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Abstract: Using the techniques of reverse mathematics, we analyze the logical
strength of statements similar to trichotomy and dichotomy for sequences of reals.
Capitalizing on the connection between sequential statements and constructivity,
we find computable restrictions of the statements for sequences and constructive
restrictions of the original principles.
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1 Axiom systems and encoding reals

We will examine several statements about real numbers and sequences of real numbers in
the framework of reverse mathematics and in some formalizations of weak constructive
analysis. From reverse mathematics, we will concentrate on the axiom systems RCA0 ,
WKL0 , and ACA0 , which are described in detail by Simpson [8]. Very roughly, RCA0

is a subsystem of second order arithmetic incorporating ordered semi-ring axioms, a
restricted form of induction, and comprehension for ∆0

1 definable sets. The axiom
system WKL0 appends König’s tree lemma restricted to 0–1 trees, and the system
ACA0 appends a comprehension scheme for arithmetically definable sets. ACA0 is
strictly stronger than WKL0 , and WKL0 is strictly stronger than RCA0 .

We will also make use of several formalizations of subsystems of constructive analysis,
all variations of E-HAω , which is intuitionistic arithmetic (Heyting arithmetic) in all
finite types with an extensionality scheme. Unlike the reverse mathematics systems
which use classical logic, these constructive systems omit the law of the excluded middle.
For example, we will use extensions of Ê–HA

ω
� , a form of Heyting arithmetic with
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primitive recursion restricted to type 0 objects, and induction restricted to quantifier free
formulas. We will often append choice axioms. For example, we will use full choice:

AC : ∀x∃yA(x, y)→ ∃Y∀xA(x,Y(x))

where x and y may be of any finite type. We will also use quantifier free choice,
QF–AC0,0 , which is defined by the same scheme but where x and y are restricted to
natural number variables and A is restricted to quantifier free formulas. These systems
and many others are treated in detail by Kohlenbach [7]; a short summary appears in
the paper of Hirst and Mummert [5].

Both Simpson [8] (following Definition II.4.4) and Kohlenbach [7] (in section 4.1)
encode real numbers as rapidly converging sequences of rational numbers. In particular,
Simpson defines a real number as a Cauchy sequence of rationals α = 〈α(k)〉k∈N
satisfying ∀k∀i(|α(k)− α(k + i)| ≤ 2−k). Kohlenbach’s reals are required to converge
slightly more quickly. For rational numbers, equality and inequality can be expressed
using quantifier free formulas of arithmetic. The situation for reals is more complicated.
Two reals α and β are said to be equal if ∀k(|α(k)− β(k)| ≤ 2−k+1). Since α(k) and
β(k) are rationals, this formalization of equality contains only the leading universal
quantifier. Because we consider both classical and intuitionistic systems, we need to be
especially careful in defining inequality for reals. For reals α and β , we say α < β

(or β > α) if ∃k(β(k) − α(k) > 2−k+1). We say that β ≤ α if ¬(α < β), which is
equivalent to ∀k(β(k)−α(k) ≤ 2−k+1) over Ê–HA

ω
� . Note that β ≤ α is not defined as

a disjunction. These definitions are equivalent over RCA0 to those following Definition
II.4.4 of Simpson [8]: his α < β is our ¬¬(α < β). We say α is positive if α > 0 and
negative if α < 0. Here 0 can be the sequence of zeros, or equivalently any real that is
equal to that real. We say α is non-positive if α is not positive, which is equivalent
over Ê–HA

ω
� to α ≤ 0. Similarly, α is non-negative means 0 ≤ α . Summarizing, we

have the following:

