Qn0/8 + 1

) (
Qn0/4 + 1

) (
Qn0/2 + 1

)
and so on.

So the process of applying (1–4) and putting the difference between squares as a product
of two factors, yields by induction

Vn − 2 = V2n0 − 2

=
(
Vn0/2i−1 − 2

) (
Vn0/2i−1 + 2

)
...
(
Vn0/2 + 2

) (
Vn0 + 2

)
−2
(
Qn0/2i − 1

) (
Qn0/2i

+ 1
) (

Vn0/2i−2 + 2
)
...
(
Vn0/2 + 2

) (
Vn0 + 2

)
−2
(
Qn0/2i − 1

) (
Qn0/2i

+ 1
) (

Qn0/2i−1
+ 1
) (

Vn0/2i−3 + 2
)
..
(
Vn0 + 2

)
−2
(
Qn0/2i − 1

) (
Qn0/2i

+ 1
) (

Qn0/2i−1
+ 1
)(

Qn0/2i−2
+ 1
) (

Vn0/2i−4 + 2
)
...
(
Vn0 + 2

)
· · · · · ·

−2
(
Qn0/2i − 1

) (
Qn0/2i

+ 1
) (

Qn0/2i−1
+ 1
)
...
(

Qn0/22
+ 1
) (

Vn0 + 2
)

−2
(
Qn0/2i − 1

) (
Qn0/2i

+ 1
) (

Qn0/2i−1
+ 1
)
...
(

Qn0/22
+ 1
) (

Qn0/2 + 1
)

,

(3–7)

where 1 ≤ i ≤ ω . In this formula, if we replace i by 1 we recover (3–4), by 2 we
recover (3–5), etc.
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We take i0 ≈ +∞ such that
n0

2i0
≥ 1.We show that Vn−2 is of the form 2i0+1t , where

t is an integer. Indeed, each element Vn0/2j (0 ≤ j ≤ i0 − 1) is even and, according to
Lemma 2.5, different from ±2 giving the fact that V2 is different from these values.
On the other hand Q is odd and different from ±1. Hence the formula (3–7) is the
sum of i0 + 1 terms, where each term is the product of i0 + 1 non-zero even integers.
Therefore

Vn − 2 = 2i0+1t = 2t12t2 t,

where t1 and t2 are two unlimited integers satisfying t1 + t2 = i0 +1 and t is an integer.

(2) P is odd. We prove by induction that V2l (l ≥ 1) is odd. Indeed, V21 =
P2 − 2Q this shows that V2 is odd. Now suppose thatV2l is odd with l ≥ 1. Then
V2l+1 =

(
V2l

)2 − 2Q2l
so V2l+1 is also odd. On the other hand V2 6= 1, otherwise

P2 − 2Q = 1 then the fact that D = P2 − 4Q = 1− 2Q > 0 implies that Q < 0 and
this contradicts P2 − 2Q = 1. In the same way V2 6= −1.

By (1–4)
Vn = V2ω+1 = V2n0 = V2

n0
− 2Qn0

Then

Vn + 1 = V2
n0
− 1 + 2− 2Qn0 =

(
Vn0 − 1

) (
Vn0 + 1

)
+ 2

(
1− Qn0

)
So

(3–8) Vn + 1 =
(
Vn0 + 1

) (
Vn0 − 1

)
+ 2

(
1− Qn0/2

)(
1 + Qn0/2

)
.

