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Abstract: GRIST is an axiomatic framework for nonstandard set theory with many
“levels of standardness.” The paper establishes a number of general consequences
of GRIST, in particular, a very strong form of Transfer principle.
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This is the last in a series of three articles devoted to GRIST, an axiomatic presentation
of nonstandard analysis with many “levels of standardness.” The two previous papers,
[4] and [5], will be referred to as RST and RST2, respectively.

It is shown in RST that GRIST is complete over ZFC: If an extension of GRIST proves
a theorem that is not provable in GRIST, then it proves a theorem in the language of
ZFC that is not provable in ZFC [see Proposition 6.5]. In other words, no additional
principles can be added to GRIST while keeping it conservative over ZFC. Yet in
mathematical applications it is sometimes awkward to argue directly from the axioms of
GRIST. It is convenient to have at one’s disposal other principles, provable in GRIST,
but tailor–made for certain kinds of applications. A number of such consequences
of GRIST is derived in RST, Section 12; see also RST2, Proposition 1.10. For
applications of relative set theory see RST2 and [3, 6, 10].

This paper focuses on deducing some further useful principles in GRIST. Foremost
among them is Strong Stability, perhaps the ultimate generalization of Transfer. Sec-
tion 1 begins with a formulation of Strong Stability. Strong Stability is then used to
prove that levels represented by elements of a given set are precisely those from a finite
union of singletons and closed intervals (in the ordering of levels by inclusion).

Section 2 contains the proof of Strong Stability in GRIST. It relies heavily on the
development of GRIST in RST. Counterexamples to some “natural” strengthenings of
Strong Stability are also constructed there.

Section 3 deals with some variants of Idealization and Choice that are provable in
GRIST. It also presents a generalization of Robinson’s Lemma due to Andreev.
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2 Karel Hrbacek

In Section 4 we complete the study of (V1,V2)–continuity initiated in RST2.

In GRIST, the ordering of levels is dense (and there is a coarsest level). Alternatively,
one can postulate that levels are discretely ordered (each level has an immediate
successor, and each but the coarsest level has an immediate predecessor). There are
other possibilities, and weaker theories (FRIST [2], Péraire’s RIST [9]) agnostic on
the details of the ordering of levels. In Section 5 we show that all these theories prove
exactly the same open formulas (formulas where no quantification over levels occurs).

Finally, in Section 6 we fill a gap in the proof of Proposition 6.10 in RST, and add a
few easy but useful observations on GRIST that have not been made explicit in RST.

For convenient reference, the axioms of GRIST are listed below [see RST2, page 4].
In addition to ZFC, they are

Relativization The conjunction of:
(o) (∀U,V)[(∀x)(x ∈ U↔ x ∈ V)→ U = V];
(i) (∀x)(∃V)[x ∈ V ∧ (∀U)(x ∈ U→ V ⊆ U)]
(this uniquely determined level V is denoted V(x); V(·) := V(0) is the coarsest level);
(ii) (∀V)[0 ∈ V ∧ (∃x ∈ V)(∀U)(x ∈ U→ V ⊆ U)];
(iii) (∀U,V)(U ⊆ V ∨ V ⊆ U);
(iv) (∀U)(∃V)(U ⊂ V);
(v) (∀U,V)(U ⊂ V→ (∃W)(U ⊂W ⊂ V).

Transfer (or Stability)

For all U ⊆ V and all x1, . . . , xk ∈ U, P(x1, . . . , xk;U)↔ P(x1, . . . , xk;V).

Standardization

For all U and all A, x1, . . . , xk , either (∀V)(U ⊆ V) or there exist V ⊂ U and B ∈ V

such that, for every W with V ⊆W ⊂ U,

(∀y ∈W)(y ∈ B↔ y ∈ A ∧ P(y, x1, . . . , xk;W)).

Idealization

For all U,V,A such that A ∈ U ⊂ V , and all x1, . . . , xk ,

(∀a ∈ PfinA)(∀W ⊂ V) [a ∈W→ (∃y)(∀x ∈ a)P(x, y, x1, . . . , xk;V)] ↔

(∃y)(∀x ∈ A)(∀W ⊂ V)[x ∈W→ P(x, y, x1, . . . , xk;V)].

Granularity

For all x1, . . . , xk , if (∃U)P(x1, . . . , xk;U), then

(∃U)[P(x1, . . . , xk;U) ∧ (∀V)(V ⊂ U→ ¬P(x1, . . . , xk;V))].

Journal of Logic & Analysis 4:11 (2012)



Relative set theory 3

1 Strong Stability and ‘sets of levels’.

The key principle of GRIST is Transfer, also referred to as Stability:

For all V ⊆ V′ and all x1, . . . , xk ∈ V ,

P(x1, . . . , xk;V)↔ P(x1, . . . , xk;V′),

where P(x1, . . . , xk;V) is any V-formula, ie, a formula where all quantifiers over
levels are of the form (∀W ⊇ V) or (∃W ⊇ V).

The most irksome limitation of Transfer is the restriction x1, . . . , xk ∈ V ; but without
it the principle fails as stated [consider V ⊂ V′ , x ∈ V′rV , and the formula P(x;V) :
x ∈ V]. The first step towards transgressing this limitation is made in the Local
Transfer principle.

Local Transfer [RST2, Proposition 1.10 (6)]: For any sets xk+1, . . . , xn and any V0

there is V′ ⊃ V0 such that, for all V0 ⊆ V ⊂ V′ and all x1, . . . , xk ∈ V0 ,

P(x1, . . . , xk, xk+1, . . . , xn;V0)↔ P(x1, . . . , xk, xk+1, . . . , xn;V).

We also have

Support Principle [RST2, Proposition 1.10 (5)]: Given a V-formula P(x1, . . . , xk;V)
and sets x1, . . . , xk , there is a finite set {v0, v1, . . . , vn} such that V(·) = V(v0) ⊂
V(v1) ⊂ . . . ⊂ V(vn) and for all i ≤ n and all V with V(vi) ⊆ V ⊂ V(vi+1)
[V(vi) ⊆ V if i = n],

P(x1, . . . , xk;V(vi))↔ P(x1, . . . , xk;V)↔ ¬P(x1, . . . , xk;V(vi+1)).

In this section we formulate a principle (Strong Stability) that generalizes all of the
above, and give an example that illustrates its use.

Definition 1.1 (RST, Definition 8.3; see also RST, Proposition 8.6, and Section 2 of
this paper.) A set L is a level set if for all x, y ∈ L , V(x) = V(y) implies x = y.

Level sets are finite, and the relation v defined on L by x v y ↔ V(x) ⊆ V(y) is
a well-ordering. We always describe level sets in the increasing order by v; ie, if
L = {z0, z1, . . . , z`} is a level set, then V(z0) ⊂ V(z1) ⊂ . . . ⊂ V(z`).

Definition 1.2 Let L be a level set. We write V ∼=L V′ if V ⊆ V(z) ↔ V′ ⊆ V(z)
and V(z) ⊆ V↔ V(z) ⊆ V′ hold for all z ∈ L .

In other words, if L = {z0, z1, . . . , z`}, then V ∼=L V′ means that either V = V′ = V(zj)
for some j ≤ `, or V,V′ ⊂ V(z0), or V(zj) ⊂ V,V′ ⊂ V(zj+1) for some j < `, or
V(z`) ⊂ V,V′ . Thus ∼=L classifies all levels into 2`+ 3 classes.
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4 Karel Hrbacek

Recall [RST2, page 4] that P(x1, . . . , xk, y1, . . . , y`;V,V1, . . . ,Vn) denotes a formula
of the language of GRIST where all quantifiers over levels are of the form (∀W ⊇ V)
or (∃W ⊇ V). For brevity, we often write x and y for the sequences x1, . . . , xk and
y1, . . . , y` , respectively. Then 〈x〉 denotes 〈x1, . . . , xk〉, etc.

STRONG STABILITY: Given y1, . . . , y` , there is a level set L such that if V ⊂ V1 ,
V ⊂ V′1 and V1 ∼=L V′1 , then

(∀ x ∈ V)(P(x, y;V,V1)↔ P(x, y;V,V′1)).