• α is a real means ∀k∀i(|α(k)− α(k + i)| ≤ 2−k).
• α = β means ∀k(|α(k)− β(k)| ≤ 2−k+1).
• α < β means ∃k(β(k)− α(k) > 2−k+1).
• β ≤ α means ¬(α < β), or equivalently, ∀k(β(k)− α(k) ≤ 2−k+1).
• α is positive means α > 0, or equivalently, ∃k(α(k) > 2−k+1).
• α is negative means α < 0, or equivalently, ∃k(α(k) < −2−k+1).
• α is non-positive means ¬(α > 0), which is equivalent to α ≤ 0, which is

equivalent to ∀k(α(k) ≤ 2−k+1).
• α is non-negative means ¬(α < 0), which is equivalent to α ≥ 0, which is

equivalent to ∀k(α(k) ≥ −2−k+1).
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2 Reverse mathematics

The principle of dichotomy for reals asserts that ∀α(α ≥ 0 ∨ α ≤ 0). Since RCA0

includes the law of the excluded middle, it proves dichotomy for individual reals.
However, dichotomy for a sequence of reals requires the use of weak König’s lemma,
as shown by the following theorem.

Theorem 1 (RCA0) The following are equivalent:

(1) WKL0 .

(2) If 〈αi〉i∈N is a sequence of reals, then there is a set I ⊂ N such that for all i,
i ∈ I implies αi ≤ 0 and i /∈ I implies αi ≥ 0.

Proof Working in RCA0 , item 2 is easily deduced from Σ0
1 –separation, which is

provable in WKL0 as shown in Lemma IV.4.4 of Simpson [8].

The same lemma of Simpson shows that WKL0 is equivalent to the separation of ranges
of injections with disjoint ranges. We use this to deduce WKL0 from item 2. Let
f : N→ N and g : N→ N be one-to-one functions such that ∀i∀j(f (i) 6= g(j)). Write
f [s] for the finite set {f (0), . . . , f (s − 1)}. Note that RCA0 suffices to find the finite
set f [s] and, since f is an injection, to calculate f−1(i) given that i ∈ f [s]. Define the
sequence 〈αi〉i∈N by

αi(s) =


2−f−1(i) when i ∈ f [s],

−2−g−1(i) when i ∈ g[s],

0 otherwise.

It is clear that 〈αi〉i∈N is a sequence of real numbers. Moreover, we know that αi > 0
if and only if i is in the range of f , and αi < 0 if and only if i is in the range of g. If
I ⊂ N satisfies item 2, then I contains the range of g and excludes the range of f .

The main theorems of Hirst and Mummert [5] show that for certain formulas, if the
formula is provable in a constructive setting then RCA0 proves a related formula for
sequences. Since the preceding theorem shows that dichotomy for sequences of reals
implies WKL0 (and so is not provable in RCA0 ), we may conclude that dichotomy
for single reals is not provable in (an extension of) a constructive axiom system. The
axiom system in the following corollary appends an extensionality scheme, full axiom
of choice, and independence of premise for ∃–free formulas to Heyting arithmetic. It is
a proper extension of a formalization of constructive analysis.
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Corollary 2 E-HAω + AC + IPωef does not prove that if α is a real then α ≥ 0 or
α ≤ 0.

Proof Apply the contrapositive of Theorem 3.6 of Hirst and Mummert [5] to a formula
asserting that for every α there is a natural number n such that if α is a real then
either n = 0 and α ≤ 0, or n = 1 and α ≥ 0. This formula is in the class Γ1 , so the
theorem applies. Theorem 1 shows that RCA0 does not prove the sequential version, so
E-HAω + AC + IPωef does not prove dichotomy.

The non-constructive nature of dichotomy can also be deduced from the well-known fact
that dichotomy for reals is equivalent to Bishop’s lesser limited principle of omniscience.
Discussions of this can be found in Bridges and Richman [2] and in Bridges and Vı̂ţă
[3]. For completeness we present a version of this fact, formulated in the fashion of a
reverse mathematics result.