By (1–4)

Vn0 + 1 = V2(n0/2) + 1

=
[
V2

(n0/2) − 1 + 2− 2Q(n0/2)
]

=
[(

V(n0/2) − 1
)(

V(n0/2) + 1
)

+ 2
(

1− Q(n0/2)
)]

which, when substituted in (3–8), gives

Vn + 1 =
[(

V(n0/2) − 1
)(

V(n0/2) + 1
)

+ 2
(

1− Q(n0/2)
)] (

Vn0 − 1
)

+2
(

1− Qn0/2
)(

1 + Qn0/2
)

=
(

V(n0/2) − 1
)(

V(n0/2) + 1
) (

Vn0 − 1
)

+ 2
(

1− Q(n0/2)
) (

Vn0 − 1
)

+2
(

1− Q(n0/2)
)(

1 + Q(n0/2)
)
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Then

(3–9)

Vn + 1 =
(

V(n0/2) − 1
)(

V(n0/2) + 1
) (

Vn0 − 1
)

+2
(

1− Q(n0/4)
)(

1 + Q(n0/4)
) (

Vn0 − 1
)

+2
(

1− Q(n0/4)
)(

1 + Q(n0/4)
)(

1 + Q(n0/2)
)

Again, setting
n0

2
= 2.

n0

4
and calculating by (1–4) an expression for V(n0/2) + 1 and

substituting in (3–9), we get another formula for Vn + 1, and so on.

So this process yields by induction

Vn + 1 = V2ω+1 + 1

=
(
Vn0/2i + 1

) (
Vn0/2i − 1

) (
Vn0/2i−1 − 1

)
...
(
Vn0/2 − 1

) (
Vn0 − 1

)
+2
(

1− Qn0/2i+1
)(

1 + Qn0/2i+1
) (

Vn0/2i−1 − 1
) (

Vn0/2i−2 − 1
)
...
(
Vn0 − 1

)
+2
(

1− Qn0/2i+1
)(

1 + Qn0/2i+1
) (

1 + Qn0/2i) (
Vn0/2i−2 − 1

)
...
(
Vn0 − 1

)
+2
(

1− Qn0/2i+1
)(

1 + Qn0/2i+1
) (

1 + Qn0/2i) (
1 + Qn0/2i−1

) (
Vn0/2i−3 − 1

)
..
(
Vn0 − 1

)
+

· · ·

+2
(

1− Qn0/2i+1
)(

1 + Qn0/2i+1
) (

1 + Qn0/2i) (
1 + Qn0/2i−1

)
· · ·
(

1 + Qn0/22
)(

Vn0 − 1
)

+2
(

1− Qn0/2i+1
)(

1 + Qn0/2i+1
) (

1 + Qn0/2i) (
1 + Qn0/2i−1

)
...
(
1 + Qn0/2

)
,

(3–10)

where 0 ≤ i ≤ ω− 1. In this formula, if we replace i by 0 we recover (3–8), by 1 we
recover (3–9) etc... .

We take i0 ≈ +∞ such that
n0

2i0
≥ 2. We show that Vn + 1 is of the form 2i0+2t ,

where t is an integer. Indeed, each element Vn0/2j (0 ≤ j ≤ i0 ) is odd and, according
to Lemma 2.5, different from ±1 giving the fact that V2 is different from these values.
On the other hand Q is odd and different from ±1. Hence the formula (3–10) is the
sum of i0 + 2 terms, where each term is the product of i0 + 2 non-zero even integers.
From this

Vn + 1 = V2n0 + 1 = 2t12t2 t,

where t1 and t2 are two unlimited integers satisfying t1 + t2 = i0 + 2 and t is an
integer. This finishes the proof of this case and therefore the theorem.
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4 In classical terms

In order to find the classical equivalence of our result we use the reduction algorithm
of external formulas of Nelson [5]. We denote the standard set{

(P,Q) ∈
(
Z∗
)2 : P2 − 4Q > 0

}
by H . Theorem 2.1 may be written as

∀n ∀ (P,Q) (
∀stt : n ≥ t

)
⇒ ∃st (U,V) ∃

(
l1, l2, l

′
1, l
′
2

)
∀sti ∈ N(

Un = U + l1l2,Vn = V + l
′
1l
′
2 & min

(
|l1| , |l2| ,

∣∣∣l′1∣∣∣ , ∣∣∣l′2∣∣∣) > i
) ,

where n, t , i range over N, (P,Q) range over H and U,V, l1, l2, l
′
1, l
′
2 range over Z.