The proof is postponed until Section 2, where also a stronger version, for several levels
simultaneously, can be found. Here we give a simple example of an application of this
principle. We show that every “set of levels” is a finite union of singletons and closed
intervals in the linear ordering of levels by ⊆.

Theorem 1.3 For every X 6= ∅ there exist level sets L = {α0, . . . , αn} and L′ =

{α′0, . . . , α′n} such that V(αi) ⊆ V(α′i) for all i ≤ n, V(α′i) ⊂ V(αi+1) for all i < n,
and

(1) (∀x ∈ X)(∃i ≤ n)(V(αi) ⊆ V(x) ⊆ V(α′i)),

(2) (∀V)(∀i ≤ n)[V(αi) ⊆ V ⊆ V(α′i)→ (∃x ∈ X)(V(x) = V)]

if X is finite. If X is infinite, (1) and (2) hold with V(αn) ⊆ V(x) ⊆ V(α′n) and
V(αn) ⊆ V ⊆ V(α′n) replaced by V(αn) ⊆ V(x) and V(αn) ⊆ V , respectively.

Lemma 1.4 If V(α) ⊂ V(α′) and (∃x ∈ X)(V(x) = V) holds for all V such that
V(α) ⊂ V ⊂ V(α′), then also

(A) (∃x ∈ X)(V(x) = V(α)) and

(B) (∃x ∈ X)(V(x) = V(α′)).

Proof (B) Let a be a finite set, V(a) ⊂ V(α′). Fix V such that V(a),V(α) ⊂ V ⊂
V(α′) and x ∈ X such that V(x) = V. By RST2, Proposition 1.10 (13), y ∈ a implies
y ∈ V(a), so y 6= x . Hence (∀fina)[V(a) ⊂ V(α′) → (∃x ∈ V(α′))(∀y ∈ a)(x ∈
X ∧ y 6= x)]. By GRIST Idealization we obtain x ∈ X , x ∈ V(α′), such that y 6= x
holds for all y ∈ X with V(y) ⊂ V(α′). Then x ∈ X and V(x) = V(α′).

(A) If V(α) = V(·) [the coarsest level], consider the statement

P(X;V) : (∃x ∈ X)(x ∈ V).
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Relative set theory 5

P(X;V) holds for all V such that V(·) ⊂ V ⊂ V(α′), by the assumption. By
Granularity, there is a coarsest level V for which P(X;V) holds. From density of
levels [Relativization (v)] we conclude that P(X;V(·)): (∃x ∈ X)(x ∈ V(·)) holds.

If V(·) ⊂ V(α) and for every V ⊂ V(α) there is x ∈ X such that V ⊆ V(x) ⊂ V(α),
the argument in the proof of (B) [with V(·) in place of V(α) and V(α) in place of
V(α′)] shows that (∃x ∈ X)(V(x) = V(α)).

It remains to consider the case when there is a V ⊂ V(α) such that ¬(∃x ∈ X)(V ⊆
V(x) ⊂ V(α)). Fix such V =: V . For every finite a with V(a) ⊂ V there is Y ∈ V , Y
finite, such that (∀x ∈ a)(x ∈ X → x ∈ Y) [let Y := a]. By GRIST Idealization, there
is a finite Y ∈ V such that (∀x ∈ X)(V(x) ⊂ V → x ∈ Y). Let Z := X r Y and note
that (∀x)(x ∈ Z ↔ x ∈ X ∧ V(α) ⊆ V(x)) [Y ∈ V is finite, so x ∈ Y → x ∈ V , by
RST2, Proposition 1.10 (13)]. As in the proof of the V(α) = V(·) case, we consider

P(Z;V) : (∃x ∈ Z)(x ∈ V).

We observe that P(Z;V)↔ P(X;V) for V ⊇ V(α), and hence P(Z;V) holds for all
V such that V(α) ⊂ V ⊂ V(α′). Also, P(Z;V) fails for V ⊂ V(α). By Granularity,
P(Z;V(α)) holds. Hence (∃x ∈ Z)(x ∈ V(α)); as x ∈ Z → V(x) ⊇ V(α), we have
x ∈ Z ⊆ X and V(x) = V(α).

Proof of Theorem 1.3 We apply Strong Stability to the statement

P(X;V(·),V) : (∃x ∈ X)(V(x) = V)

[in detail: (∃x ∈ X)(∀W ⊇ V(·))(x ∈ W ↔ V ⊆ W)] and obtain a level set M =

{γ0, . . . , γk} such that, wlog, V(γ0) = V(·) and for all i ≤ k , V(γi) ⊂ V,V′ ⊂ V(γi+1)
[V(γi) ⊂ V,V′ if i = k] implies P(X;V(·),V) ↔ P(X;V(·),V′). By Lemma 1.4,
if P(X;V(·),V) holds for all V(γi) ⊂ V ⊂ V(γi+1), then also P(X;V(·),V(γi)) and
P(X;V(·),V(γi+1)) hold. By Proposition 6.4 proved in Section 6 and Examples (2)
and (3) that precede it, the sets {z ∈ M : (∃x ∈ X)(V(x) = V(z))} and {z ∈ M :
(∀V)[V ⊃ V(z) → (∃x ∈ X)(V(z) ⊂ V(x) ⊆ V)]} exist. From these sets one easily
obtains the sets L and L′ as in the Theorem, by amalgamating adjacent intervals when
necessary.

By RST2, Proposition 2.15, the level sets L and L′ can be taken to be sets of natural
numbers: L = {k0, . . . , kn} and L′ = {k′0, . . . , k′n}, with V(ki) ⊆ V(k′i) for all i ≤ n
and V(k′i) ⊂ V(ki+1) for all i < n. We can assume that V(ki) = V(k′i) implies
ki = k′i . [{ki : V(ki) = V(k′i)} is a set, again by Proposition 6.4, because the formula
(∃i ≤ n)(z = ki ∧ z v k′i ∧ k′i v z) is stable in z.]
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6 Karel Hrbacek

Let [k, k′] := {i ∈ N : k ≤ i ≤ k′} and [k,∞) := {i ∈ N : k ≤ i}. We define
S′ :=

⋃
i<n[ki, k′i] and S := S′ ∪ [kn, k′n] if X is finite; S := S′ ∪ [kn,∞) if X is infinite.

Then

(∀x ∈ X)(∃i ∈ S)(V(x) = V(i)) and (∀i ∈ S)(∃x ∈ X)(V(x) = V(i)).

In the terminology introduced on page 12, every set is level–equivalent to a finite union
of singletons and closed intervals on N.

2 Proof of Strong Stability in GRIST.

This section relies heavily on the development of GRIST as given in RST. For this
reason, it is convenient here to work with the original formulation of GRIST in terms
of v, rather than use the language of levels (GRIST♥ ) introduced in RST2.

In the ∈–v–language, L is a level set if for all x, y ∈ L , x � y implies x = y. We
recall that x� y is shorthand for x v y ∧ y v x .

We write α ∼=L β if α v γ ↔ β v γ and γ v α↔ γ v β hold for all γ ∈ L .

In other words, if L = {γ0, γ1, . . . , γ`}, then α ∼=L β means that either α� β � γj for
some j ≤ `, or α, β < γ0 , or γj < α, β < γj+1 for some j < `, or γ` < α, β .

P(x1, . . . , xk, y1, . . . , y`; z1, . . . , zn) denotes a formula of the ∈-v-language where the
variables z1, . . . , zn appear only in the scope of v [RST, Definition 12.25].

The Strong Stability principle in this language goes as follows [we recall that Sα :=
{x : x v α}, and Pα is the formula obtained from P by replacing every occurrence
of v with vα , defined by x vα y↔ x v y ∨ x v α].

Theorem 2.1 (Strong Stability) Given y1, . . . , y` , there is a level set L , independent
of P , such that if α < β , α < β′ and β ∼=L β

′ , then

(∀x ∈ Sα)(Pα(x, y;β)↔ Pα(x, y;β′)).