Theorem 3 (Ê–HA
ω
� + QF–AC0,0) The following are equivalent:

(1) LLPO (Lesser limited principle of omniscience) If f : N→ {0, 1} is a function
that takes the value 1 at most once, then either ∀n(f (2n) = 0) or ∀n(f (2n+1) = 0).

(2) If α is a real number, then α ≥ 0 or α ≤ 0.

Consequently, neither of these statements are provable in E-HAω + AC.

Proof We sketch the equivalence working in Ê–HA
ω
� + QF–AC0,0 . Assume LLPO

and suppose α is a real. Use QF–AC0,0 to define f as follows. Set the values of f to
0 as long as |α(n)| ≤ 2−n+1 . If we discover a (least) k such that |α(k)| > 2−k+1 , let
f (2k) = 1 if α(k) > 0, let f (2k + 1) = 1 if α(k) < 0, and set all other values of f to 0.
Note that if ∀n(f (2n) = 0) then α ≤ 0, and if ∀n(f (2n + 1) = 0) then α ≥ 0.

To prove the converse, suppose f : N→ {0, 1} takes the value 1 at most once. Define
α by specifying that

• α(n) = 0 if f (t) = 0 for all t ≤ n,

• α(n) = 2−t if there is an even t ≤ n such that f (t) = 1, and

• α(n) = −2−t if there is an odd t ≤ n such that f (t) = 1.

Note that if α ≥ 0 then ∀n(f (2n + 1) = 0), and if α ≤ 0 then ∀n(f (2n) = 0).

The last sentence of the theorem is provable by a realizability argument by applying
Corollary 2.
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Theorem 1 and Theorem 3 indirectly link weak König’s lemma and LLPO. Other
connections can be found in the work of Ishihara [6] and Brattka and Gherardi [1].

Following the pattern of our work with dichotomy, we now turn to trichotomy for reals:
∀α(α < 0 ∨ α = 0 ∨ α > 0). Since RCA0 includes the law of the excluded middle, it
proves trichotomy for a single real, as noted in Section II.4 of Simpson [8]. As shown
below, trichotomy for sequences of reals is equivalent to arithmetical comprehension,
and consequently is strictly stronger than dichotomy for sequences.

Theorem 4 (RCA0) The following are equivalent:

(1) ACA0 .

(2) If 〈αi〉i∈N is a sequence of reals, then there are sets of natural numbers L , E , and
G such that i ∈ L implies αi < 0, i ∈ E implies αi = 0, and i ∈ G implies
αi > 0.

(3) If 〈αi〉i∈N is a sequence of non-negative reals, then there is a set I ⊂ N such that
for all i, i ∈ I implies αi = 0 and i /∈ I implies αi > 0.

Proof It is clear that arithmetic comprehension suffices to prove the existence of the
sets L , E , and G in item 2. Since item 3 is a restriction of item 2, we can complete the
proof by showing that item 3 implies ACA0 .

By Lemma III.1.3 of Simpson [8], we need only show that item 3 suffices to prove the
existence of ranges of injections. Let f : N → N be one-to-one. Using the bracket
notation from the proof of Theorem 1, define 〈αi〉i∈N by

αi(s) =

{
2−f−1(i) when i ∈ f [s],

2−s otherwise.

Straightforward arguments show that 〈αi〉i∈N is a sequence of non-negative real numbers.
Moreover, we see that αi > 0 if and only if i is in the range of f . Thus the range of f
exists by applying ∆0

1 comprehension to find the complement of the set I as provided
in item 3.

The next corollary follows immediately by a proof that is almost identical to that of
Corollary 2.

Corollary 5 E-HAω + AC + IPωef does not prove that if α is a real and α ≥ 0, then
α > 0 or α = 0.
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Imitating Theorem 3, we present the following well known relationship between
trichotomy and Bishop’s limited principle of omniscience.

Theorem 6 (Ê–HA
ω
� + QF–AC0,0) The following are equivalent:

(1) LPO (limited principle of omniscience) If f : N→ {0, 1} then either ∃n(f (n) =

1) or ∀n(f (n) = 0).