Using idealization, this formula is equivalent to

∀n∀ (P,Q) (
∀stt : n ≥ t

)
⇒ ∃st (U,V) ∀stfiniI ∃

(
l1, l2, l

′
1, l
′
2

)
∀i ∈ I(

Un = U + l1l2,Vn = V + l
′
1l
′
2 & min

(
|l1| , |l2| ,

∣∣∣l′1∣∣∣ , ∣∣∣l′2∣∣∣) > i
) ,

where I belongs to Pf (N) the set of finite subsets of N. This formula is equivalent to

∀ (n, (P,Q)) ∃st (t, (U,V)) ∀stfiniI (n ≥ t)⇒ ∃
(

l1, l2, l
′
1, l
′
2

)
∀i ∈ I(

Un = U + l1l2,Vn = V + l
′
1l
′
2 & min

(
|l1| , |l2| ,

∣∣∣l′1∣∣∣ , ∣∣∣l′2∣∣∣) > i
) .

If we refer to ∀∃st∀st in the lexicon cited in [5], the last formula is equivalent to

∀̃I ∃finiR∀ (n, (P,Q)) ∃ (t, (U,V)) ∈ R (n ≥ t)⇒ ∃
(

l1, l2, l
′
1, l
′
2

)
∀i ∈ Ĩ (t, (U,V))(

Un = U + l1l2,Vn = V + l
′
1l
′
2 & min

(
|l1| , |l2| ,

∣∣∣l′1∣∣∣ , ∣∣∣l′2∣∣∣) > i
) ,

(4–1)

where Ĩ is a mapping that associates with each (t, (U,V)) ∈ N× Z2 a finite subset
Ĩ (t, (U,V)) ⊂ N. Now we prove that (4–1) is equivalent to
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∀̃I ∃ (T,W) ∈ N2 ∀ (n, (P,Q)) ∃ (t, (U,V)) ∈ [0,T]× [−W,W]2 (n ≥ t)⇒ ∃
(

l1, l2, l
′
1, l
′
2

)
∀i ∈ Ĩ (t, (U,V))(

Un = U + l1l2,Vn = V + l
′
1l
′
2 & min

(
|l1| , |l2| ,

∣∣∣l′1∣∣∣ , ∣∣∣l′2∣∣∣) > i
) .

(4–2)

Indeed, let Ĩ : N× Z2 → Pf (N) be a set-valued mapping. Then according to
(4–1) ∃finiR ⊂N× Z2 and therefore there exist smaller integers T and W such that
R ⊂ [0,T] × [−W,W]2 . Let (n, (P,Q)) ∈ N×H , by (4–1) ∃ (t, (U,V)) ∈ R ⊂
[0,T] × [−W,W]2 ; that is, (t, (U,V)) ∈ [0,T] × [−W,W]2 . Now if n ≥ t , then
∃
(

l1, l2, l
′
1, l
′
2

)
∀i ∈ Ĩ (t, (U,V))

Un = U + l1l2,Vn = V + l
′
1l
′
2& min

(
|l1| , |l2| ,

∣∣∣l′1∣∣∣ , ∣∣∣l′2∣∣∣) > i which shows that

(4–1)⇒(4–2). For the converse one takes, R = [0,T]× [−W,W]2 .

Hence we have the following internal formulation of Theorem 2.1.

Proposition 4.1 For any set-valued mapping Ĩ : N × Z2 → Pf (N) there exists
(T,W) ∈ N2 such that for all (n, (P,Q)) ∈ N × H there exists (t, (U,V)) ∈ [0,T] ×
[−W,W]2 such that if n ≥ t , then Un (resp. Vn ) differs by U (resp. V ) from a product
of two integers whose absolute value is greater than or equal to i for all i ∈ Ĩ (t, (U,V)).