One can take L = ran~u where ~u is a pedigree for 〈y〉 over some A ∈ S0 . The notion of
pedigree is the key technical tool for detailed study of GRIST. Roughly speaking, types
of objects in the universe of GRIST are described by stratified ultrafilters. Pedigrees
are finite sequences of stratified ultrafilters that describe, level by level, how the object
realizes its type. We state the definitions of these concepts here for convenience [see
RST, Sections 9 and 10].
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Relative set theory 7

We recall that βX is the set of all ultrafilters over X (the Stone-Čech space over X ),
and U ∼ V means that U ∩ V is an ultrafilter. For an arbitrary nonempty set A we
define by recursion on ordinals:

(0) β0A := A.

(1) For ξ > 0, β<ξA :=
⋃
η<ξ βηA and βξA := β<ξA ∪ {U ∈ β(β<ξA) : U is

nonprincipal and β<ηA /∈ U for any η < ξ} = β<ξA ∪ {U ∈ β(β<ξA) : U is
nonprincipal and there is no V ∈ β<ξA such that U ∼ V}.

Elements of β∞A :=
⋃
ξ∈On βξA are called stratified ultrafilters over A. For

U ∈ β∞A we let Dom U := A. As usual, the recursive definition assigns to each
stratified ultrafilter an ordinal rank. Stratified ultrafilters of rank 1 are the nonprincipal
ultrafilters over A; stratified ultrafilters of rank 2 are the nonprincipal ultrafilters over
βA that concentrate on nonprincipal ultrafilters over A [ie, such that (βA r A) ∈ U ],
and so on.

Let x ∈ A ∈ Sα . An α-pedigree for x over A is a sequence ~u = 〈un : n ≤ ν〉 where
ν ∈ ω and
(i) every un is a stratified ultrafilter over A [ie, un ∈ β∞A];
(ii) u0 v α; uν = x;
(iii) α < u1 ∧ (∀n,m)(1 ≤ n < m ≤ ν → un < um);
(iv) (∀z < un+1)(z ∈ un → un+1 ∈ z), for all n < ν .

The ultrafilter u0 is called the α-type of x over A and denoted tpα(x; A). We also use
~u+ := 〈un : 0 < n ≤ ν〉. We write xMαU as shorthand for: “There exists a [good;
see Proposition 2.7] α-pedigree ~u = 〈un : n ≤ ν〉 for x over some A ∈ Sα such that
U = u0 ,” and note that U is then an α-type of x . Pedigree and type mean 0-pedigree
and 0-type, respectively.

We also recall that, for a ∈ A and U ∈ βξB, Ua ∈ βξ(A× B) is the unique stratified
ultrafilter such that π1(Ua) = a and π2(Ua) = U [RST, Proposition 9.7].

The main technical result needed for the proof of Theorem 2.1 is the following propo-
sition.

Proposition 2.2 Let ~u = 〈u0, u1, . . . , ui, ui+1, . . . , uν〉 be a pedigree for a ∈ A ∈ S0

over A, and let V,B ∈ S0 , V ∈ β1B r β0B. Let ui < β < ui+1 [uν < β if i = ν ],
and let b � β be such that bM0V [ie, b has the pedigree 〈V, b〉 over B; see RST,
Proposition 12.15]. Then the pedigree ~v for 〈b, a〉 over B× A has the form

〈v0, . . . , vm, (ui)b, (ui+1)b, . . . , (uν)b〉
where vm = u1i V is defined in Proposition 2.4 below, and v0, . . . , vm are independent
of the choice of β and b.
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8 Karel Hrbacek

Proposition 2.2 shows how to extend a pedigree for a set a to a pedigree that also
“fixes” a particular level β . The proof requires two lemmas.

Lemma 2.3 〈(ui)b, (ui+1)b, . . . , (uν)b〉 is the β -pedigree for 〈b, a〉 over B× A.

Proof Let f : A → B × A be defined by f (x) = 〈b, x〉. By RST, Theorem
10.10 [see also RST, Proposition 10.14], the range of the β -pedigree for 〈b, a〉 is
{f (ui), f (ui+1), . . . , f (uν)}. We prove that π1(f (uj)) = b and π2(f (uj)) = uj , for all
i ≤ j ≤ ν . We begin with noticing that π1(f (x)) = b and π2(f (x)) = x . It is easily
verified, from RST, Definition 9.3, that kb(u) = b for all u ∈ β∞A, where kb : A→ B
is the constant function with value b. From this and RST, Proposition 9.4, we get
π1(f (uj)) = π1 ◦ f (uj) = kb(uj) = b and π2(f (uj)) = π2 ◦ f (uj) = IdA(uj) = uj.

From the uniqueness in RST, Proposition 9.7, it follows that f (uj) = (uj)b . Finally, we
notice that (uj)b �β uj : we have (uj)b vβ uj because (uj)b is ∈-definable from uj and
b ∈ Sβ , and uj vβ (uj)b because uj = π2((uj)b).

From these observations it follows that 〈(ui)b, . . . , (uν)b〉 is the β -pedigree for 〈b, a〉
over B× A.

Proposition 2.4 (ZFC) Let V ∈ β1B r β0B; for every U ∈ βξA there is a unique
W ∈ βξ+1(B × A) such that {Uy : y ∈ B} ∈ W and π1(W) = V , π2(W) = U . We
denote this unique W by U1V .

Proof Assume U ∈ βξA r β<ξA and let τU : B → βξ(B × A) be defined by
τU(y) = Uy .

Existence: We let W := τU[V]. As τU is one-one and rank(Uy) = rank U for all
y ∈ B, clearly W ∈ βξ+1(B × A) r βξ(B × A). If Y ∈ V , then τU[Y] ∈ W and
Y = π1[τU[Y]] ∈ π1[W]. Both V and π1[W] are ultrafilters over B, so V = π1[W]
and V = m(V) = m(π1[W]) = π1(W).

π2[W] is generated by sets of the form π2[τU[Y]] where Y ∈ V . But π2[τU[Y]] =

{π2(Uy) : y ∈ Y} = {U : y ∈ Y} = {U}. So π2[W] is a principal ultrafilter generated
by U and π2(W) = m(π2[W]) = U.

Uniqueness: Let W have the required properties. The map τU is one-one, so τ−1
U (Uy) =

y = π1(Uy); ie, W -almost everywhere π1 = τ−1
U . If π1(W) = V , then π1[W] = V [as

{Uy : y ∈ B} ∈ W ], so τ−1
U [W] = V , and W = τU[V].
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Relative set theory 9

Lemma 2.5 〈u1i V, (ui)b, (ui+1)b, . . . , (uν)b〉 is the ui -pedigree for 〈b, a〉 over B× A.

Proof By Lemma 2.3, 〈(ui)b, . . . , (uν)b〉 is a β -pedigree for 〈b, a〉 over B×A. By the
choice of b, bMγV holds for all ui v γ < β . Hence (ui)b = τui(b)Mγτui[V] = u1i V
holds for all such γ [see the proof of Proposition 2.4]. As u1i V � ui and (ui)b� b�β ,
〈u1i V, (ui)b, . . . , (uν)b〉 is a ui -pedigree.

We can now complete the proof of Proposition 2.2.

Proof of Proposition 2.2 By Lemma 2.5 and RST, Corollary 10.6, the pedigree ~v
for 〈b, a〉 over B × A has the form 〈v0, . . . , vm, (ui)b, . . . , (uν)b〉 where vm = u1i V .
For b′ � β′ such that ui < β′ < ui+1 [uν < β′ if i = ν ] and b′M0V , the pedigree for
〈b′, a〉 over B×A has the form ~v′ = 〈v′0, . . . , v′m′ , (ui)b′ , . . . , (uν)b′〉 where v′m′ = u1i V .
However, it is trivial to verify that 〈v0, . . . , vm, (ui)b′ , . . . , (uν)b′〉 is also a pedigree for
〈b′, a〉 over B × A. By the uniqueness of pedigrees [RST, Corollary 10.6], m = m′

and v′j = vj for all j ≤ m.

Proof of Theorem 2.1 (Strong Stability) It suffices to give the proof for the case α�0;
the general case follows by Transfer.

Let L := ran~u where ~u = 〈u0, . . . , uν〉 is the pedigree for 〈y〉 ∈ A over some A ∈ S0 ,
and let β ∼=L β

′ . If β � β′ � ui for some i ≤ ν , then P(x, y;β) ↔ P(x, y; ui) ↔
P(x, y;β′), as the variable z appears in P(x, y; z) only in the scope of v [RST,
Definition 12.25].