(2) If α is a real number and α ≥ 0, then either α > 0 or α = 0.

(3) If α is a real number, then α < 0, α = 0 , or α > 0.

Consequently, none of these statements are provable in E-HAω + AC.

Proof We sketch the equivalences, working in Ê–HA
ω
� + QF–AC0,0 . First assume

LPO and suppose α ≥ 0. Use QF–AC0,0 to define f by f (n) = 1 if α(n) > 2−n+1 and
f (n) = 0 otherwise. Apply LPO to determine if α > 0 or α = 0.

Next, assume item 2 and let α be a real. Define reals ρ and σ by

ρ(n) =

{
α(n) if α(n) ≥ 0,

0 otherwise.
and σ(n) =

{
−α(n) if α(n) ≤ 0,

0 otherwise.

Note that ρ and σ satisfy the convergence rate requirements for reals, and that both
ρ ≥ 0 and σ ≥ 0. Apply item 2 to ρ and σ . If ρ > 0, then α > 0. If σ > 0, then
α < 0. If both ρ = 0 and σ = 0, then α = 0. Thus, item 3 holds.

Finally, assume item 3 and suppose f : N→ {0, 1}. Define α as follows. For each n,
let α(n) = 0 if f (t) = 0 for all t ≤ n, and let α(n) = 2−t if t is the least number less
than or equal to n such that f (t) = 1. Then α ≥ 0. Applying item 3, if α = 0 then
∀n(f (n) = 0) and if α > 0 then ∃n(f (n) = 1).

The final sentence of the theorem may be derived directly from realizability arguments,
or proved by applying Corollary 5.

3 Restrictions

The goal of this section is to define subclasses of reals for which dichotomy and
trichotomy can be proved constructively. In light of the result of Hirst and Mummert
[5], the corresponding sequential restrictions will be provable in RCA0 . We begin by
addressing dichotomy.
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Definition 7 Let α be a real number.

• We say that α is upper k–persistent if

∀s(s ≥ k ∧ α(s) ≥ 0→ ∃t(t > s ∧ α(t) ≥ 0)).

• We say that α is lower k–persistent if

∀s(s ≥ k ∧ α(s) ≤ 0→ ∃t(t > s ∧ α(t) ≤ 0)).

• We say that α is k–persistent if it is both upper and lower k–persistent.

Informally, if a rational sequence is k–persistent, after the first k entries, the tail contains
no last non-positive entry and no last non-negative entry. Every positive real has a tail
that consists entirely of positive rationals, so if the kth entry of a k–persistent real is non-
positive, then the real cannot be positive. Since the real is not positive, it is non-positive.
Similarly, if the kth entry is non-negative, then the real must be non-negative. Thus,
dichotomy restricted to k–persistent reals is provable in a constructive axiom system.

Theorem 8 (Ê–HA
ω
� ) If α is k–persistent, then either α ≤ 0 or α ≥ 0.

Proof If α is k–persistent, consider α(k). Since comparisons of α(k) with 0 are
quantifier free formulas, Ê–HA

ω
� proves that α(k) ≤ 0 or that α(k) ≥ 0. Consider the

case when α(k) ≤ 0. Suppose that there exists a j such that α(j)− 0 > 2−j+1 . Due to
the rate of convergence of α , for all t > j, α(t) > 0, contradicting the k–persistence
of α . Thus ¬(0 < α), which is α ≤ 0. Similarly, in the case that α(k) ≥ 0, we have
α ≥ 0.

Restricting item 2 of Theorem 1 to k–persistent reals yields a sequential statement that
is provable in RCA0 .

Theorem 9 (RCA0) Fix k ∈ N. If 〈αi〉i∈N is a sequence of k–persistent reals, then
there is a set I ⊂ N such that for all i, i ∈ I implies αi ≤ 0 and i /∈ I implies αi ≥ 0.