Below we formulate, from the proof of Theorem 2.1, two particular cases of that result,
and give their reductions separately.

(1) Un differs from a product of two unlimited integers by an integer U with −1 ≤
U ≤ 1.

(2) If n is not of the form 2sp with s ≥ 0 being a limited integer and p ≈ +∞ being
a prime, then Vn differs from a product of two unlimited integers by an integer V with
−2 ≤ V ≤ 2.

The reductions of these particular cases are as follows.

(1) The first is equivalent to

∀n∀ (P,Q)
[ (

∀stt : n ≥ t
)

=⇒ ∃ (U, l1, l2)∀sti(
Un (P,Q) = U + l1l2 : |U| ≤ 1 & min

(
|l1| , |l2|

)
≥ i
) ] ,

where n, t , i ∈ N, (U, l1, l2) ∈ Z3 . By idealization and transfer the previous formula
transforms, while remaining equivalent, to
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∀finiI ∃finiT ∀ (n, (P,Q)) ∃t ∈ T

(4–3)
[

n ≥ t =⇒ ∃ (U, l1, l2)∀i ∈ I(
Un (P,Q) = U + l1l2 : |U| ≤ 1 & min

(
|l1| , |l2|

)
≥ i
) ] ,

where I and T belong to the power set of N. (4–3) is equivalent to

∀i ∈ N ∃T̃ ∈ N ∀ (n, (P,Q)) ∈ N×H
(4–4)[

n ≥ T̃ =⇒
∃ (U, l1, l2)

(
Un (P,Q) = U + l1l2 with |U| ≤ 1 & min

(
|l1| , |l2|

)
≥ i
) ] .

Indeed, let i ∈ N. Then, according to (4–3), ∃finiT ⊂ N. Now put

T̃ = maxt∈T t . Now if (n, (P,Q)) ∈ N×H such that n ≥ T̃ , then n ≥ t, ∀t ∈ T .

Hence from (4–3) ∃ (U, l1, l2) with Un (P,Q) = U+l1l2 , |U| ≤ 1 and min
(
|l1| , |l2|

)
≥

i. Consequently (4–3) =⇒ (4–4).

Conversely, let I be a finite subset of N and put
−
i = maxi∈I i. For

−
i there is,

according to (4–4), T̃ ∈ N. Consider T =
{

T̃
}

as a finite subset of N. Now if

(n, (P,Q)) ∈ N×H such that n ≥ T̃ , then ∃ (U, l1, l2) with Un (P,Q) = U + l1l2 with
|U| ≤ 1 and min

(
|l1| , |l2|

)
≥ −i ; that is, min

(
|l1| , |l2|

)
≥ i ∀i ∈ I . Hence (4–4) =⇒

(4–3) and consequently we have the following proposition.

Proposition 4.2 For any integer i ∈ N there exists an integer T̃ ∈ N such that for
all (n, (P,Q)) ∈ N× H satisfying n ≥ T̃ , the term Un (P,Q) differs from a product of
two integers whose absolute value is greater than or equal to i by an integer U with
−1 ≤ U ≤ 1.

(2) The second particular case is equivalent to

∀n ∀ (P,Q) ∀st (t1, t2)
(

n ≥ t1 &
n

2t2
/∈ P
)

=⇒

∃
(

V, l
′
1, l
′
2

)
∀sti
(

Vn (P,Q) = V + l
′
1l
′
2 with V ∈ {0,±1,±2} and min

(∣∣∣l′1∣∣∣ , ∣∣∣l′2∣∣∣) ≥ i
)  ,

where n, i ∈ N, (t1, t2) ∈ N2 ,
(

V, l
′
1, l
′
2

)
∈ {0,±1,±2}×Z× Z. Using idealization

and transfer the previous formula transforms, while remaining equivalent, to

∀finiI ∃finiT ∀ (n, (P,Q))

(4–5)