Assume now that ui < β, β′ < ui+1 for some i ≤ ν [ui < β, β′ if i = ν ]. Fix
V, b ∈ S0 , V ∈ β1B r β0B, and b, b′ such that b � β , bM0V and b′ � β′ , b′M0V .
By Proposition 2.2, the pedigrees for 〈b, 〈y〉〉 and 〈b′, 〈y〉〉 have the form, respectively,
〈v0, . . . , vm, (ui)b, . . . , (uν)b〉 and 〈v0, . . . , vm, (ui)b′ , . . . , (uν)b′〉.

To obtain the pedigrees for 〈〈x〉, 〈b, 〈y〉〉〉 and 〈〈x〉, 〈b′, 〈y〉〉〉 where 〈x〉 ∈ S0 , it is
only necessary to subscript all terms of the above pedigrees by 〈x〉 [Lemma 2.3]; in
particular, both 〈〈x〉, 〈b, 〈y〉〉〉 and 〈〈x〉, 〈b′, 〈y〉〉〉 have the same type (v0)〈x〉 . It follows
that 〈x, y, b〉 and 〈x, y, b′〉 have the same type. [Apply RST, Theorem 10.10 to the
natural mapping π : 〈〈x〉, 〈z, 〈y〉〉〉 7→ 〈x, y, z〉 and its inverse.]

By RST, Theorem 12.11 (Normal Form Theorem), P(x, y; b) ↔ P(x, y; b′). As the
variable z appears in the formula P(x, y; z) only in the scope of v, we have also
P(x, y;β)↔ P(x, y; b) and P(x, y;β′)↔ P(x, y; b′). This proves the theorem.

Stability for several levels simultaneously is expressed by Polytransfer [RST, Propo-
sition 12.26; RST2, Proposition 1.10 (8)]. The argument in the previous proof can be
pushed to establish a version of Strong Stability that generalizes Polytransfer.
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Theorem 2.6 (Strong Stability for several levels) Given y1, . . . , y` , there is a level
set L such that if α < β1 < . . . < βn , α < β′1 < . . . < β′n , and βi ∼=L β

′
j for all

i, j ≤ n, then

(∀x ∈ Sα)(Pα(x, y;β1, . . . , βn)↔ Pα(x, y;β′1, . . . , β
′
n)).

Proof We give the proof for α � 0 and n = 2. Using the notation from the proof of
Theorem 2.1, let ui < β1, β2, β

′
1, β
′
2 < ui+1 . Let bi� βi , biM0V , b′i � β

′
i , b′iM0V , for

i = 1, 2. By Proposition 2.2 applied twice, the pedigree for 〈b1, 〈b2, 〈y〉〉〉 then has the
form

〈v0, . . . , vm, (u1i V)b1 , ((ui)b2)b1 , . . . , ((uν)b2)b1〉

and v0, . . . , vm = (u1i V)1V are independent of the choice of β1, β2, b1, b2 . It follows
that 〈〈x〉, 〈b1, 〈b2, 〈y〉〉〉〉 and 〈〈x〉, 〈b′1, 〈b′2, 〈y〉〉〉〉 have the same type, namely (v0)〈x〉 .
The theorem follows from this observation.

Theorem 2.6 suggests a further generalization, in which the condition “βi ∼=L β
′
j for all

i, j ≤ n” would be weakened to “βi ∼=L β
′
i for all i ≤ n.” However, such generalization

is false. Below, we give a counterexample.

First we need some observations. The technical notion of good α- pedigree is defined
in RST, Definition 10.8. The following fact is used implicitly in RST.

Proposition 2.7 (SST[ ; hence GRIST) Every α-pedigree is good.

Proof The axiom (Bα) [RST, page 65] implies that for every y ∈ B ∈ Sα there is a
good α-pedigree ~v for y over B. Indeed, fix x ∈ A ∈ Sα where x ∈ Sα ; then 〈x〉 is a
good α-pedigree for U = x over A, Dom U = A, and xMαU holds. Let F : B → A
be the constant function with value x; so F ∈ Sα and ran F ⊆ Dom U . By (Bα) there
is V ∈ Sα with U = F(V) and yMαV . The last statement asserts that there is a good
α-pedigree ~v = 〈v0, . . . , vµ〉 for y over some B′ ∈ Sα with v0 = V . But, F(V) being
defined implies Dom V = B; as Dom v0 = B′ , we have B = B′ . If now ~u is any
α-pedigree for y over B, then ~u = ~v by RST, Proposition 10.3, so ~u is good.

Proposition 2.8 If ~u is an α-pedigree (for x over A ∈ Sα ), then

(Sα[~u],=,∈,vα) � (∀w)(∃k ∈ ω)(w� uk).

Proof The claim follows from RST, Proposition 10.20. By RST, Definition 10.8 (and
the fact that, in GRIST, all pedigrees are good), the interpretation [U`t(V; Σ u)]Sα is
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isomorphic to Sα[~u] via j = jα;x,A , and j(D) = D(~u+) = ~u+ , j(E) = E(~u+) = x , in
the notation of RST, Proposition 10.20. By the same proposition (valid in ZFC),

U`t(V; Σ u) � (∀f = 0)(∃k ∈ ω)( f � Dk).

As Sα 4 I, the same is true in [U`t(V; Σ u)]Sα , and via the isomorphism j, in Sα[~u].
Hence

Sα[~u] � (∀w = 0)(∃k ∈ ω)(w� (~u+)k = uk+1).

Of course, Sα[~u] � w� u0 , if w� 0.

Note: In RST, the notations U`t(V;U) and U`t(V; ΣU) are used interchangeably.

Proposition 2.9 If ~u = 〈u0, . . . , uν〉 is an α-pedigree and ν ∈ Sα , then rank u0 = ν .

Proof It suffices to give a proof for α � 0 [then use Transfer]. We prove that
rank uν−i = i by External Induction [RST, Proposition 12.19]. If i = 0, then uν−i =

uν = a ∈ β0A. If uν−i ∈ βiA r βi−1A, then uν−(i+1) is nonprincipal and generated
by uν−i over βiA, so it belongs to βi+1A r βiA.

Construction of the example.

Let A ∈ S0 be an infinite set and U ∈ βωA r β<ωA be a stratified ultrafilter over A
of rank ω . The axiom (F) [RST, page 66] guarantees that there is an a ∈ A such that
aM0U holds. We fix such an a and V,B ∈ S0 , V ∈ β1B r β0B.

Consider the statement P(A,V,B, a;β1, β2):

“For every b ∈ B such that b�β2 and bM0V , and for every pedigree ~v = 〈vj : j ≤ µ〉
for 〈b, a〉 over B× A, there exists some j ≤ µ such that vj � β1 .”

Let L = {w0,w1, . . . ,wρ} be any level set; wlog w0 � 0. We find β1 ∼=L β
′
1 and β2

such that P(A,V,B, a;β1, β2) is true and P(A,V,B, a;β′1, β2) is false.

Let ~u = 〈u0, u1, . . . , uν〉 be the pedigree for a over A; we have u0 = U . We note that
ν /∈ S0 ; otherwise U would have rank ν ∈ ω , by Proposition 2.9.

Fix a level γ such that 0 < γ < u1,w1 . Fix W ∈ β1ω r β0ω and c � γ , cM0W .
Then c ∈ ω and c /∈ S0 because W is nonprincipal. We claim that c < ν . Assume to
the contrary that ν ≤ c, so ν ∈ Sγ . As 〈u0, . . . , uν〉 is also a γ -pedigree for a over
A, by Proposition 2.9 rank U = rank u0 = ν and U ∈ β<ωA, a contradiction.

Fix β2 such that uc < β2 < uc+1 . We observe that b, a,~u ∈ S0[~v] [the last by RST,
Corollary 10.18] and c is ∈-definable from ~u, ~v and b: c is the least j such that
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(uj)b = vk for some k ≤ µ. Hence c ∈ S0[~v] and, by Proposition 2.8, c� v` for some
` > 0.