Proof If 〈αi〉i∈N is a sequence of k–persistent reals, then the set I ⊂ N defined by
I = {i ∈ N | αi(k) ≤ 0} exists by ∆0

1 comprehension and satisfies the theorem. One
could also prove this result by applying Theorem 3.6 of Hirst and Mummert [5] to
Theorem 8.

Next, we present analogous restrictions for trichotomy.
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Definition 10 Let α be a real number. We say that α is contractive if for every s and
t > s, either α(s) ≤ α(t) ≤ α(s + 1) or α(s + 1) ≤ α(t) ≤ α(s).

Informally, each successive pair of rationals in a contractive real provide upper and
lower bounds for the value of the real. Reals that are k–persistent and contractive have
the added feature that if α(k) and α(k + 1) are not both positive or both negative, then
α = 0. Consequently, trichotomy for k–persistent contractive reals can be proved
constructively.

Theorem 11 (Ê–HA
ω
� ) If α ≥ 0 is k–persistent and contractive, then either α = 0 or

α > 0.

Proof Suppose α ≥ 0 is k–persistent and contractive. Note that formulas involving
comparisons of specific rational numbers are quantifier free. Thus Ê–HA

ω
� proves that

either (α(k) ≤ 0 ∨ α(k + 1) ≤ 0) or (α(k) > 0 ∧ α(k + 1) > 0). In the first case,
since α is k–persistent, we know α = 0. In the second case, α > 0 because α is
contractive.

Working in RCA0 , we can prove item 3 of Theorem 4 for sequences of k–persistent
contractive reals, as follows.

Theorem 12 (RCA0) If 〈αi〉i∈N is a sequence of non-negative k–persistent contractive
reals, then there is a set I ⊂ N such that for all i, i ∈ I implies αi = 0 and i /∈ I implies
αi > 0.

Proof Working in RCA0 , suppose 〈αi〉i∈N is a sequence of non-negative k–persistent
contractive reals. As above, if αi(k) ≤ 0 or αi(k + 1) ≤ 0, then αi = 0. Also,
if αi(k) > 0 and αi(k + 1) > 0, then αi > 0. Consequently, the set I defined by
I = {i ∈ N | αi(k) ≤ 0 ∨ αi(k + 1) ≤ 0} has the desired property and exists by ∆0

1
comprehension. (The defining formula is actually quantifier free.) This result could also
be derived from Theorem 11 by applying Theorem 3.6 of Hirst and Mummert [5].

In formulating the definitions for k–persistent and contractive reals, the authors initially
searched for computable restrictions of the sequential statements, and then verified
the constructive proofs of the principles for individual reals. Thus, working in the
reverse mathematics framework can help indicate potential constructive results. Of
course, actual constructive results immediately yield proofs of computable restrictions
of sequential statements, at least for formulas in Γ1 .
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4 Variations on persistence

We say that a real is eventually persistent if it is k–persistent for some k . RCA0 proves
that every real is eventually persistent, so Theorem 1 holds with sequences of eventually
persistent reals substituted in item 2. Examination of the proof of the related computable
restriction in Theorem 9 shows that it does not rely on the assumption that every real in
the sequence is k–persistent for the same k . We only need to know some value for k
for each real. This information can be encoded in an auxiliary function. We say that
h : N→ N is a modulus of persistence for the sequence of reals 〈αi〉i∈N if for each i,
αi is h(i)–persistent.

Theorem 13 (RCA0) If h is a modulus of persistence for the sequence of reals 〈αi〉i∈N ,
then there is a set I ⊂ N such that for all i, i ∈ I implies αi ≤ 0 and i /∈ I implies
αi ≥ 0.

Proof Use the proof of Theorem 9, replacing k by h(i).