 ∀ (t1, t2) ∈ T
(

n ≥ t1 &
n

2t2
/∈ P
)

=⇒ ∃
(

V, l
′
1, l
′
2

)
∀i ∈ I(

Vn (P,Q) = V + l
′
1l
′
2 : V ∈ {0,±1,±2} and min

(∣∣∣l′1∣∣∣ , ∣∣∣l′2∣∣∣) ≥ i
)  ,
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where I (resp. T ) belongs to the power set of N (resp. N2 ). Then (4–5) is equivalent
to

∀i ∈ N ∃ (T1,T2) ∈ N2 ∀ (n, (P,Q))

(4–6)

 (
n ≥ T1,

n
2i /∈ P (i = 0, 1, ..,T2)

)
=⇒ ∃

(
V, l

′
1, l
′
2

)(
Vn (P,Q) = V + l

′
1l
′
2 : V ∈ {0,±1,±2} and min

(∣∣∣l′1∣∣∣ , ∣∣∣l′2∣∣∣) ≥ i
)  .

Indeed, let i ∈ N. According to (4–5), ∃finiT ⊂ N2 . Suppose

T1 = max {t1: (t1, t2) ∈ T} and T2 = max {t2: (t1, t2) ∈ T}. Let (n, (P,Q)) ∈ N×H .
Suppose that n ≥ T1 and

n
2i /∈ P for i = 0, 1, ..,T2 . Then for all (t1, t2) ∈ T , n ≥ t1

and
n

2t2
/∈ P. Hence, according to (4–5), ∃

(
V, l

′
1, l
′
2

)
Vn (P,Q) = V + l

′
1l
′
2 with

V ∈ {0,±1,±2} and min
(∣∣∣l′1∣∣∣ , ∣∣∣l′2∣∣∣) ≥ i. Consequently (4–5)⇒(4–6).

Conversely, let I be a finite subset of N. Put
−
i = maxi∈I i. Then for

−
i there is,

according to (4–6), (T1,T2) ∈ N2 . Set T = {0, 1, ...,T1} × {0, 1, ...,T2}, then T is
finite. Let (n, (P,Q)) ∈ N×H and suppose that for all (t1, t2) ∈ T , n ≥ t1 &

n
2t2

/∈ P.

Then n ≥ T1 and
n
2i /∈ P (i = 0, 1, ..,T2). Hence, according to (4–6), ∃

(
V, l

′
1, l
′
2

)
such that Vn (P,Q) = V + l

′
1l
′
2 with V ∈ {0,±1,±2} and min

(∣∣∣l′1∣∣∣ , ∣∣∣l′2∣∣∣) ≥ −i ; that

is ∀i ∈ I min
(∣∣∣l′1∣∣∣ , ∣∣∣l′2∣∣∣) ≥ i. Hence (4–6)=⇒(4–5) and consequently we have the

following proposition.

Proposition 4.3 For any integer i ∈ N there exists two integers (T1,T2) ∈ N2 such
that for all (n, (P,Q)) ∈ N × H satisfying n ≥ T1 and

n
2i /∈ P for i = 0, 1, ..,T2 the

term Vn (P,Q) differs from a product of two integers whose absolute value is greater
than or equal to i, by an integer V with −2 ≤ V ≤ 2.

General remark. In the classical literature concerning Lucas sequences, generally the
studies are concerned with the terms Uk and Vk for k belonging to a particular family
of integers (see for example [6, 7]). In this work we note from the previous propositions
that the main result expresses a property of uniformity because the conclusion is valid
for all k beyond a certain rank.

Moreover, the ideas used in proofs here can also be used to deduce standard results.
For example one sees without pain that Lemma 2.3 gives the size of |Uk| and |Vk|
whereas Lemma 2.5 gives the growth of |Uk| and |Vk|. In addition, the translation
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by the reduction algorithm of lemmas used previously, which is an operation that is
not difficult, gives more classical results. But giving further details would increase the
length of this paper.
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