The statement P(A,V,B, a;β1, β2) holds for β1 := γ and β2 , because then β1�c�v` .

On the other hand, by density of levels, there exist β′1 such that 0 < β′1 < v1 v
v` � γ < w1 . Then β′1 ∼=L β1 and P(A,V,B, a;β′1, β2) fails.

This example can also be used to show that Polytransfer [RST, Proposition 12.26] does
not hold for arbitrary finite (in the sense of GRIST) sequences of levels.

We say that sets S1 and S2 are level–equivalent if (∀x ∈ S1)(∃y ∈ S2)(x � y) and
(∀y ∈ S2)(∃x ∈ S1)(x� y).

Claim For A,U, a as above, the length ν of the pedigree ~u for a over A has itself a
pedigree of the form 〈v0, v1〉, where v1 � u1 .

Proof Refer to RST, Proposition 10.20. The interpretation (S0[~u],=,∈,v) is isomor-
phic to [U`t(V; Σ U)]S0 , and~v+ corresponds to D in this isomorphism. This means that
ν corresponds to the function F : t 7→ |t| defined for t ∈ Σ U. Each such t has the form
〈u〉 a s, for some u ∈ U . As the rank of U is ω , rank u ∈ ω , and hence |s| = rank u
is independent of s. Define f : [TU]0 = U → ω by f (u) = rank u; the above remarks
show that F(t) = f (u) holds for all t , ie, U`t(V; Σ U) � F�D1 . Hence U`t(V; Σ U) sat-
isfies the statement “The range of the pedigree for F is level–equivalent to {D0,D1}.”
As Sα 4 I, the same is true in [U`t(V; Σ U)]S0 . The isomorphism then establishes
that S0[~u] satisfies the statement “The range of the pedigree for ν is level–equivalent
to {u0, u1},” and by RST, Proposition 10.17, the range of the pedigree for ν is level–
equivalent to {u0, u1}.

Let now Λ1 = {u0 < u1 < . . . < uν−1} and Λ2 = {u0 < u2 < . . . < uν}. The
statement: “There is a pedigree ~v such that ran~v is level–equivalent to Λ” is true about
Λ1 [〈u0, u1, . . . , uν−1〉 is a pedigree for uν−1 ∈ β1A ∈ S0 ], but false about Λ2 [there
can be no such pedigree, because ν would be ∈-definable from it, and the range of the
pedigree for ν is level–equivalent to {u0, u1}; but u1� uj does not hold for any j 6= 1,
contradicting Proposition 2.8 and RST, Proposition 10.17].

A weaker generalization of Theorem 2.6 does hold. We state it only for n = 2; the
higher values of n can be treated similarly.

Theorem 2.10 Given y1, . . . , y` , there is a level set L such that for every β2 there
is a level set M , dependent only on the ∼=L -equivalence class of β2 , such that if
α < β1 < β2 , α < β′1 < β′2 , β2 ∼=L β

′
2 and β1 ∼=M β′1 , then

(∀x ∈ Sα)(Pα(x, y;β1, β2)↔ Pα(x, y;β′1, β
′
2)).
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Proof Choose V , b1 , b2 , b′1 , b′2 as in the proof of Theorem 2.6 (let n = 2). The
pedigree for 〈b2, 〈y〉〉 is 〈v0, . . . , vm, (ui)b2 , . . . , (uν)b2〉, where vm = u1i V , so vm � ui ,
and v0, . . . , vm depend only on the∼=L -equivalence class of β2 . Let M := {v0, . . . , vm}.

If vj < β1 < vj+1 [vj < β1 if j = m], the pedigree for 〈b1, 〈b2, 〈y〉〉〉 is

〈w0, . . . ,wp, (vj)b1 , (vj+1)b1 , . . . , (vm)b1 , ((ui)b2)b1 , . . . , ((uν)b2)b1〉,

where wp = v1j V , so wp� vj , and w0, . . . ,wp are independent of the choice of b1 , b2 .
Hence 〈〈x〉, 〈b1, 〈b2, 〈y〉〉〉〉 and 〈〈x〉, 〈b′1, 〈b′2, 〈y〉〉〉〉 have the same type (w0)〈x〉 , and
the theorem follows.

3 Miscellaneous other principles.

In this section we derive, in GRIST, several versions of Idealization and Choice that
have been found useful in applications. In this section, P is always a V-formula,
unless stated otherwise.

Local Idealization combines Idealization and Local Transfer.

Local FRIST Idealization:
Given U and x1, . . . , xn , there is V ⊃ U such that for all A,B ∈ U,

(∀a ∈ PfinA∩U)(∃y ∈ B)(∀x ∈ a)P(x, y, x;U)↔ (∃y ∈ B)(∀x ∈ A∩U)P(x, y, x;V).

Proof By Local Transfer there is V ⊃ U such that for all A,B ∈ U and all a ∈ U,

(∃y ∈ B)(∀x ∈ a)P(x, y, x;U)↔ (∃y ∈ B)(∀x ∈ a)P(x, y, x;V).

Hence the left side of the claim is equivalent to

(∀a ∈ PfinA ∩U)(∃y ∈ B)(∀x ∈ a)P(x, y, x;V),

which is equivalent to the right side by FRIST Idealization.

Local GRIST Idealization:
Given U and x1, . . . , xn , there is V ⊃ U such that, for all A ∈ U,

(∀a ∈ PfinA∩U)(∃y)(∀x ∈ a)P(x, y, x;U)↔ (∃y)(∀W ⊂ V)(∀x ∈ A∩W)P(x, y, x;V).
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Proof By Local Transfer there is V ⊃ U such that, for all A ∈ U,

(∀a ∈ PfinA∩U)(∃y)(∀x ∈ a)P(x, y, x;U)↔ (∀a ∈ PfinA∩V)(∃y)(∀x ∈ a)P(x, y, x;V)

and, for all finite a ∈ U,

(∃y)(∀x ∈ a)P(x, y, x;U)↔ (∃y)(∀x ∈ a)P(x, y, x;V).

Assume that (∀a ∈ PfinA ∩U)(∃y)(∀x ∈ a)P(x, y, x;U). Then in particular

(∀W ⊂ V)(∀a ∈ PfinA ∩W)(∃y)(∀x ∈ a)P(x, y, x;V),

which is the left side of GRIST Idealization. The right side follows.

Assume now that (∃y)(∀W ⊂ V)(∀x ∈ A ∩W)P(x, y, x;V), and let W = U to
obtain (∃y)(∀x ∈ A ∩ U)P(x, y, x;V). It follows that (∃y)(∀x ∈ a)P(x, y, x;V) holds
for all a ∈ PfinA ∩ U [because a ⊆ A, by RST2, Proposition 1.10 (13)], and hence
(∃y)(∀x ∈ a)P(x, y, x;U) holds.

We recall the principle of Standard Size Choice [RST2, Proposition 1.10 (10)]:
For every A ∈ V such that (∀x ∈ A ∩ V)(∃y)P(x, y, x;V), there exists a function f
with dom f = A such that (∀x ∈ A ∩ V)P(x, f (x), x;V).

We call f a choice function for P on A.

Strong Standard Size Choice: For every V = V(α) there is V′ ⊃ V such that for
all A ∈ V there exists a function f with dom f = A such that, for all x ∈ A with
V(x) ⊂ V′ , (∃y)P(x, y, x;V(α, x))→ P(x, f (x), x;V(α, x)).

The level V′ depends on the parameters x . If V′ were allowed to depend also on f , the
principle would follow easily from Standard Size Choice and Local Transfer. To prove
it as is, we follow the argument of RST, Proposition 12.28 (α-Standard Size Choice)
with minor changes, except for the proof of Claim, where the use of Local Transfer has
to be replaced by an appeal to Strong Stability.

Proof We first reformulate Strong Standard Size Choice in the ∈-v–language.

Let P(x, y, x) be an ∈-v-formula. For every α there is β = α such that for all
A v α there is a function f with dom f ⊆ A such that, for all x ∈ A, x < β ,
(∃y)P〈α,x〉(x, y, x)→ P〈α,x〉(x, f (x), x).