In the development of real analysis in reverse mathematics [8], many results that require
WKL0 can be proved in RCA0 for those special cases where functions have a modulus
of uniform continuity. In that setting, the existence of the modulus is equivalent to
WKL0 . By contrast, the existence of moduli of persistence is unexpectedly strong.

Theorem 14 (RCA0) The following are equivalent:

(1) ACA0 .

(2) Every sequence of reals has a modulus of persistence.

Proof Given a sequence of reals, a modulus of persistence can be easily be defined by
an arithmetical formula using the sequence as a parameter. Thus, ACA0 proves item 2.

To prove the reversal, we use item 2 to define the range of an injection. Suppose
f : N → N is one-to-one. Using the bracket notation from the proof of Theorem 4,
define a sequence of reals 〈αi〉i∈N by

αi(n) =

{
2−f−1(i) if i ∈ f [n]

0 if i /∈ f [n].

Apply item 2 to find a modulus of persistence h for 〈αi〉i∈N . By ∆0
1 comprehension,

the set X = {i | (∃k ≤ h(i))(f (k) = i)} exists. Clearly, X is a subset of the range of f .
Conversely, if for some k we have f (k) = i, then for any value j less than k , αi is not
lower j–persistent. Thus, k ≤ h(i), and i will be included in X .

Journal of Logic & Analysis 4:13 (2012)
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Even though WKL0 is too weak to prove the existence of a modulus of persistence for
a sequence of reals, it does suffice to prove that every sequence of reals is term-wise
equal to a sequence that has a modulus of persistence.

Theorem 15 (RCA0) The following are equivalent:

(1) WKL0 .

(2) If 〈αi〉i∈N is a sequence of reals, then there is a sequence 〈βi〉i∈N of 0–persistent
reals such that for all i ∈ N, αi = βi .

(3) If 〈αi〉i∈N is a sequence of reals, then there is a sequence 〈βi〉i∈N of reals with a
modulus of persistence such that for all i ∈ N, αi = βi .

Proof To show that WKL0 proves item 2, suppose 〈αi〉i∈N is a sequence of reals.
Using WKL0 , apply Theorem 1 to find a set I such that for all i, i ∈ I implies
αi ≤ 0 and i /∈ I implies αi ≥ 0. Define βi as follows. If i ∈ I and j ∈ N, let
βi(j) = αi(j + 1) if αi(j + 1) < 0 and let βi(j) = −2−j−1 otherwise. If i /∈ I and j ∈ N,
let βi(j) = αi(j + 1) if αi(j + 1) > 0 and let βi(j) = 2−j−1 otherwise. Straightforward
arguments verify that for each i, αi = βi and that βi is 0–persistent.

Since the constant 0 function is a modulus of persistence of the sequence 〈βi〉i∈N of
item 2, clearly item 2 implies item 3. We complete the proof by deducing WKL0 from
item 3, finding a separating set for the ranges of injections with disjoint ranges. Suppose
f and g are one-to-one functions with disjoint ranges. Construct 〈αi〉i∈N as in the proof
of Theorem 1. Apply item 3 to find a term-wise equal sequence of reals with a modulus
of persistence, and then apply Theorem 13 to find the set I . As in the proof of Theorem
1, I contains the range of g and excludes the range of f .

Our choice of the concept of persistence is by no means unique. For example, one
can prove item 2 of Theorem 1 in RCA0 provided that the sequence consists only of
non-zero reals. Alternatively, one could consider the following definition. A real α is
sticky if

• ∀i((α(i) ≥ 0 ∧ α(i + 1) ≥ 0)→ α(i + 2) ≥ 0),

• ∀i((α(i) ≤ 0 ∧ α(i + 1) ≤ 0)→ α(i + 2) ≤ 0), and

• ∃i((α(i) ≥ 0 ∧ α(i + 1) ≥ 0) ∨ (α(i) ≤ 0 ∧ α(i + 1) ≤ 0)).

Intuitively, if α is sticky and we plot pairs (i, α(i)) for all i, the graph may alternate
above and below the axis for a while, but eventually it will stick above the axis or below
the axis. The preceding results all hold with 0–persistence or k–persistence replaced
by stickiness; we leave these proofs as exercises for aficionados of sticky things.
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5 Relatively persistent reals

Rather than comparing a real to 0 as in the definition of k–persistent, we can compare a
pair of reals. If α and β are reals, we say that α and β are relatively k–persistent if
α− β is k–persistent. Here α− β is shorthand for α+ (−β), and addition and unary
negation on reals are defined as in Definition II.4.4 of Simpson [8]. Note that RCA0

proves that α− β is k–persistent if and only if β − α is k–persistent, so the definition
does not depend on the order of the reals. Consider the following result on minima.

Theorem 16 (RCA0) The following are equivalent:

(1) WKL0 .

(2) If 〈〈αj
i〉i≤nj〉j∈N is a sequence of finite sequences of reals, then there is a function

h : N→ N such that for every j ∈ N, αj
h(j) is a minimum for 〈αj

i〉i≤nj . That is,

αj
h(j) ≤ α

j
i for every i ≤ nj .

(3) If 〈(αj
0, α

j
1)〉j∈N is a sequence of ordered pairs of reals, then there is a function

h : N→ 2 such that for every j ∈ N, αj
h(j) is a minimum of (αj

0, α
j
1).

(4) If 〈αi〉i∈N is a sequence of reals then there is a function h : N→ N such that for
every i ∈ N, αh(i) is a minimum of 〈αj〉j≤i .

Proof Working in RCA0 , to prove that WKL0 implies item 2, construct a tree T ⊂ N<N

as follows. Place the sequence σ of length l in T if and only if for each j < l there
is no witness below l that αj

σ(j) is not the minimum of 〈αj
i〉i≤nj . More precisely,

σ is in T if and only if for every j < l there is no i ≤ l and m ≤ nj such that
αj
σ(j)(i)− 2−i+1 > αj

m(i). RCA0 can prove that T is infinite and that the labels used in
level j of the tree are bounded by nj . Using WKL0 , apply Lemma IV.1.4 of Simpson [8]
to find an infinite path through T . The sequence of nodes in the path gives a sequence
of values for a function h that satisfies item 2.

Clearly, item 3 is a special case of 2. To see that item 3 implies WKL0 , we use
Theorem 1. let 〈αj〉j∈N be a sequence of reals and consider the sequence of ordered
pairs 〈(βj

0, β
j
1)〉j∈N where for all j, βj

0 = 0 and βj
1 = αj . Apply item 3 and use

∆0
1 –comprehension to prove the existence of I = {i ∈ N | h(i) = 1}. Then I satisfies

item 2 of Theorem 1, which is equivalent to WKL0 .

Item 4 is also a special case of item 2, with the finite sequences taken as initial segments
of a single infinite sequence. The proof that item 4 implies WKL0 is part of Theorem 2
of Hirst [4].
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Applying the concept of relatively k–persistent, we can formulate a computable
restriction of item 2 of the preceding theorem.

Theorem 17 (RCA0) If 〈〈αj
i〉i≤nj〉j∈N is a sequence of finite sequences of reals such

that each finite sequence is pairwise relatively k–persistent, then there is a function
h : N→ N such that for every j ∈ N, αj

h(j) is a minimum of 〈αj
i〉i≤nj .

Proof Working in RCA0 , use the following process to compute h(j) from 〈αj
i〉i≤nj .

Linearly order the elements of 〈αj
i〉i≤nj by starting with αj

0 . If αj
0, . . . , α

j
i have been

linearly ordered, place αj
i+1 just to the left of the leftmost αj

i′ such that αj
i′(k)−αj

i+1(k) ≥
0. (By relative k–persistence, αj

i′ ≥ αj
i+1 .) If no such i′ exists, place αj

i+1 on the
extreme right. When all nj elements have been linearly ordered, let h(j) be the index of
the leftmost real.