We fix x and α . Let P ′(z, y) be the formula (∃x, x)[z = 〈x, 〈x〉〉 ∧ P(x, y, x)], and
let Q(V) be the ∈-formula corresponding to P ′ by the Normal Form Theorem. If
α v γ , 〈x〉MγU and x ∈ Sγ , we then have

(∃y)Pγ(x, y, x)↔ (∃V)[π1(V) = Ux ∧ Q(V)].
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The ZFC principle of Selection: Let R(x, y, p̄) be an ∈-formula;
(∀p̄)(∀A)[(∀x ∈ A)(∃y)R(x, y, p̄) → (∃f )( f is a function ∧ (∀x ∈ A)R(x, f (x), p̄))],
which holds in (Sα,∈), implies that for every A v α there are functions V,B ∈ Sα
such that dom V = dom B = {x ∈ A : (∃V)[π1(V) = Ux ∧ Q(V)]}, and for all
x ∈ dom V , V(x) ∈ β∞B(x) ∧ π1(V(x)) = Ux ∧ Q(V(x)). It remains to prove the
following.

Claim. There is a level β = α , and for every A v α there is a function ~v with
dom~v = dom V such that for all x ∈ dom~v, x < β , ~v(x) = 〈v(x)0, . . . , v(x)ν(x)〉 is an
〈α, x〉-pedigree over B(x) with v(x)0 = V(x) and v(x)ν(x) = 〈〈x, 〈x〉〉, y(x)〉 for some
(uniquely determined) y(x).

The function f on A defined on dom V by x 7→ y(x) then has the property that,
for all x < β such that (∃y)P〈α,x〉(x, y, x), 〈〈x, 〈x〉〉, f (x)〉M〈α,x〉V(x) ∧ Q(V(x)); so
(P ′)〈α,x〉(〈x, 〈x〉〉, f (x)) holds, ie, P〈α,x〉(x, f (x), x) holds.

Proof of Claim.

Let ~u = 〈u0, u1, . . . , uµ〉 be an α-pedigree for 〈x〉. We fix a level β such that
α < β < u1 [α < β if µ = 0]. Let x ∈ dom V , x < β .

By Lemma 2.3, ~ux := 〈(u0)x, (u1)x, . . . , (uµ)x〉 is an 〈α, x〉-pedigree for 〈x, 〈x〉〉, and
(uj)x �〈α,x〉 uj for all j ≤ µ. Let ~v = 〈v0, v1, . . . , vν(x)〉 be some 〈α, x〉-pedigree over
B(x) with v0 = V(x) and vν(x) = 〈〈x, 〈x〉〉, y〉, for some y. If β < v1 [or if µ = 0],
then ~v is also a β -pedigree. If v1 � γ v β , fix δ so that β < δ < u1 [β < δ if
µ = 0] (density). Then γ ∼=L δ for L := ran~ux , so by Strong Stability, there is an
〈α, x〉-pedigree ~v as above with v1�δ = β . We again conclude that ~v is a β -pedigree.

The above argument shows that for every x ∈ dom V there is a β -pedigree ~v over B(x)
with v0 = V(x) and vν(x) = 〈〈x, 〈x〉〉, y〉 for some y.

Similar to the proof of RST, Proposition 12.28, using α-Finite Choice and GRIST
Idealization we obtain a function~v with dom~v = dom V such that for every x ∈ dom V ,
x < β , ~v(x) is a β -pedigree with the required properties. As v(x)0 = V(x) v 〈α, x〉
and v(x)1 = β = 〈α, x〉 [if ν(x) > 0], ~v(x) is an 〈α, x〉-pedigree.

The last principle we consider was proposed by Andreev [1] in the context of IST. It
is a strengthening of the well-known Robinson’s Lemma. The most important case is
A = N. If Q(n, y, z) is an internal statement [RST2, page 12; [6]], F is a function on
N, and Q(n,F(n), z) is valid for all n ∈ V , then by overflow it remains valid for some,
but not necessarily all, n /∈ V as well. Andreev Principle says that we can do better, at
least for internal statements with parameters from V .
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Definition 3.1 A function F with dom F = A ∈ V is called adequate relative to V

if (∀X ∈ V)(F � V ⊆ X → F ⊆ X).

The usefulness of adequate functions comes from the following observation.

Let Q(x, y, z) be any internal formula. If z ∈ V and Q(x,F(x), z) holds for all
x ∈ A ∩ V , then it holds for all x ∈ A.

Proof Fix B ∈ V such that ran F ⊆ B and let X = {〈x, y〉 ∈ A × B : Q(x, y, z)}.
Then X ∈ V and the definition of adequacy for this X translates into the preceding
observation.

Theorem 3.2 For every function G defined on A ∈ V there exists an adequate function
F defined on A such that F � V = G � V .

Proof Let G : A → B be given, with A,B ∈ V . By FRIST Standardization, there is
a set K ∈ V , K ⊆ P(A× B), such that for all X ⊆ A× B, X ∈ V ,

X ∈ K ↔ (∀x ∈ A ∩ V)(〈x,G(x)〉 ∈ X).

We note that X1,X2 ∈ K ∩ V implies X1 ∩ X2 ∈ K , hence, by Transfer, K is closed
under finite intersections. Also, (∀x ∈ A)(∃y)(〈x, y〉 ∈ X) holds for all X ∈ K ∩ V ,
hence, by Transfer, for all X ∈ K .

For every a ∈ A let La = {〈x, y〉 ∈ A× B : x = a→ y = G(a)}.

It is now clear that for every finite {X1, . . . ,Xn} ⊆ K ∩ V and {a1, . . . , am} ⊆ A ∩ V

there is a function F : A→ B such that

F ⊆ X1 ∩ . . . ∩ Xn ∩ La1 ∩ . . . ∩ Lam .

By Saturation (Idealization) there is F such that F ⊆ X ∩ La for all X ∈ K ∩ V and
a ∈ A ∩ V . Clearly F is adequate and F � A = G � A.

Corollary 3.3 (Andreev Principle) Every external function defined on A∩V has an
extension to a function F defined on A such that if Q(x, y, z) is any internal formula,
z ∈ V and Q(x,F(x), z) holds for all x ∈ A ∩ V , then it holds for all x ∈ A.

A typical application of Andreev Principle.

Let 〈an : n ∈ N〉 be an adequate sequence where each an ' 0 relative to V , for n ∈ V .
Then Σ∞n=0 |an| ' 0 relative to V .

Proof For any fixed ε > 0, ε ∈ V , the statement Q(n, a, ε) : |a| < ε/2n is internal
and |an| < ε/2n holds for all n ∈ N ∩ V . Hence, |an| < ε/2n holds for all n ∈ N. It
follows that Σ∞n=0 |an| < 2ε. As ε ∈ V is arbitrary, Σ∞n=0|an| ' 0.
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4 Relative continuity

Definition 4.1 (RST2, Definition 2.17) The function f is (uniformly) (V1,V2)–
continuous if x 'V1 x′ implies f (x) 'V2 f (x′), for all x, x′ ∈ dom f . The function f is
V–continuous if it is (V,V)-continuous.

RST2, Theorem 2.10 shows that for every function f there is a finite set {v0, . . . , vn}
such that V(·) = V(v0) ⊂ V(v1) ⊂ . . . ⊂ V(vn) and, for all V(vi) ⊆ V ⊂ V(vi+1) [all
V(vi) ⊆ V if i = n], the function f is V(vi)–continuous if and only if f is V–continuous
if and only if f is not V(vi+1)–continuous. Here we study (V1,V2)–continuity for
V1 6= V2 . We consider only functions f : [a, b] → [c, d] where a, b, c, d ∈ V(·), for
simplicity.

(I) (V1,V2)–continuity for V1 ⊂ V2 .

Definition 4.2 The function f is V–constant if (∀x, y ∈ dom f )(f (x) 'V f (y)).

Proposition 4.3 If V1 ⊂ V2 and f is (V1,V2)–continuous, then f is V2 –constant.

Proof Fix a natural number N ∈ V2 , N /∈ V1 . For x, y ∈ [a, b], x < y, let
∆∆∆x := (y− x)/N and xi := x + i ·∆∆∆x for i ≤ N . Then ∆∆∆x 'V1 0, so xi 'V1 xi+1 , and
f (xi) 'V2 f (xi+1) by (V1,V2)–continuity. Let ε := max{| f (xi+1) − f (xi) |: i < N};
note that ε 'V2 0. We have | f (y) − f (x) |≤ Σ i<N | f (xi+1) − f (xi) |≤ ε · N 'V2 0,
because ε 'V2 0 and N ∈ V2 . Hence f (x) 'V2 f (y).

Corollary 4.4 If f is (V1,V2)–continuous for V1 ⊂ V2 , then f is (V,V2)–continuous
for all V , and V–continuous for all V ⊆ V2 .

If f is V–constant for all V , then f is constant. Otherwise, there is a coarsest level V
such that f is not V–constant [by Granularity]; we denote it Vf . Then f is (V1,V2)–
continuous for all V1 and all V2 ⊂ Vf , and is not (V1,V2)–continuous for any
V1 ⊂ V2 when Vf ⊆ V2 . These observations completely describe the behavior of
(V1,V2)–continuity for the case V1 ⊂ V2 .

(II) (V1,V2)–continuity for V2 ⊂ V1 .

If f is V–continuous for some V such that V2 ⊆ V ⊆ V1 , then trivially it is (V1,V2)–
continuous. Hence it remains to investigate the case when V(vj) ⊆ V2 ⊂ V1 ⊂ V(vj+1)
and f is V–discontinuous for all V(vj) ⊆ V ⊂ V(vj+1).
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Let us fix V2 such that V(vj) ⊆ V2 ⊂ V(vj+1). Since f is V2 –discontinuous,

(∃x, x′ ∈ [a, b])(x 'V2 x′ ∧ | f (x)− f (x′)| > ε)

holds for some ε > 0, ε ∈ V2 .

By Local Transfer, (∃x, x′ ∈ [a, b])(x 'V x′ ∧ | f (x)− f (x′)| > ε) is then true for some
V ⊃ V2, so f is also (V,V2)–discontinuous. This argument also shows that there is
no finest level V such that f is (V,V2)–discontinuous.

Each such V2 determines a “cut” in the ordering of levels by ⊆. The “lower class”
of the “cut” consists of those V for which f is (V,V2)–discontinuous, and the “upper
class” of those for which f is (V,V2)–continuous (the latter can be empty). These
“cuts” increase with V2 : If V2 ⊆ V′2 and f is (V,V2)–discontinuous, then f is
(V,V′2)–discontinuous. The “upper class” may or may not have a coarsest “element,”
as the two following examples show.

Example 1. Let h 'V 0 for all V ⊂ V(h) ⊃ V(·) [see RST2, Corollary 2.16].

g1 :

�
�
�
�
�
�
�
�
�
��

L
L
L
L
L
L
L
L
L
LL

• ◦

• •

(0, 0)

( h
2 , 1)

(h, 0) ( 1
2 , 0)

( 1
2 , h) (1, h)

The function g1 is V–discontinuous for all V . If V ⊂ V(h), then g1 is (V,V(·))–
discontinuous. If V(h) ⊆ V , then g1 is (V,V(·))–continuous.

Example 2. Let {v0, . . . , vn} be a level set with n /∈ V(·), and {h0, . . . , hn} be as in
RST2, Corollary 2.16; ie, V(hi) = V(vi) and hi is ultrasmall relative to all V ⊂ V(hi).
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g2 :

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
DD

�
�
�
�
�
�
�
�
�
��

D
D
D
D
D
D
D
D
D
DD

�
�
�
�
��

D
D
D
D
DD

�
��

D
DD

. . .. . .• ◦
• •

0 h1
1
2

1
2 +h2

2
3

2
3 +h3

n−1
n

n
n+1 1

( h1
2 , 1)

( 1
2 + h2

2 ,
1
2 )

( 2
3 + h3

2 ,
1
3 )

( n−1
n + hn

2 ,
1
n )

(1, hn)

If V ⊂ V(hi) for some i ∈ V(·), then g2 is not (V,V(·))–continuous, because of the
spike at 1− 1/i, of width hi 'V 0 and height 1/i ∈ V(·).

Otherwise, V(hi) ⊆ V for some i /∈ V(·) [see Proposition 6.2]. As {h0, . . . , hi−1} ∈
V(hi−1), the function g2 � [0, 1 − 1/i] ∈ V(hi−1) [it is definable in V(hi−1)] and is
continuous, ie, V(hi−1)–continuous, hence (V,V(·))–continuous. The function g2 �
[1−1/i, 1] is also (V,V(·))–continuous, because it is bounded by max{1

i , hn} 'V(·) 0.
Hence g2 is (V,V(·))–continuous.

Finally, we note that g2 is not V–continuous for any V , because of the spike at 1− 1
i+1

if V(hi) ⊆ V ⊂ V(hi+1), and because of the jump at 1− 1
n+1 if V(hn) ⊆ V .

5 Conservativity of variants of relative set theory over BST.

In GRIST, the ordering of levels by inclusion is dense. In contrast, Discrete GRIST
[see RST, Section 12] postulates that the ordering of levels by inclusion is discrete.
O’Donovan raised a question of the extent to which these two theories agree. On the one
hand, they both are conservative extensions of ZFC, and hence they prove the same
∈-statements (namely, exactly those that are provable in ZFC). On the other hand,
clearly there are statements about levels where the two theories differ. In this section
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we obtain a general result showing that provable statements in which no quantification
over levels occurs are exactly the same in GRIST, Discrete GRIST, and other similar
theories.

The theory BST is a modification of Nelson’s IST [8], introduced by Kanovei (see
Kanovei–Reeken [7] and RST, Section 5). The language of BST has ∈ and a unary
predicate st(·) (“ · is standard ”).

If P(x1, . . . , xn) is a formula of the ∈-st-language, we let P(x1, . . . , xn | V) be the
formula obtained from P(x) by replacing each occurrence of st(x) by x ∈ V . We note
that P(x | V) is a V-formula in the sense of RST2, as no quantification over levels
occurs in it. Conversely, every formula Q(x,V) of the language of GRIST in which
no quantification over levels occurs is of the form P(x | V) for some ∈-st-formula
P(x). The formula PW(x | V) is obtained from P(x | V) by replacing each occurence
of (∀x)(. . .) by (∀x ∈W)(. . .) and each (∃x)(. . .) by (∃x ∈W)(. . .).

Let T be a theory in the language of GRIST. We say that T is locally BST if

(0) T ` R♥ (o – iv) [see RST2], ie, T proves that levels are linearly ordered by
inclusion and there is a coarsest level S := V(0) = V(·);

(1) T ` P(x | V) and T ` V1 ⊂ V2 → PV2(x | V1),
where P(x) is any axiom of BST; and

(2) For every countable model M of ZFC there is a countable model N of T such
that M is isomorphic to N � SN .

Condition (2) holds if T is realistic over ZFC in the sense of RST, Section 1. The
theories GRIST, Discrete GRIST, and FRIST (more precisely, the theory called
FRBST2 in [2]) are all locally BST. It is also easy to formulate a “bounded” version
of RIST which is locally BST.

Theorem 5.1 If T is locally BST, then T ` P(x | V) if and only if BST ` P(x).

Proof The “if” direction is an immediate consequence of condition (1) [and the fact
that the translation P(x) 7→ P(x | V) preserves logical axioms and deduction rules].

For the “only if” direction, assume that BST 6` P(x). Then there is a countable model
P of BST ∧ (∃x)¬P(x). Let M := P � SP , where S := {x : st(x)}. Condition (2)
implies that there is a countable model N of T with N � SN isomorphic to M. By
condition (1), P := (|N|,∈, SN) is a model of BST. In RST, Corollary 5.9, it is proved
that if P, P are countable models of BST with isomorphic standard universes, then P
and P are isomorphic. Hence P � (∃x)¬P(x) and N � (∃x)¬P(x | S). This shows
T 6` P(x | V).