The process described in the preceding proof can be executed in a weak constructive
setting, proving the following result.

Theorem 18 (Ê–HA
ω
� + QF–AC0,0) Every finite sequence of pairwise relatively

k–persistent reals has a minimum.

The finite linear orderings in the proof of Theorem 17 can be thought of as finite
approximations of embeddings of sequences of reals in Q. Consequently, it is natural
to rephrase Theorem 16 as follows.

Theorem 19 (RCA0) The following are equivalent:

(1) WKL0 .

(2) If 〈〈αj
i〉i≤nj〉j∈N is a sequence of finite sequences of reals, then there is a sequence

of embeddings ej : nj + 1→ N such that for all i and i′ less than or equal to nj ,
ej(i) ≤ ej(i′) implies αj

i ≤ αj
i′ .

(3) For every sequence of reals 〈αi〉i∈N there is an embedding e : N→ Q such that
for all i and j, e(i) ≤ e(j) implies αi ≤ αj .

Proof To prove that WKL0 proves item 2, use WKL0 and apply Theorem 15 to find
0–persistent forms of all the pairwise differences of the reals from each finite sequence,
acquiring essentially the same information as if each pair was relatively 0–persistent.
Use the construction of Theorem 17 to find the linear orderings.
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To prove that item 2 implies item 3, apply item 2 to the sequence of initial segments
of 〈αi〉i∈N and find linear orderings for each initial segment. Gradually construct e
as follows. Suppose e is defined on α0, . . . , αj . To simplify notation, renumber the
indices so that the embedded order matches the order of the indices. If the finite ordering
provided by item 2 on α0, . . . , αj, αj+1 indicates that αj+1 ≤ α0 , let e(j+1) = e(0)−1.
If it indicates that αj ≤ αj+1 , let e(j + 1) = e(j) + 1. Otherwise, find the least i such
that αi ≤ αj+1 ≤ αi+1 or αi+1 ≤ αj+1 ≤ αi , and let e(j + 1) = (e(i) + e(i + 1))/2.

To show that item 3 implies WKL0 , deduce item 2 of Theorem 16 by using the
embedding from item 3 to select minima of initial segments of a sequence of reals.

Following the pattern of Theorem 17 and Theorem 18, we could use relative 0–
persistence to formulate computable and constructive analogs of item 2 of Theorem 19.
If we require that the embeddings of Theorem 19 preserve equality, the corresponding
result acts more like trichotomy and requires ACA0 .

Theorem 20 (RCA0) The following are equivalent:

(1) ACA0 .

(2) If 〈〈αj
i〉i≤nj〉j∈N is a sequence of finite sequences of reals, then there is a sequence

of embeddings ej : nj + 1→ N such that for all i and i′ less than or equal to nj ,
ej(i) ≤ ej(i′) if and only if αj

i ≤ αj
i′ .

(3) For every sequence of reals 〈αi〉i∈N there is an embedding e : N→ Q such that
for all i and j, e(i) ≤ e(j) if and only if αi ≤ αj .

Sketch of proof To show that ACA0 proves item 2, it is easy to show that the desired
sequence of embeddings is arithmetically definable. The proof that item 2 implies
item 3 can be adapted from the similar proof for Theorem 19. To complete the proof,
it suffices to use item 3 to derive item 3 of Theorem 4, since that statement implies
ACA0 . Given a sequence of reals 〈αi〉i∈N , define the sequence 〈βi〉i∈N by β0 = 0 and
βi+1 = αi for all i. Applying item 3 to 〈βi〉i∈N , we know that αi = 0 if and only if
e(i + 1) = e(0).

As a final exercise, the reader could define the notion of relatively k–persistent contractive
pairs of reals and formulate and prove computable and constructive restrictions of item
2 of Theorem 20.
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