Journal of Logic & Analysis 4:11 (2012)



Relative set theory 21

Theorem 5.1 can be extended to formulas with any finite list of levels. Let BSTk be
the theory in the language with ∈ and unary predicates st1, . . . , stk , postulating

(i) st1(x)→ st2(x)→ . . .→ stk(x), and

(ii) P i(x) for 1 ≤ i ≤ k , where P(x) is any axiom of BST, and P i(x) is obtained
from P(x) by replacing each occurence of st(x) by sti(x) and, if i < k , each (∀x)(. . .)
by (∀x)(sti+1(x)→ . . .) and each (∃x)(. . .) by (∃x)(sti+1(x) ∧ . . .).

We note that BST1 is BST (with st replaced by st1 ) and BSTk is “BST iterated k
times.” It follows immediately by induction that if P, P are countable models of BSTk

with isomorphic standard universes [ie, P � {x ∈ |P| : P � st1(x)} is isomorphic to
P � {x ∈ |P| : P � st1(x)}, then P and P are isomorphic.

Let P(x | V1, . . . ,Vk) be the formula obtained from P by replacing each occurence
of sti by x ∈ Vi , for all 1 ≤ i ≤ k . The argument in the proof of Theorem 5.1, with
obvious modifications, proves the following theorem.

Theorem 5.2 If T is locally BST, then

T ` V1 ⊂ V2 ⊂ . . . ⊂ Vk → P(x | V1,V2, . . . ,Vk) if and only if BSTk ` P(x).

Corollary 5.3 If T is locally BST, then T ` P(x | V1,V2, . . . ,Vk) if and only if
GRIST ` P(x | V1,V2, . . . ,Vk).

Proof For k = 2 the formula P(x | V1,V2) is equivalent to

(V1 ⊂ V2 → P(x | V1,V2)) ∧ (V2 ⊂ V1 → P(x | V1,V2)) ∧ P(x | V1,V1).

The claim follows from Theorems 5.2 and 5.1. Similarly for k > 2.

6 Corrections and additions to RST.

The simplified proof of Proposition 6.10 in RST given there does not establish that
T ′ 4U T . Below we give the original inductive proof.

Proposition 6.1 (RST, Proposition 6.10) For every λ : ⊆ Σ T → ω such that
{t ∈ Σ T : λ(t) ≤ |t|} ∈ ΣU there is T ′ 4U T with λT′ =ΣU λ.
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Proof We proceed by induction on the rank of T . The claim is clear if T = {0}.

If {t ∈ Σ T : λ(t) = 0} ∈ ΣU , then T ′ = {0} has the required properties. From now
on we assume that {t ∈ Σ T : λ(t) > 0} ∈ ΣU .

By RST, Definition 6.2, X0 := {i : (X)〈i〉 ∈ ΣU〈i〉} ∈ U(0). For each i ∈ X0 , s ∈ (X)〈i〉
implies 〈i〉 a s ∈ X , so λ(〈i〉 a s) > 0; let λi(s) = λ(〈i〉 a s) − 1. By the inductive
assumption, for each i ∈ X0 there is T ′i 4U〈i〉 T〈i〉 and a set Xi ⊆ (X)〈i〉 , Xi ∈ ΣU〈i〉 ,
such that λT′

i
(s) = λi(s) for all s ∈ Xi .

Now let T ′ := {0} ∪
⋃

i∈X0
〈i〉 a T ′i ; clearly T ′ 4U T . The set Y := {〈i〉 a s : i ∈

X0, s ∈ Xi} ∈ ΣU and for t = 〈i〉 a s ∈ Y , λT′(t) = |πT′,T (t)| = |πT′
i ,T〈i〉(t)| + 1 =

λT′
i
(s) + 1 = λi(s) + 1 = λ(t).

The next proposition generalizes RST, Proposition 10.5 from pedigrees to level sets.

Proposition 6.2 Let L = {γ0, . . . , γn} be a level set. For every x either x < γ0 or
γi v x < γi+1 for some i < n, or γn v x .

Proof Either x� γi for some i ≤ n, or L ∪ {x} is a level set, hence well-ordered by
v. From this, the claim follows.

The following proposition is often useful for specifying subsets of level sets.

Definition 6.3 A formula P(z, x) is stable in z if α < z→ (P(z, x)↔ Pα(z, x)).

Examples. (1) P(z,X) : z < x is stable in z. [For α < z, z < x↔ z <α x .]

(2) Similarly, P(z,X) : (∃x ∈ X)(x� z) is stable in z.

(3) P(z,X) : (∀v)[z < v→ (∃x ∈ X)(z < x v v)] is also stable in z.

Proposition 6.4 Let P(z, x) be stable in z. For every x and every level set L there is
a (level) set M such that (∀z)(z ∈ M ↔ z ∈ L ∧ P(z, x)).

Proof Let L = {γ0, . . . , γn}; we consider the statement

Qα(L, x) : (∃N)(∀z)(z ∈ N ↔ z ∈ L ∧ z =α 0 ∧ Pα(z, x))

and use Granularity to prove Q0(L, x).
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The statement is true when L v α , with N = ∅. [Recall that L v α implies z v α

for all z ∈ L; see RST2, Proposition 1.10 (13); also note that L� γn .]

By Granularity, there is a v-least level α for which Qα(L, x) holds; by the above,
α v γn � L .

By Proposition 6.2, either α < γ0 or γi v α < γi+1 for some i < n, or α� γn .

In the first case, Qα(L, x) clearly implies Q0(L, x), with the same N . In the second
case, Qα(L, x) implies Qγi(L, x) (with the same N ), so α � γi . Let γi−1 v β < γi

[β < γi if i = 0 and γi = 0]. By stability of P in z, Pβ(z, x)↔ P(z, x)↔ Pα(z, x)
for all z = α . If Pβ(γi, x), let N′ := N ∪{γi}; otherwise let N′ := N . Then Qβ(L, x)
holds (with N′ in place of N ), and we have a contradiction. Thus α � γ0 � 0, and
Q0(L, x) holds in this case, too. The third case is like the second, with i = n.

Let now N be such that (∀z)(z ∈ N ↔ z ∈ L ∧ z = 0 ∧ P(z, x)).

We set M := N ∪ {γ0} if γ0 � 0 ∧ P(γ0, x), and M := N otherwise. Clearly M has
the required properties.

In RST, Corollary 12.7, the completeness of GRIST over ZFC is formulated as follows:

If T ⊇ ZFC is a complete consistent theory (in the ∈-language), then T + GRIST is
a complete consistent theory (in the ∈-v-language).

Here we give a reformulation that is perhaps more striking.

Theorem 6.5 Let P be any formula (in the ∈-v-language). If GRIST + P is a
conservative extension of ZFC, then GRIST ` P .

Proof Assume that GRIST + (¬P) is consistent. Let G be a complete consistent
extension of this theory, and let T be the restriction of G to formulas in the ∈-language.
Then T ⊃ ZFC is complete and consistent. By RST, Corollary 12.7, T + GRIST is
complete and consistent, so T + GRIST = G and T + GRIST ` ¬P . Hence T +

GRIST + P is inconsistent. It follows that GRIST+ P ` ¬Q for some Q ∈ T.
Since GRIST+ P is assumed to be a conservative extension of ZFC, we have also
ZFC ` ¬Q and ¬Q ∈ T, a contradiction.
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[10] Y Péraire, Infinitesimal approach of almost-automorphic functions, Ann. Pure Appl.
Logic 63 (1993), 283–297; doi: 10.1016/0168-0072(93)90152-4.

The City College of New York

khrbacek@sci.ccny.cuny.edu

Received: 25 April 2011 Revised: 16 May 2012

Journal of Logic & Analysis 4:11 (2012)

http://dx.doi.org/10.4115/jla.2009.1.8
http://dx.doi.org/10.4115/jla.2010.2.8
http://dx.doi.org/10.4169/000298910X521661
http://dx.doi.org/10.1090/S0002-9904-1977-14398-X
http://dx.doi.org/10.1016/0168-0072(93)90152-4
mailto:khrbacek@sci.ccny.cuny.edu

	1 Strong Stability and `sets of levels'.
	2 Proof of Strong Stability in GRIST.
	3 Miscellaneous other principles.
	4 Relative continuity
	5 Conservativity of variants of relative set theory over BST.
	6 Corrections and additions to RST.
	Bibliography

